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The kinematic singularities and threshold relations of helicity amplitudes for inelastic pion-nucleon 
scattering involving higher baryons in the final state are discussed. A recipe for writing the's- and t
channel helicity amplitudes is obtained using Wigner-Bargmann formalism. Explicit expressions for 
helicity amplitudes are worked out for the processes where the final state baryon has spin t or f-. 

INTRODUCTION 

The problem of kinematic singularities and thresh
old relations for helicity amplitudes of the process 
1TN ---+ 1T~ has recently been dealt with by Jackson and 
Hite.l They have used the concepts of nonrelativistic 
quantum mechanics to combine the spins of the 
particles into channel spins S and Russel-Saunders 
coupling of L + S = J. They have shown the kine
matic singularities to follow from a mismatch between 
J and L for each term in the partial wave series and 
the threshold relations to result from the presence of 
fewer Russel-Saunder amplitudes than the inde
pendent helicity amplitudes at thresholds. They have 
used the method of invariant amplitudes as an 
alternative to give directly the kinematic singularities 
and threshold relations among the helicity amplitudes. 

In the present work, we have used Wigner-Barg
mann2 formalism to calculate invariant amplitudes in 
sand t channels for the general process 

(0-) + (t+) ---+ (0-) + (S+) , 

where (S+) is some higher-spin baryon. In t channel, 
because of zero-spin particles of same intrinsic parity 
in initial state, the allowed angular-momentum parity 
states belong to the natural parity sequence ('YJ = + I). 
Therefore, in this case, the parity conserving ampli
tudes are the same as Jacob-Wick helicity amplitudes. 
For the S = t case, our results for the s channel are 
the same as those of Jackson and Hite, but the t
channel amplitudes differ in some signs from their 
amplitudes. However, the kinematic singularity struc
ture is the same. Helicity amplitudes for S = t have 
been worked out both in s and I channels. 

We will be using the following results. 

(i) The normal (TN' T~) and pseudo (Tl" T~) 
threshold factors defined for the I-channel process 
1 + L ---+ 3 + 4 as 

TN = [t - (ml + m2)2]f, Tp = [t - (m! - m2)2]!, 
(1) 

TN = [t - (ma + m4)2]!, T~ = [t - (ma - m4)2]!, 

such that TNTI' = 2(t)!p, T~T~ = 2(t)!p', where p 
and p' are initial and final c.m. momenta and the prime 
corresponds to the final state. Following Jackson and 
Hite,l pseudothresholds are treated on an equal 
footing as normal thresholds with two modifications: 
(a) Pseudo-amplitudes !A3A4;A~A2 

(f P - (_l)sl-).11' ) 
).3A4;).1).2 - J ).3).4;).1).2 

are considered rather than normal amplitudes 
!).3).4;).1).2' (b) The parity 'YJl of the lighter particles is 
replaced by ( -1 )2SI'YJI. 

(ii) The Kibble3 boundary functions, 

(2) 

(iii) Wigner-Bargmann2.4 momentum space par
ticle and antiparticle wavefunctions UW(p) and 
VW(p), respectively, given by 

UW(p) = L(p) X L(p) X ... X L(p)U().)(O), 

VW(p) = L(p) X L(p) 

X ••. X L(p)C-1 X C-l X ••. X C-1U(-).). 

L(p) is the boost matrix for the Dirac spinors 

L(p) = exp [!Y5a • p tanh-l (p/Po)] 

Po + m + Y5a • p 
[2m(po + m)]!' . 

(3) 

U(A)(O) is formed from the symmetrized n-fold 
Kronecker products of the Dirac spinors for particles 
of spin l at rest: 

U().)(O) = 2 U(+) X U(-) X u(+) 
l' 

X .•. X U(-)· ( 2SCn-) -! . (4) 

P stands for all distinguishable permutations of U(+) 
and U(-) and n- is the number of U-. 
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(iv) The representations for 'Y matrices are 

'Y4 = Pa X 1, 

Y = -P2 X G, 

'Ys = -PI X 1, 

(5) 

with Y4 diagonal and 'Yl, Y2, Ya, and Y4 all Hermitian. 
The charge conjugation matrix C-l has the form 

C-l = Ysia2 = - PI X ia2 • (6) 

(v) The parity conserving amplitudes as defined 
by Gell-Mann et aJ.5 : 

F lal.;)J2 = (-./2 cos to)-IHIlI(-./2 sin iOrll-Il~lal.;lll2 
+ 'Y)( -l)m-Il~l~'( _1)sl+s2-v 

X (-./2 sin to)-IHill 

X (-./2 cos tOrIA-Il~lal';-;'1_l2' (7) 

'l l 'l l are Jacob-Wick6 helicity amplitudes, v is J~34'12 . 

zero for integral values of SI + S2 and t for half-
integral values, u = Aa - A4, A = Al + A2, and m is 
the larger of the two. 

S-CHANNEL INVARIANT AMPLITUDES AND 
THRESHOLD RELATIONS 

The most general form of amplitudes for the 
process (0-) + (t+) -4- (0-) + (S+) is 

(p'A', ql T IpA, k) 
nl+n2=N 

= I (ju')(p't 1U2"'UN 
n.=O 

X X u,X U2 ... X un, Yun1+1 Yun1+2 ... YUN 
X Ys( -An. - Iiy . XBn2)UW(p), 

where U<A')(p')U 1U 2'''UN is Rarita-Schwinger7 wave
function for the final-state baryon (S+), U(p) is a 
Dirac spinor for nucleon (t+), k and q are the 
4-momenta of pions in the initial and final states, 
respectively, X and Yare linear combinations of k 
and q (X = k + q, Y = k - q),and N = S - t. 

Changing4 Rarita-Schwinger wavefunction to the 
Wigner-Bargmann wavefunction, we write 

(p'A,', ql T IpA, k) 

nd-n2=N 1 - (l') , 

= I --t UP1P2"'PNip ) 
n2=O (2N) 

Now 

X (y' XC)P1P.(y . XC)PaP • ... (y . XC)P2nclP.nl 

X (y' YC)P2nl+lP.nl+2 ... (y . YC)P2N-IP2N 

- {(Y5An2 - liY5Y . X Bn2)aa"}U~~)(p). 

U-U') (') 
P,P2'''PNa P 

= [Ut(O)RtL-1(p') X R tL-1(p') X .. ']p'p2"'PNa 

= U Pl'P2"'PN'a,(O)[R t r'(p')]/h'Pl ... 

X [R tL-l(p')]PN'PN[R tL-,(p')]a'a' 

/ ,-

" / ,-
J,! 
,c,\ 

/ 

" ,-
/ 

" 
,

/ 

---------------)- xl. 

FIG.!. The process 1T + N -+ 1T + B,. k, p, and q, p' represent the 
momenta of the initial pion, initial nuCleon, final"pion, and final 
baryon (of spin S), respectively 

where R = e-iia26 is the rotation required to bring p' 
in the direction of the Xa axis (see Fig. 1). 

This gives factors like 

{RtL-1(p')y' XC[Rtr l (p'W'}Pl'P2 

and 
= [R

t.c-1(p')y' XCL(p')RC]Pl'P2 == XP1'P2 

(p'A', ql T IpA, k) 
1 nl+n2=N 

- -- ~ (ju') (O)x X ... x - (2 )! £., Pl'P,''''PN'a PI'P.' Pa'P.' P2R I-IP2n l N n2=O 

X .. . [Rtrl( ') YP2Rl+l'P2n,+2 YP2N-l'P2N' p 

X {-YsAn2 - tiysY . XBn2}L(P)]aa'U~~)(O). 

We find 

. ( . II C C p' W + p' ko + p~p cos 0) x = -l P sm val - aa 
m' 

and 

Y = -i(P sin OalC - a3C 

-p'W + p'ko + p~p cos 0) 
X , , 

m 
Let 

p sin 0 = a, 

..L (p'ko + p~p cos () + p'W) = ldl , 
m' 

1 
- (p'ko + p~p cos 8 - p'W) = td2, 
m' 
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and 

with 

Din.) = _1_ {WB(n2)[p(p~ + m') + p'(Po + m)] 
(NN')! 

+ [A{nz) + t(m' - m)BCns)] 

X [p'(Po + m) - p(p~ + m')]}, 

D~n2) = _1_ {WB(n.)[p'(po + m) - p(p~ + m/)] 
(NN,)t 

+ [ACn.) + t(m' - m)B(n2 )] 

X [p'(Po + m) + p(p~ + m')]}, 
where 

W = ko + qo = (s)t 

and 
N = 2m(po + m), N' = 2m'(p~ + m') 

and where m' and m are the masses of (S+) and (i+), 
respectively. 

We will require the following linear combinations 
of Din,) and D~nz): 

Din.) + D~n2) 

and 

= 2p'(po + m) {A(n.) + a(m' _ m) + W]B(n 2)} 

(NN')! 

_Din.) + D~n.) 
= 2p(p~ + m') {A(nz) + [i(m' _ m) _ W]B(n2)}. 

(NN')! 

Now 

(p'A', ql T IpA, k) 
nl+nz=N ( I·)N 
~ - -().') 

= "'" --! UP1Pz'··PN/1. 
"FO (2N) 

X [a(lp - 4>-1) + 4>°d1]n1 

X [a(4)1 - 4>-1) + 4>°d21"2 

X [0'3 COS tf)Din .) + 0'1 sin tOD~"2)]U().). 

Choosing A = t, 

(0'3 cos iODinz) + 0'1 sin !OD~nz»)U+ 

= (cos tODinz)u+ + sin tOD~n2'U-), 

choosing A. = -i, 

(0'3 cos iODin" + 0'1 sin t()D~nz»)U-

= (-cos t(Win2)u- + sin !()D~n2)U+), 

we now show how O'lC = (4)1 - 4>-1) and O'sC = 

-.J24>°: 
O'IC = (0'+ + O'-)C, 

a+C = tc 0'1 + iCT2)C = (~ ~), 

a-C = HCTI - iCT2)C = - (~ ~), 

similarly 

Since 

UC)"'(O) = eSCn-r! ~ U+ x U- X U+ X ••• X U+ 
p 

is completely symmetric, 

. .J2 -1,,0 .J2 U+U- + U-U+ U+U- -1,,0 

.. "2 'f' = 2 J2 -+ == 'f' • 

Expanding binomially, 

[a( 4>1 - 4>-1) + 4>°d1Jnl[a( cpl - 4>-1) + cpOd21"2 
nl n2 

= ~ ~ [a( cpl _ cp-l)]N-h-12 

/t=O 12=0 

X (cpOilH2dild~2. n1! n2! 
(nl - II)! (n\! - i2)! II! 12! 

nl n2 N-h-I. 
= ~ ~ aN-It-12 I (cpl)N-11-Z2-1 

It =0 12=0 1=0 

x (cp-1i(N -11 -12)!(-1)1 
(N - 11 - 12 - I)! I! 

X (4)0il+12dild~2. n1 ! n2 ! 
(nl - [I)! (n2 - 12)! II! 12! 

Powers of U+ and U- are 
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denoting 

m-4-~-~=~ ud U+4+~=r 

such that 
n+ + n- = 2S, n+ - n- = 2A'. 

The contribution of ~he cos ()12D~1I2) u+ term gives 

2N - 11 - /2 - 21 = n+ - 1 
and 

21 + 11 + 12 = n-, 

while that of the sin ()12D~1I2) u- term gives 

2N - 11 - 12 - 2/ = n+ 
and 

I, 11' and 12 are positive integers and constraints on 
them in the 21 + 11 + 12 = n- case are 11 ~ n-, 
/2 ~ n-, II + 12 ~ n-, 1 ~ n-/2. Therefore the explicit 
expression for Jacob-Wick helicity amplitudes in 
s channel is 

X pn--21(d d ) cos 10D!n.) 111112 1 2 "2 2 

"1+"2=N n--1/2 +! ! aN-n-+21+lcf-n-+21+l( _1)1 
11.=0 1=0 

(8) 

and 

j).' -t = (_i)N . (2SC - ri-
. (2N)i- n 

[

n1+n2=N n-/2 
X ! !aN-n-+21C~Y-1I-+21(_1)1 

"2=0 1=0 

X P~;;;;,2!(dld2) sin !()D~n2) 
nl+n2=N ',,--1/2 + I I aN-n-+21+lc~'-n-+21+1(_1)1 

112=0 1=0 

where 

X pn--21-1(d d ) cos 10(_D(n2»] nl"2 1 2 2 1 , (9) 

Pn--21(d d ) 
111112 1 2 

11+ /2=11--21 , , 
~ d~ld~2 n1 • n2 • 

il.12 (nl - II)! (n2 - 12)! II! 12! 

is a polynomial in d1d2 • Now parity conserving 

amplitudes using Eq. (7) are 

y;, ~ = (-ON (2SC _)-t 
.t ,if 2N/2 11 

X (n1+!=N n!,2 pN~-t21 (sin2 0)1 
"2=0 1=0 2 

X CN- n-+2I(_I)'P"--21(d d )(D(n2) + D(n,» 
I "I'" 1 2 1 2 

"l+n.=N ,,--1/2 
+! !.J2 pN-n-+2l+1(sin2 O)! 

112=0 1=0 
X cN- n-+l+21(_1)lpn--1-21(d d ) 

I "I". 1 2 

X H(D~n2) - Di"2» - z(D~1I') + Din2»)}) , 

Z = cos O. (10) 

F+, ~ = (_i)N . (2SC )-i-
)..~ 2N/2 n-

x (nl+!=N "t2 pN;-+21 (sin2 6)1 
n2=0 1=0 2 

X C N - n-+21(_1)lpn--21(d d )(D(t/·) _ D(ll.» 
I nl112 1 2 1 2 

1Il+1I2=N 11--1/2 
+ ~ '2.J2 pN-n-+21+l(sin2 0)1 

112=0 1=0 

X CN- n-+l+21(_1)lpn--1-21(d d) 
I tllll. 1 2 

X U(D~1I2) + Din.» + z(Din2) - D~"2»]). 
(II) 

For the S = t case where N = 1, we have the 
following values of ).1, n-, and n+. 

A' n- n+ 

t 0 3 
i 2 

The invariant amplitudes for this case are easily 
calculated to be 
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_ 1 -+- 1 - [(2P~ ) 2P'POJ 
FH = - J3 FU + J3 Fi.! ;;; - 1 z - m'p 

+ ~ p,2J S(Po + m)! 
J3 m' p~ + m' 

X [A 1 - B1(JS + m' ~ m)J (12) 

where we have defined the new constants as 

-iAo _iAl 

(4mm')! = AI' (4mm')! = A2, 

iBo iBl 

(4mm')! = B1, (4mm')! = B2
• 

For the S = t case where n = 2 we have the following 
values of Il', n-, and n+ . 

Il' n- n+ 

t 0 5 

t 1 4 
t 2 3 

The invariant amplitudes in this case are 

F+ = _p2(p~ + m')! 
U J2 Po + m 

X [AI + A2 + A3 + (B1 + B2 + B3) 

x (Js - m' ~ m) 1 
F- _ p

2
p'(Po + m)! 

U - J2 p~ + m' 

X [AI + A2 + A3 + (B1 + B2 + B3) 

x (Js + m' ~ m)J. 
+ 1 {8 ( P' Po , ) + 

FU = 2J5 m' - -;- + Poz FU 

+ 2(Fi.! + zFt.!) + 4J2 P~P'JS(P~ + m')! 
m Po + m 

X [2Al + A2 + (2BI + B2) 

x (Js - m' ~ m)]}, 
_ 1 {8 ( p' Po , ) _ 

Fi ! = -J - - - + Poz Fi! . 25m' P . 
4J2 '2JS + 2( -FI'! - ZFi!) + P~ 

m 

X [2Al + A2 - (2Bl + B2) 

X (Js + m' ~ m)]}, 

F+ - _1_(~ ~ 2 (P~ + m')!{(_, + ' Z)2 
U - 2JI0 J2 m,2 P Po + m P Po PoP 

X [AI + A3 + (Bl + B3)(JS - m' ~ m) J 

+ 4P'2s[ Al + BI(JS - m' ; m)] 

+ 4p'Js( -p'po + p~pz) 

X [AI + Bl(JS - m' ~ m)]} 

• 2 () + 8 (P'po , ) - 4 SIn Fu + - - - + Poz 
m' P 

_ + 4J2pp'Js 
X (FU + zFU) + , 

m 

X (Js - m' ~ m)]}, 

- 1 (4J2 P'(po + m)!{, 2 
Fu = 2JI0 ~ p~ + m' (-p Po + p~pz) 

X [AI + A3 - (Bl + B3)(JS + m' ~ m)] 

+ 4p2's[ Al - Bl( Js + m' ~ m) ] 
+ 4p'Js(-p'p + p~pz) 

4 . 2 ()F- 8 ( P' Po , ) 
- SIn U + m' - -; + PoZ 

+ - 4J2 PP'Js 
X (-FU-zFU) + , 

m 

X {p(~: : :y[2Al + A2 + (2Bl + B2) 
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Again the constants are redefined as 

_Ao _AI _A2 
--- - A - A = A3 , 
(4mm')1- - l' (4mm')1- - 2, (4mm')1-

BO Bl B2 

(4mm,)1 = B1
, (4mm')1- = B2, (4mm')1- = B3

• 

In both these cases, threshold relations are easily 
seen as p' -+ O. 

t-channel amplitudes: Following exactly similar 
lines as in s channel we can write for t-channel 
amplitude 

X YP2nl+lP.nl+2YP2nl+3P2nl+' ..• YP2N-IP2N 

x [RtL-1(p')( -An. + tiy . XBn2)Y5V(P)l .. 
where 

x = q - k, Y = q + k, 
yep) = L(p)RC-1U<-;')(O)( -1);.-1-, 

X = R tL-1(p')y' XCL(p')RC 

= -i 2q [m' sin O(efo-1 
- efol) - 2p~ cos Oefo°], 

m' 

Y = RtL-1(p')y' YCL(p')RC 

= _i
4qop 

efo°, 
m' 

and 

Rtr I (p')(-A n2 + tiy' XBn2)Y5L(P)RC- I 

or 

= (NN'r1-{ -A n2(po + m)(W + m' - m) 

+ Bn2pq[cos O(po - p~ + m - m') 

- iCT2 sin O(W + m' + m)]}iCT2, 

(p').', pAl T Iq, k) 
nl+n.=N ( _ i)N 

= Z --lj().') 

where 

n2=0 (2N)! Pl/h"PN~ 

X 2q sin O(efo- - efo) - - cos Oe{> ( 
1 1 4qp~ o)nl 

m' 

x (4:o,P efo°r(NNT~ 
x {-An/Po + m)(W + m' - m) 

+ Bn2pq[cos O(Po - p~ + In - m') 

- iCT2 sin O(W + m' + m)]}iCT2U-A
( -V-1-, 

W = qo + ko = .Jt; 

because of equal mass particles in the initial state, 
W = 2qo' We can write it in a more convenient form 
by introducing 

4qp~ cos 0 4qop 
a = (2q sin 8), b = , and d = -- . 

m' m' 
Then 

(p' A', pAl T Iq, k) 
nl+n2=N ( _ i)N _ <;") 

= Z --1- UPlP2"'PN~ 
n2=0 (2N) 

x [a( efo- I 
- efol) - befo°r[de{>°r2(N NT1-

x {-An/Po + m)(W + m' - m) 

+ B"2Pq[COS 8(po - p~ + m - m') 

- iCT2 sin O(W + m' + m)]}jCT2U-;'( -1);.-1-, 

1.= ±t. 
Following almost the same lines as in case of s channel, 
we get finally for Jacob-Wick amplitudes in t channel 

!;.'.i;oo = esCn-rt 

( 
n- (_i)N n- (bja)lt 

x 1 --l ani 1 -----'--''---'-----
n2=0 (2N) It=O II! (nl - 11 - I)! 

n-/2 , 
X ~ (_1)"1+1~ dn2(NN')-1-

1=0 It 

x [-An,(Po + m)(W + m' - m) 

+ B n2pq cos O(po - p~ + m - m')] 
n--I(_i)N n--I (bjayl + I __ ani I --'-----
n2=0 (2N)! It=oll! (nl - 11 -I)! 
n--l/2 , 

X ~ (_nnl+l~ dn2(NNTt 
1=0 I! 

X B1l2 pq sin O(W + m' + m»), 
!;".-!;oo = csCn-r! 

(14) 

(

n--1 (-ON n--l (bja)lt 
X I -- ant Z --'--'--'----

n2=0 (2N)! /1=0 II! (n1 - 11 - I)! 
n--l/2 , 

X L (_1)1 1+l
nl'd" 2(NNT! 

1=0 I! 

X [-An/Po + m)(W + m' - m) 

+ Bn,pq cos O(Po - p~ + m - m')] 
n- (_i)N n- (bja)'l + 1 -- ani 1 -----'.....:...-:....--

n2=0(2N)! 11=0 II! (n} - 11 - I)! 
n-/2 , 

X I ( -1 )nl+1 '2l..: dn2(N N')-! 
1=0 I! 

X [-B n2pq sin O(W + m' + m)]); 
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I, 11, and n- are positive integers with the restriction 

21 + 11 + n2 = n- or n- - 1 

when 

and 
I::;; n-j2, h::;; n-, n2::;; n-. 

The explicit form of t-channel amplitudes for s = t 
case is, with z = cos 0, 

-J2-J~ , Atoo = -T- [-AI - (m - m)(2pqZ)B1], 
N' 

-J2 ~ 
f a 1 ----B 
~.-~;oo - T T2 1, 

N' P' 

1 T~, ) 
X (2pqZ)Bl + - - B2 . 

-J6 m' 

For the s = t case, we have 

A-bo = (2~-J ~jT~, T~,)Bl' 

-J1> 
A too = -J 5 T~, Tp ' 

{ 

t + m,2 - m 2 T~,T$, 
X 2 (2pqZ)Al - -- A2 

m' m' 

+ 2 --2 -- (2pqz)2 [ 
m'- m 

T p ' 

t + m'2 - m
2 4~] 

X , - -2 Bl 
m T p ' 

_ (m';:, m) T~.(2PqZ)B2}' 

A-!;oo = -J5 T~,Tp' 

[ 
4 3m'(m' - m) + T~. 

X 4Al + 2 2 
T p ' m'Tp ' 

X (2pqZ)Bl - -.L B2], 
m' 

Al 1 t + m,2 - m2 
x----

T~,Tp, .)10 -JI0 m,2 

1 TN'T~, A3 
X (2pqZ)T, ,A + - ---

P 22m' .)10 

4~ 3m'(m' - m) + T~, 
- --(2pqZ) B 

T~,T~, .)10 m' 1 

3 (t + m,2 - m2)2 , 
- (2pqZ) .)10 m'2T~,T~, (m - m )lJl 

+ [t + m,2 - m2(2 Z)2(m - m') 
-J10 m,2 pq T~, 

- ~ ]B 
m'Tp ,-J10 2 

1 TN' (m - m') - 2: -J1O m' (2pqZ)B3' 

__ 2_ t + m,2 - m
2 

(m _ m')(2 Z)2 
T 2 T 3 , pq 

N' P' m 

- Tt~~Jjl~ Bl 

.) 1> 3m'(m' - m) + T~, 
- m'T

p
' (2pqZ) m'-JI0 B2 

1 T~, Tp ' -J 1> 
+ 2:~ .)10 B 3 , (15) 

with a proper redefinition of coefficients in each case. 
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These t-channel amplitudes have a general singu
larity structure 

(Jcfo)luIA;:;.(s, t) I 

/A.',).;oo = T).'-).T).'-.l.+1 ' U = A - A, A = ±i, 
N' P' 

where A)., is, t) is free of singularities at the kinematic 
thresholds. This can easily be seen in both of the cases 
(..t = ±t). For example,in the first term of j).,.!;OO' 
the rest is free of singularities at the kinematic thresh
olds except the portion 
,,-
I a"l-Zl2-

"2=0 Tp ' 

= ! (2q sin O)"l-h _1_ 
"2=0 Tp ' 

= 1- [(2q sin Oy-!-h + (2q sin O)(s-!H-h 
Tp ' 

+ (2q sin O)(s-!l-2-h + ... + (2q sin oys-!>-,,--ll] 
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Tp ' 
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Tp ' 

X [(2q sin Or l
} + (2q sin 0)1-h 

+ ... + (2q sin O),,--h], 
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since 21 + 11 + n2 = n-, 

-11 = 2/, n2 = n-, 

I -11 = 2/, n2 = n- - I, 

n- - 11 = 2/, n2 = O. 

Inside the bracket, only even powers of sin 0 occur; 
therefore,it is free of kinematic singularities. Hence 
the singularity structure is 

(2pqJt sin 0)1).'-).1 
/).',),;00 = (2PJt»).'-).T

p
' A).,;.(s, t) 

(J cfo)lu1 

T
).'-).T).'-.l.+l A).,;.(s, t). (16) 
N' P' 
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I. INTRODUCTION 

The experimental tests of general relativity are 
unfortunately very few in number, but ever increasing 
use of satellites and improvements in satellite observa
tions will in the not too distant future provide further 
tests of general relativity. It is, in this connection, 
important to study the motion of particles in the 
gravitational field of a body at rest. This in turn 
requires knowledge of the metric satisfying the static 
gravitational equations. A method of obtaining 
an exact static metric for cylindrically symmetric 
mass distributions is already known. 1 We also have 
methods of obtaining a second-order approximation 

for the metric in the case of a single body of arbitrary 
shape.2.3 

Those methods give the components of the metric 
tensor in the form of integrals, which are shown to 
exist but not given in the explicit form. 

The present work shows how, starting from the 
multipole expansion of the Newtonian potential, we can 
obtain a second approximation in the explicit form. 

II. THE FIELD OF A STATIC MULTIPOLE 
IN THE SECOND ORDER 

Greek suffixes take the values 1, 2, 3, capital Latin 
suffixes 1, 2,"', n, and lower case Latin suffixes 
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1,2,3,4 with the summation convention in each case. 
Partial derivatives w.r.t. the coordinates are indicated 
by commas (e.g., W.r = owjoxr). 

Theorem 14: Let L.WCD(x) be the linearized Riemann 
tensor for a n-dimensional Riemannian manifold, i.e., 

LABe!) = Hg.W.RC + gIlC.AD - gAC.UD - gBD.Ad· 
(I) 

The metric tensor gAB in terms of L.mc!) is then given 
by 

gAB = rJAB + 2xCxD fI LAC!)B(X)A(1 - A) dA, (2) 
Jb 

where 

b = {o if LA 13CD(.O) is finite (2') 
00 for lim A3L. tl3cD(h) = ° 

",-00 

and rJ.w = diag (±l, ±I,"', ±1). 

Proof: Let us try to find a gAll satisfying Eq. (I), 
having the form 

gow = rJAlJ + XCXDSACDlJ' (3) 

where we assume that S.IC!)lJ has all the symmetries of 
the linearized Riemann tensor, viz., 

S.lIiC!) = -S./IIDC = -SlIoICf) = S(']).III' 

Sol[/JCI)] = S.tlJ[CD.b·] = 0. (4) 

Plugging Eq. (3) into Eq. (I) gives, by use of Eq. (4), 

L. IIU'D = 3S. lIic!) + ~x1<;S.IlJCD.E 
+ !xF

(X
E

S.IIU'J)."JF' (5) 
We try to find a solution of the form 

SAUCD(X) = cJ" L.IlJCD(h)f(}.) dk (5') 
" 

Equation (5') into Eq. (5) gives (after several integra
tions by parts) 

L • .lJI('f)(x) = cI"LAlJCD(AX) 
" 

x [3f - I(Aj)' + HA(A!)')'] dA 

+ caL.wcD(h)Af - tLAJJCD(Ax)}.(Aj)' 

+ kxE(L.wcD(Ax)Af).E}~' (5") 
We now have to choose c, u, v, andf(A) in such a way 
that the rhs of Eq. (5") is LAlICD ' We first choose 

f(A) = .1.(1 - A). (6) 

This makes the term in the square brackets (and thus 
the integral) in Eq. (5") equal to zero. With this 1(.1.), 
we find that the term in the curly brackets becomes 
}L. lllclJ(x) jf 

(i) either L.WCD(O) is finite and u = 0, v = 1, 
(ii) or lim J.3L. wC1iJ.x) = ° and u = 00, v = 1; 

).-1>00 

we thus have to take c = 2 in either case. 
From (i), (ii), (6), (5'), and (3) the theorem follows. 

Corollary: If LARCD is homogeneous of degree d, 
i.e., if 

LAJJCD().x) = AdLABCD(X), (7) 

then it follows immediately from Eqs. (2) and (2') 
that for d < -3 

gAR = rJAB + 2xCxDL.WDlJ(.X)[(d + 2)(d + 3)fl. 
(8) 

Theorem 2: Let W(x1, X2, x3) be a Newtonian 
harmonic function which is homogeneous in XX of 
degree n ~ -1. Let the metric of a static V4 be given 
by 

g'fJ = e-kW(t5' fJ + Y.fJ)' g.4 = 0, g44 = _ekW
, 

(9) 
where k > ° is a dimensionless constant and5 

Y.o = -k2[2n(2n + l)r1x/lxY 

. [bp[yW:o]W:. + t5a[oW:Y]W:fJ - !t5a[ot5 y]pW:"W:,,]' 
(10) 

Then the Ricci tensor Rij of V4 satisfies6 

00 

Rij == l kmRij = O(k3
). (11) 

m~O (m) 

Proof' Consider a static V4 with the metric 

-kJV- -kTV(.Il + ) gap=e g.p=e Uap Y.p' 
g.4 = 0, gu = _ew, (12) 

where W satisfies the harmonic equation 

w..", = 0. (13) 

Straightforward calculation of the Ricci tensor Rij 

by Eqs. (12) and (13) yields 

R.p = R.p + tk2W,.W,p + O(P), 

R.4 = 0, R44 = O(k3
), (14) 

where Rap is the Ricci subtensor of the Va with the 
metric gap' 

Now the linearized part Lap of Rap is made to satisfy7 

Lap == Hgap,,,,, + g"",ap - g."."P - gp",,,a) 
= -tk2 W,,,,W,p' (15) 

If solutions gap = t5"'fi + Yap are found to satisfy the 
above equations, then 

R'(J = Lap + O(k4), (16) 

and plugging Eqs. (15) and (16) into (14) would es
tablish the theorem. Therefore, the proof hinges on the 
solubility of Eq. (15) to obtain YaP' So we shall sketch 
the solution procedure in the following. Recalling 
that the Riemann tensor Rapy~ of a Va is the linear 
combination of Rap, we can state the corresponding 
linearized version as 

L.fJY~ = t5 fJ [yLo]a + t5.[6Ly]P - it5a[~t5y]pL"" (17) 

= ik2
t5p[oW: y]w'a + t5a[yW:~]W:p 

- tt5",[yCI6]P W:" w,.. . (17') 
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Equations (15) and (17') are equivalent. Under the 
assumption that W is homogeneous of degree n, which 
implies via Eq. (17') that L~py~ is homogeneous of 
degree 2n - 2, we have the setting of the previous 
corollary. Therefore, by Eqs. (8) and (17') the solu
tions Y~p as cited in Eq. (10) are constructed. This 
completes the proof. On the underlying question of 
convergence of power series as in Eq. (11), we might 
make the following comment. 

Ifwe have considered a domain D of V4 in the back
ground Euclidean topology, then the convergence is 
assured by choosing k such that 

Ikl < lim inf p-;.l/n, 
n~oo 

where Pn = max /Rii(X)/, xED, i,j = 1,2,3,4. 
(n) 

III. THE FIELD FOR SUPERPOSITIONS 
OF MULTIPOLES 

The previous considerations will now be generalized 
to find a second approximation for the metric in the 
case where W is a sum of homogeneous harmonic 
functions. Suppose W is a superposition of the first p 
multipoles. Then the expression t w.~ W. P is no longer 
homogeneous but can be written as the sum of 
(2p - I) homogeneous terms. We, therefore, can 
generalize the arguments which proved Theorem 2 
to each one of the 2p - 1 terms, because of the 
linearity of the basic differential equations (IS). 

Physical importance of this stems from the fact that 
the Newtonian potential for any of the usual mass 
distributions has a multipole expansion. 

Now we shall consider a concrete example of 
constructing the second-order metric where the corre
sponding Newtonian potential k W is the sum of a 
monopole (kWr) and a quadrupole (kWn ), i.e., 

kW = kWr + kWrr · (18) 

We take for simplicity a spherical body of unit radius, 
r == (Xl' + x 2' + x 3')! = 1. Subscripts e and i denote 
the exterior and interior of the body, respectively. 

For kWr we choose the potential of the homo
geneous unit sphere; thus 

(19) 
and 

kWIi = !k - tkr2. (20) 

The corresponding mass density is 

Pr == -(47T)-I(kWIi).~~ = (47T)-13k. (21) 

For kWrr we choose the following expression: 

kWne = k[ -r-3(a + b + c) 

+ 3rS(axl2 + bx2' + Cr2)], (22) 

kWm = kWne(2rS - rIO), (23) 

where a, b, and c are arbitrary constants. This 
expression for k Wu is indeed continuous across the 
boundary, has continuous normal derivative, and is 
harmonic in the exterior. The mass density correspond
ing to k Wn is 

Pn == -(47T)-I(kWIIi).~~ 
= _(47T)-150k[,s(a + b + c) 

- 3r3(ax12 + bx2
' + cx3

')]. (24) 

To secure a positive total mass density p, where 

p == Pr + Prr, 
it is sufficient to demand 

lal + Ibl + lei < 2h. 

(25) 

(26) 

Let us now find the exterior metric of the body in 
second approximation. To simplify our notation, we 
now omit the suffix e. We have by Eq. (I8) thl,lt 

tk2W.~W.p = tk2(WI.~WI.p) + tk2(WII.~WII.p) 
+ tk2(WI.~WII.fJ + WII.~WI.p). (27) 

Let us introduce the following abbreviations: 

L(1) - 1k2W W 
~fJ = - 2 I.~ I.fJ ' 

L(2) - 1k 2W W 
~fJ=-2 TI.~ n.fJ' (28) 

L~~) == -tk2(WI.aWn.fJ + WII.~WT.P)' 
Each one of these three terms is homogeneous of 
degree -4, -8, and -6, respectively. The corre
sponding linearized Riemann tensors . 

,(v) ~ rev) + ~ ,(v) 115 15 L(v) 
L ~fJy~ = UfJ[yL ~]~ U~[~L y]fJ - 2 ~[~ y]fJ aa' 

V = 1, 2, 3, (29) 

are again homogeneous of degree -4, -8, and -6, 
respectively. We therefore get by Eqs. (7) and (8) that 

Y(l) = x fJx YL(1) 
~~ ~fJy~ , 

Y
(2) _ -Lx Px YL(2) 
~~ - 1 S ~fJy~' (30) 
(3) _ I fJ y,(3) 

y~~ - 6'X X L ~PY~' 

The exterior metric up to the second order is finally 
given by 

ds2 = e-kW(r5afJ + y~~ + y~~) + y~~) dx~ dxfJ 

- ekW(dx4? (31) 

• This work has been supported by NRC Grants Nos. A-5205 
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The resonant oscillations of a gas in a closed-end tube are treated. The time-periodic motion is given 
by a regular perturbation method in which the expansion parameter is the Mach number of the resulting 
flow. The solution at the first order exhibits a shock traveling in the tube, but, to this order, the waves 
do not interact. The interaction of the waves is calculated at the second order. The perturbation pro
cedure proceeds systematically by an application of the Fredholm alternative at each stage. 

1. INTRODUCTION 

Most of the work which has been done on non
linear wave propagation has been directed to cases 
when only one component of the motion is excited. 
Reflections are then excluded, and consequently the 
problems associated with the interaction of the waves 
are bypassed. Recently,l Mortell and Varley in
vestigated the nonlinear initial-value, boundary-value 
problem associated with small amplitude free vibra
tions of an elastic panel of finite width rigidly bonded 
at both ends. The key result of that paper was that 
in the limit when the amplitude of the motion 
remained small, but the acceleration was unrestricted, 
then the motion, uniformly to first order, could be 
represented as the superposition of two noninteracting 
simple waves traveling in opposite directions. This 
representation is uniformly valid in time and was used 
in Ref. 1 to study the evolution of prescribed 
initial conditions up until shock formation. Sub
sequently, Mortell2 used the simple wave representation 
to study the time-periodic oscillations of a gas, 
in a tube of finite length, under periodic excitation. 
In particular, the resonant time-periodic motion 
was treated. One disadvantage of the method used in 
Ref. 2 is that one was confined to the first-order solu
tion and corrections could not be calculated. This 
meant that one could not assess the effect of the 
interaction of the waves. The object of the present 
paper is to give a perturbation scheme which allows 
the systematic calculation, to any desired order, of the 
resonant time-periodic motion. 

The experimental observations on the resonant 
motion of a column of gas confined to a tube with a 
closed end have been given by Saenger and Hudson.3 

The theoretical explanation seems to have been first 
given by Betchov.4. Subsequently, the problem was 
treated by Chu,5 Chester,6.7 and MortelJ.2 All used 
entirely different approaches. The method used here 
is essentially the systematic exploitation of an idea 
implicit in the work of Chester.6 It is recognized that 

the resonant motion may be viewed as lying in the 
neighborhood of a linear standing wave, and this is 
the basis of the perturbation procedure used. 

The procedure is also closely related to that used 
by Keller and his co-workers8- 10 in dealing with non
linear periodic vibrations. Their basic assumption is 
that linear theory gives the first term in an expansion 
in powers of the amplitude, and subsequent terms 
yield information on how the frequency and form 
of the vibration depend on the amplitude, whereas in 
linear theory they are independent of it. A direct 
application of this method is not feasible here, since 
there is no resonant solution within linear, inviscid 
theory. The key to the problem lies in taking the 
linear standing wave as the first term in the asymp
totic expansion. This idea is formalized by taking 
as expansion parameter the Mach number of the 
resulting motion which is the square root of the Mach 
number of the applied velocity. 

The bulk of the paper is concerned with calculating 
the main flow and the first correction to it. The final 
section is devoted to pointing out the different roles 
of various terms which "formally" occur at the same 
order in a representation for the characteristics 
derived using a method of Lin.ll 

2. FORCED MOTION OF A POLYTROPIC GAS: 
FORMULATION 

A column of gas, which has length L in some 
reference state, is contained in a tube. At one end the 
tube is closed, while at the other end a piston imparts 
a periodic motion, with zero mean velocity, to the gas. 
The gas is polytropic, and the motion is assumed to be 
one dimensional, inviscid, and isentropic. 

Lagrangian coordinates are used throughout, since 
then the boundaries of the gas are fixed. Let ao and Po 
be the sound speed and density in the reference state, 
and let aou(t, x) and PoP be the fluid velocity and 
density at time (L/ao)t at the particle x, which in the 
reference state was at a distance Lx from the closed 

1069 
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end. The equations expressing the conservation of 
mass and momentum then are 

ap + p2au = 0 
at ax 

(2.1) 

and 

au + a2 ap = 0, 
at ax 

(2.2) 

where the sound speed a is given in terms of the 
density by the constitutive equation for a polytropic 
gas 

a 2 = pY-l. (2.3) 

Via the method of Riemann,l2 Eqs. (2.1)-(2.3) 
may be reformulated as 

(E- + a(y+1)/(y-Il ~) (u + _2_ a) = 0 (2.4) 
at ax r - 1 

and 

(~ _ a(y+Il/(y-l) ~) (u - _2_ a) = O. (2.5) 
at ax r - 1 

To Eqs. (2.4) and (2.5) are adjoined the boundary 
conditions that 

on x = 0, u = 0, (2.6) 

and 
on x::=; 1, u = E sin wt, (2.7) 

where E (<< 1) is the Mach number of the piston 
motion. 

Conditions (2.4)-(2.7) are usually supplemented by 
initial conditions. However, as for linear theory 
where one restricts the class of initial conditions, these 
are replaced by the requirement that the flow is to be 
periodic with period 27T/W. That is, we seek a velocity 
field with the property 

u(x, t + 27T/W) = u(x, t). (2.8) 

In the Appendix, it is shown quite generally that, 
for time-periodic motions of an elastic material, the 
mean stress and mean velocity do not vary from 
particle to particle. Therefore, 

i211 /'" 

o u(x, t) dt = 0, (2.9) 

since the mean of the velocity is zero at x = 0 and 
x = 1. It is emphasized that (2.9) is not a further 
assumption, but is a consequence of the governing 
equations, the boundary conditions, and the assumed 
periodicity of the solution. 

The natural reference configuration is thus the 
state corresponding to the constant mean pressure 
Pm and mean velocity urn"';" O. Then, for i'sen
tropic motions in the limit of vanishingly small 

amplitudes, the sound speed and density in the mean 
configuration are independent of x. [For isentropic 
motions and in the limit of vanishingly small ampli
tudes, the temperature of the mean state (which 
determines the sound speed) is independent of x when 
the pressure is. The temperature of the mean state is 
determined by the previous history of the motion.] 

3. FIRST-ORDER SOLUTION 

It is well known2.5•6 that acoustic theory fails to pre
dict the motion of the gas when the piston frequency 
is a resonant one. The analysis here will concentrate 
on calculating the time-periodic response of the gas 
when the piston is driven at the fundamental resonant 
frequency w = 7T. The existence of the resonant time
periodic motion has been confirmed experimentally 
in Ref. 3. The main features of the observations are 
the noticeable increase in amplitude at the resonant 
frequency and the appearance of shocks in the flow. 

The evolution of the motion from its initial state 
until the periodic state has been set up is not the 
concern of this paper. Rather, a perturbation pro
cedure is given which has the specific object of picking 
out the final periodic state, without any reference to 
how the motion evolved to that state. 

We shall assume an asymptotic expansion for the 
dependent variables u(t, x; E) and aCt, x; E) of the 
form 

a(t, x; E) = 1 + Elal(t, x) + Ea2(t, x) + . .. (3.1) 

and 
u(t, x; E) = ElUl(t, x) + EU2(t, x) + .. '. (3.2) 

The boundary conditions (2.6) and (2.7) are 

u(t,O;~=O Q.~ 
and 

u(t, 1; E) = E sin 7Tt. (3.4) 

The expansion parameter in (3.1) and (3.2) is the 
square root of the Mach number of the imposed 
piston velocity. It will emerge that it is also the Mach 
number of the resulting flow. 

The insertion of (3.1) and (3.2) into (2.4) and (2.5), 
and noting (3.3) and (3.4), lead to the first-order 
problem 

(i + ~) (u l + _2_ a1) = 0 (3.5) 
at ax r - 1 

and 

(~ - ~) (U1- _2_ a1) = 0, (3.6) 
at ax r - 1 

with the homogeneous boundary conditions 

U1(t,0) = u1(t, 1) = O. (3.7) 



                                                                                                                                    

RESONANT OSCILLATIONS 1071 

The solution is 

UI(t, x) = f(t - x) - f(t+ x), (3.8) 

where f is an arbitrary periodic function with period 2. 
At this stage, the basic solution is a standing wave 
with an arbitrary signal! 

The nonhomogeneous equations to· determine the 
second-order terms, U2(t, x) and a2{t, x), now have 
the form 

where 

(~ + ~) U I = FI(t, x), 

(~- :JU2 = F2(t, x), 

(3.9) 

(3.10) 

UI = U2 + [2/(y - 1)]a2' U2 = U2 - [2/(y - 1)]a2' 

(3.11) 

FI = (y + l)f'{t - x)[f(t - x) + f{t + x)], (3.12) 

and 

F2 = -(y + 1)f'(t + x)[J(t - x) + f(t + x)]. 

(3.13) 

The boundary conditions at this order. O(E), are 

U2{t,0) = 0, U2(t,1) = sin wI, (3.14) 

and these are also nonhomogeneous. 
It is well known that a necessary condition for the 

existence of a solution UI to (3.9) is that FI(t, x) 
should be orthogonal to the solutions of the homo
geneous adjoint of Eq. (3.9). A similar remark holds 
for Eq. (3.10). Thus there is a restriction on the func
tions FI and F2 and hence on the function! When 
one fully utilizes the periodicity requirement on f, 
then the restriction on f may be stated in the form of 
a differential equation which f must satisfy. The 
conclusion then is that while, at order El, f is an 
arbitrary periodic function of period 2, in order to be 
able to calculate the correction at order E, f must be 
restricted to be the solution of a differential equation. 
T.he derivation ofthis differential equation forfis now 
given. Equation (3.9) is multiplied through by f(t - x) 
and integrated over 0 ~ t ~ 2, 0 ~ x ~ 1. Equation 
(3.10) is multiplied through by -J(t + x) and inte
grate~ over 0 ~ t ~ 2, 0 ~ x ~ 1. The resulting 
equatIOns are added and, when use is made of 
integration by parts, the fact that f has period 2, 
and the boundary conditions (3.14), the result is 
that f must satisfy 

2.CJ (1J) sin w(1J + 1) d1J 

= 1211 [J(t - x)F1 - J(t + x)F2] dx dt. (3.15) 

The right-hand side of (3.15) takes the form 

i 2J
(1J)(f(Fl + F2) d~) d1J (3.16) 

when a lemma due to Keller and Ting8 is used, where 
~ = t + x and 1J = t - x. It is worth noting that the 
periodicity requirement on f is crucial for the result 
(3.16) and hence for the ensuing results. Equation 
(3.15) now reads 

i\FI + F2) d~ = 2 sln w(1J + 1). (3.17) 

When the condition thatfhave zero mean value over 
one cycle is imposed and the definitions of Fl and F2 
are used, (3.17) yields 

(y + l)f(1J)f'(1J) = -sin W1J, 0 < 'YJ < 2, (3.18) 

as the further condition which f must satisfy in order 
to be able to calculate U2(t, x) and a2(t, x) at order E. 

Since periodicity has been used throughout the 
derivation, (3.18) is valid only over a period of the 
mot~on. Equation (3.18), which determines the signalf 
carned by a wave at first order [O(El)], is the necessary 
condition for the existence of a correction [i.e., terms 
at O( E)] to the first order. It is closely related to the 
"secular" equation of Betchov.4 In Eq. (3.18), the 
term (y + 1) is twice the second-order elastic constant 
for a polytropic gas and the product term ff' is a 
result of the "amplitude dispersion" or nonlinear 
c~nvection in th~ .original partial differential equa
tIOns. On exammmg the representation (3.8) for 
u(t, x), where the signalfis given by (3.18), we notice 
the interesting dichotomy that whereas the signal f 
c.arried ?y a wave is determined by a nonlinear equa
t~on WhICh refle~ts the presence of amplitude disper
SIOn, the wave Itself progresses like a linear wave. 
Hence there is no interaction, at this order, between 
the forward and backward components of the motion. 

The nonlinear differential equation (3.18) was 
derived in Ref. 2 when the motion was predicated to be 
the superposition of two simple waves, traveling in 
opposite directions, whose only interaction occurred 
at the boundaries. This hypothesis could not yield the 
interaction terms which will be calculated in the next 
section. 

The solution to (3.18) which satisfies the periodicity 
and zero mean-value conditions is given by 

J(t) = ±{2/[w(y + 1)]!} cos iwt, 0 < t < 2, 

f{t + 2) = J{t). (3.19) 

On n~ti~g (3.2) an~ (3.8), it is clear that the particle 
veloc~ty ~n the gas IS O(El), while that of the piston 
velOCity. IS O~E) .. Further~ore,.the signalf, defined by 
(3.19), IS penodlc and dlscontmuous. Thus there is a 
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traveling discontinuity in the solution which is easily 
checked to satisfy the shock relations. These con
clusions are in agreement with experiment.3 

The derivative of/ is defined by 

f'(t) = T [7T/(Y + I)]t sin i7Tt, 0 < t < 2, 

f'(t + 2) = f'(t). (3.20) 

If the piston frequency is 0) = N7T, N an integer, 
then solutions of the form (3.19) with the appropriate 
amplitude factor and periodicity property can be 
patched together to yield a solution with N shocks in 
the tube. 

4. SECOND-ORDER SOLUTION 

In the previous section it has been shown that even 
though the phenomenon is nonlinear, the waves, to 
first order, do not interact. By this is meant that the 
path of a wave is unaffected by the oppositely travel
ing waves through which it passes. In this section we 
shall calculate the solution at order" and we shall see 
that interaction terms arise. 

When (3.18) is invoked, (3.9) and (3.\0) become 

(~ + ~) (U 2 + _2 a2) 
at ax y - 1 

and 

= -sin 7T(t - x) + (y + 1)f(t + x)/'(t - x) 

(4.1) 

(~ - ~) (!l2 - ~ a2) 
at ax y - 1 

= sin 7T(t + x) - (y + l)f(t - x)/'(t + x), (4.2) 

where / is given by (3.19). The boundary conditions 
associated with (4.1) and (4.2) are given by (3.14), and 
then the boundary value problem defined by (4.1), 
(4.2), and (3.14) is non-self-adjoint. The most direct 
way to solve the problem is to observe -x sin 7T' X 

(t - x) is a particular integral lof (4.1) which 
accounts for the term - sin 7T(t - x). Similarly, 
- x sin 7T(t + x) is a particular integral of (4.2) 
which takes care of the term sin 7T(t + x). Further
more, the combination of these two particular 
integrals satisfies the boundary conditions (3.14), 
and so the remainder of the solution satisfies homo
geneous boundary conditions. The solution then is 

!l2 + [2/(y - 1)]a2 
= -x sin 7T(t - x) + iCy + 1)/'(t - x) 

X r+j(S) ds + f2(t - x), (4.3) 

U2 - [2/(y - 1)]a2 
= -x sin 7T(t + x) - iCy + 1)/,(t + x) 

X r-j(S) ds - 12(t + x), (4.4) 

wheref2 is an arbitrary periodic function with period 2. 
One cycle of the calculation has now been completed. 

It is clear that the contribution of the interaction of 
the waves to the solution is given by the terms in
volving integrals in (4.3) and (4.4). This contribution 
may be explicitly calculated in terms of the solution 
at the first order, sincefis given by (3.19). 

The determination of the function h is straight
forward, but tedious. The boundary conditions at the 
next order, o(,,~), are homogeneous, and so the 
problem is self-adjoint and a direct orthogonality 
condition may be applied. 

The equations to determine u3(t, x) and a3{t, x) are 

(:t + :J (113 + Y ~ I a3) 

= _ y + 1 al ~(!l2 + _2_ a2) 
y - 1 ax y - 1 

_ y + l(a 2 + _1_ ai)~(lIl + _2_ al), 
y - 1 y - 1 ax y - 1 

(4.5) 

subject to the boundary conditions 

u3(t,0) = u3 (t, 1) = o. (4.7) 

A solution to (4.5)-(4.7) exists if 

(2~(ala2 + 1 a~) d~ = O. (4.8) Jo ax 3(y - 1) 

This condition determines /2 in terms of the known 
functionf, but we will pursue it no further. 

The dominant flow occurs at O("t). The boundary 
condition on x = 1 and the interaction of the waves 
occur at 0(,,) and thus appear as corrections to the 
main flow, which is a standing wave. 

It is noted that U 2 as defined by (4.3) and (4.4) has 
zero mean when/2 has zero mean, whereas a2 has not. 
This is consistent with the remarks made in the 
Appendix. The presence of the derivative term in 
(4.3) and (4.4) shows that the expansion is valid under 
the restriction 

"to)« 1, 

where 0) is the piston frequency. 
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5. A REMARK ON THE USE OF LIN'S 
TECHNIQUE 

In the Appendix of Ref. 2, it was shown how at 
technique due to Linll provides the following repre
sentation for the characteristics of (2.4) and (2.5) 
when the assumption of small amplitudes is made 
and the condition that the velocity is zero at x = 0 
has been enforced: 

lX(t, x; €) = t - x + !(y + l)€xq,(IX) + Hy + 1)€ 

x f: q,(s) ds + o(€q,), (5.1) 

fJ(t, x; €) = t + x - !(y + l)€xq,(fJ) - Hy + 1)€ 

x r q,(s) ds + o(€q,), (5.2) 

where 

(5.6). The boundary condition 

u(t, I; €) = € sin 1Tt, 

together with (5.3), (5.5), and (5.6), yields the non
linear difference equation 

q,(t - I + iCy + 1)€q,(IX)] 

- q,(t + I - iCy + 1)€q,(fJ)] = sin 1Tt (5.7) 

for the determination of the signal q,. Using the 
condition that q, has period 2 and the small amplitude 
restriction 1€q,1 « I, one finds easily from (5.7) 

(y + I)€q,(t)q,'(t) = -sin 1Tt + higher order terms. 

We make the identification 

u(t, x; €) = €(q,(IX) - q,({J)]. (5.3) and thenfhas period 2 and satisfies 

It is noted that IX = fJ = t on x = 0 and, by the 
representation (5.3) for u, the boundary condition 
u(t, 0; €) = 0 is automatically satisfied. We further 
note that q, is the exact Riemann invariant. 

We wish to consider how an IX wavelet propagates, 
and so oc and x are taken as independent variables, 
while the dependent variables are t = t(lX, x) and 
fJ = fJ(lX, x). On using (5.1), the speed C(IX, x) at 
which a wavelet oc travels is given by 

Thus the speed of an oc wavelet depends on the fJ 
wavelets through which it passes, and the repre
sentation (5.1) implies there is an interaction of the 
waves. 

The results of Sec. 3 and 4 are that to order €! 
there is no interaction of the waves, but to order € 

there is. In order to reconcile the consequences of the 
representations (5.1) and (5.2) with this result, it is 
clear that a distinction must be drawn between the 
two terms which are coefficients of €. At x = I, (5.1) 
and (5.2) reduce to 

IX = t - 1 + iCy + l)E.p(oc), (5.5) 

fJ = t + I - iCy + 1)€.p(fJ), (5.6) 

where the interaction term has been lost, because the 
governing equations and boundary conditions demand 
that the solution have zero mean to this order. We 
shall now solve the resonant problem, using (5.5) and 

(y + I)f(t)f'(t) = -sin 1Tt, 

which is exactly (3.18). 
We now conclude that to first order the progress 

of the waves and the signals carried by them can be 
determined independently of the interaction of the 
waves. Thus the integral terms in (5.1) and (5.2) do 
not properly belong to the first order. The other 
terms involving € in (5.1) and (5.2) represent ampli
tude dispersion, and the role of these terms is to 
determine the signal carried at the first order. To 
properly describe, to first order, the progress of 
waves and the signals carried by them, we may 
truncate (5.1) and (5.2) by omitting the integral 
terms. The resulting representation for oc and {J, 
together with (5.3), is nothing more than the assertion 
that the motion is the superposition of two simple 
waves traveling in opposite directions. 

6. DISCUSSION 

The method used in solving the problem posed here 
is essentially different to that used by Kruskal and 
Zabusky13 when they considered the free vibration 
problem for a nonlinear string. For this latter problem 
it was shown first by Zabusky, 14 and later in Refs. 8 
and IS, that the solution was not time periodic. As a 
result, one has no option but to follow the evolution 
of the motion, and hence a uniform perturbation 
expansion, such as the "stroboscopic" procedure of 
Ref. 13, must be used to examine the problem. For 
the resonant problem treated here, the situation is 
entirely different. Experiments show that there is a 
time-periodic resonant motion, and, using the results 
derived in the Appendix, we have shown how to 
define a reference state about which the periodic 
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motion takes place. The essential unknown in the ref
erence state is the temperature, and this is the element 
in the problem which is determined by the history of 
the motion. The perturbation procedure given here 
has been devised specifically to pick out the periodic 
motion about the mean state. There is close agreement 
between the theoretical predictions and the experi
mental observations. 

The results of the investigation13 agree with those 
given here on some important points. In Ref. 13 the 
perturbation solution exhibited a discontinuity or 
"breakdown" in the first order. There is a shock in 
our first-order solution. With regard to the results of 
Ref. 13, it is noted by Zabusky in Ref. 16 that, 
"although the phenomena are nonlinear, signals 
propagating (or functions evolving) along the different 
characteristics did not interact with each other to 
lowest order." It was found here that the periodic 
signal functions, which to first order do not interact, 
are determined by a nonlinear equation. Furthermore, 
to the order that the signals do not interact, they are 
effectively moving into a constant state, and hence 
must be simple waves. This is the conclusion of Sec. S. 
The same result was found by an entirely different 
method in Ref. 17; it has been exploited to treat 
resonant motions in Ref. 2. 

A glance at Refs. 13 and 14 will reveal that an 
approach to the resonant problem via the hodograph 
space will not simplify either the analysis or the 
understanding of the problem. 

The main contribution of the paper is to give a 
perturbation technique for dealing with the time
periodic solutions to a class of nonlinear wave 
propagation problems in which the reflected waves 
are as significant are the primary waves. The key 
factor is that to first order the waves travel as linear 
waves and do not interact, even though the signal 
carried is determined by a nonlinear equation. 
Consequently, the nonlinear interaction of the waves 
is then calculated at the second order. 

The perturbation method given here may be applied 
to the thermal-acoustic oscillations treated in Refs. S 
and 18, and also to the magnetohydrodynamic 
problems treated in Refs. 19 and 20. 

Note: The author has learned by private communi
cation that Professor W. D. Collins of the University 
of Strathclyde has been working along similar lines. 
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APPENDIX 

It is shown here that, for an elastic material under
going a time-periodic deformation, the mean values 
of the stress and velocity fields do not vary from 
particle to particle. 

Let aCt, x), A(t, x), and u(t, x) be measures of the 
normal traction, strain, and material velocity at time 
t at the particle x, which in some reference configura
tion was at a distance x from a reference particle. 
The equations expressing the principles of conserva
tion of mass and linear momentum are 

aA _ au = 0 (AI) 
at ax 

and 

au aa 
(A2) p---=o, 

at ax 

where p is the constant density of the material in the 
reference configuration. Conditions (AI) and (A2) 
are supplemented by the equation of state for an 
elastic material 

a = a(A). (A3) 

Let the period of the motion be normalized to unity, 
and integrate (AI) with respect to time over one 
period. We assume, for convenience, there is at most 
one shock, and then 

1. um(x) = A(X,O) - A(X, 1) + [A] - U-1[u], (A4) 
ax 

where [A] and [u] denote the jumps in A and u across 
the shock which has speed U and where 

um(x) = f u(x, t) dt (AS) 

is the mean of u. If A and u are continuous, then 

a 
- um(x) = 0, 
ax 

(A6) 

by the periodicity of A. If A and u are not continuous, 
then (A6) again follows from the periodicity of A and 
the shock relation 

U = - [U]j[A]. 

Thus, in any event, Um is independent of x. For 
similar reasons 

"I 

am = L a(x, t) dt (A7) 

is independent of x. 
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It is further noted that if one uses a linear approxi
mation for (A3) , then Am and the corresponding 
sound speed are independent of x. For higher approxi
mations this is not so, in general. Finally we note an 
interesting consequence of the shock relations: They 
allow the possibility of time-periodic motions about 
a state of constant stress and constant velocity. 
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Papapetrou's covariant equations of motion for a spinning particle in a gravitational field are discussed. 
The equations of motion for the spin of a particle at rest outside a rotating mass are derived using the 
Kerr metric. It is shown that Schiff's formula for the mass-current effect follows from these equations in 
the lowest approximation. 

I. INTRODUCTION 

Preparations under way by Fairbank and collabora
tors to measure the precession of a gyroscope caused 
by the rotation of the earth give incentive to see the 
physical effects at work in as many ways as possible. 
Schiff has derived the precession in question from 
the Schwarzschild line element and the Lense
Thirring effect. Here we derive it by considering the 
motion of a spinning object in the Kerr geometry 
associated with a rotating black hole endowed with 
the same mass and angular momentum as the earth 
possesses. 

Papapetroul has derived the covariant equations of 
motion for a pole-dipole particle using the method 
of Fock.2 In this method one starts from the "dynami
cal equation" T'JV;v = 0 (Tf.l V is the energy-momentum 
tensor), rather than the gravitational field equations 
(as in the EIH3 method). Let us consider a test 
particle whose dimensions are very small compared 
with the characteristic length of the basic gravitational 
field, so the particle will describe a narrow tube in 
the four-dimensional space-time. Let us choose a 
line in this tube, whose coordinates will be denoted by 
X" ,4 and this will "represent" the motion of the 

particle. Let X" be functions of X4 = t, or the proper 
time along the representative line. To characterize 
the particle, we shall assume that yPv will vanish for 
all t outside a sphere centered at Xi and having a 
small radius R. The results that follow will then be 
rigorous in the case R -+ O. Let /jx" = x" - X .. , and 
consider 

the integration is carried over the three-dimensional 
volume at a constant time t. A single-pole particle is 
defined as one which has at least one of the f pv dV -:F-
0, while all the other integrals are zero. A pole-dipole 
particle has at least some of the integrals f T"v dV 
and f /jx"T"v dV not equal to zero, while all the others 
are zero. It can be shownl that the order of the highest 
nonvanishing multipole of a particle is invariant under 
coordinate transformations. In the following we shall 
refer to a pole-dipole particle as a "spinning particle." 

The spin is defined to be 
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I. INTRODUCTION 

Preparations under way by Fairbank and collabora
tors to measure the precession of a gyroscope caused 
by the rotation of the earth give incentive to see the 
physical effects at work in as many ways as possible. 
Schiff has derived the precession in question from 
the Schwarzschild line element and the Lense
Thirring effect. Here we derive it by considering the 
motion of a spinning object in the Kerr geometry 
associated with a rotating black hole endowed with 
the same mass and angular momentum as the earth 
possesses. 

Papapetroul has derived the covariant equations of 
motion for a pole-dipole particle using the method 
of Fock.2 In this method one starts from the "dynami
cal equation" T'JV;v = 0 (Tf.l V is the energy-momentum 
tensor), rather than the gravitational field equations 
(as in the EIH3 method). Let us consider a test 
particle whose dimensions are very small compared 
with the characteristic length of the basic gravitational 
field, so the particle will describe a narrow tube in 
the four-dimensional space-time. Let us choose a 
line in this tube, whose coordinates will be denoted by 
X" ,4 and this will "represent" the motion of the 

particle. Let X" be functions of X4 = t, or the proper 
time along the representative line. To characterize 
the particle, we shall assume that yPv will vanish for 
all t outside a sphere centered at Xi and having a 
small radius R. The results that follow will then be 
rigorous in the case R -+ O. Let /jx" = x" - X .. , and 
consider 

the integration is carried over the three-dimensional 
volume at a constant time t. A single-pole particle is 
defined as one which has at least one of the f pv dV -:F-
0, while all the other integrals are zero. A pole-dipole 
particle has at least some of the integrals f T"v dV 
and f /jx"T"v dV not equal to zero, while all the others 
are zero. It can be shownl that the order of the highest 
nonvanishing multipole of a particle is invariant under 
coordinate transformations. In the following we shall 
refer to a pole-dipole particle as a "spinning particle." 

The spin is defined to be 



                                                                                                                                    

1076 BAHRAM MASHHOON 

Let DSrz(l I Ds be defined as 

Dsa(l = dsajl + rrz SIlP v + rP sal' v 
- I'V U I'V U, 

Ds ds 
where 

dX IZ 

U(/. = - and ds2 = gl'v dXI' dXv. 
ds 

Then it can be shown thatl 

where 

DSaP DSap a DSPP 
-- = uPU p -- - u Up --

Ds Ds Ds ' 

!!.-(m'U<I + Up DSaP) = lR~"vu"SI'V, 
Ds Ds 

m' = Ua f T a4 
dV + :4 r=.sI'

4
U

V
Ua 

(1) 

(2) 

is a scalar. Thus the spinning particle will not follow 
a geodesic. The equations (1) for the motion of the 
spin determine only three of the six unknown Sap = 
-Spa. Therefore, it is necessary to impose supple
mentary conditions on Sap. A natural choice is to put 
Si4 = 0 or Si4 = 0 in some convenient coordinate 
system.5 •6 We shall see in the following section that 
different supplementary conditions on the spin tensor 
lead to quite different physical phenomena as seen by 
an observer at rest with respect to the representative 
point of the spinning particle. 

II. EQUATIONS OF MOTION 

We have seen that Papapetrou's equations are 
rigorous only in the limiting case of a point particle. 
However, these equations are accurate even for 
extended objects if the dimensions of the spinning 
particle is very small compared with the characteristic 
length of the gravitational field under consideration. 

Let us consider an observer, moving with the 
spinning particle, with respect to which the repre
sentative point is at rest. We shall assume that the 
observer refers space-time events to a set of orthogonal 
tetrads Ara)' where Ai4) = ul', and Ai;> are space like 
4-vectors, such that Aia)gl'vA(pJ = '1(a)((I)' The flat
space metric is denoted by r)(a)«(I) here. The spin tensor 
is sap = f ((jxa rP" - bxP rtf) dS", where S denotes 
a spacelike hypersurface. Then according to the 
observer, the spin tensor is 

S(rz)«(I) = Aia)A«(I)Sl'v = f «(jx(rz) TiP) - (jx(P) T'(a») dS". 

The velocity of the representative point is ul' = 
dXP/ds, so that u(a) = A~a)UI' == (j(a).(4)' Let us now 
find the conditions that Spv should satisfy in order 

that the fixed representative point is just the center of 
mass of the spinning particle as measured by the 
observer. It is well known that the center of mass is a 
frame-dependent concept. 7 Therefore, what the obser
ver measures as the center of mass is 

X
(a) _ 
eM-

f x(a)TC4) dS" 

f T(4) dS", 

Now, the choice of the spaceIike hypersurface S 
for the observer is such that lJxl'ul' = O. Therefore, 
lJX(4) = Ai4)(jXI' = O. Hence 

Sea) f ~ (rz)T'" dS 
(4) = uX (4) " 

= f x(rz)Ti4) dScr - X(a) f T(~) dS" 

= (x~~ - X(a» f T (4 ) dS". 

Thus in order that x~~ and x(a) coincide, we must 
h Sea) 0 Th ti SI'V - 11' sea) - 0 ave (4) =. ere ore, U v - lI(a) (4) - • 

The combination of SI'Vu .. = 0 and Eqs. (1) and 
(2) easily leads to dm'lds = 0, and d(SapSrzP)/ds = 0. 5 

If we define the spin 4-vector as 

Sp = t( - g)t€pvp"UvSP", 

where (-g)t€pVPtf is the alternating tensor and g = 
det (gaP)' then, using Sl'vu. = 0, one obtains SI'Sp = 
tsapsap. Since SPul' = 0, S(4) = 0, and S(i)Sw = SI'SI', 
so that the length of the spin does not change as 
measured by the observer. Thus, if the observer fixes 
any point of the spinning particle (the representative 
point) other than its center of mass, the magnitude 
of the spin will change. 

It is interesting to note that in the limiting case of a 
vanishing gravitational field, the force equation (2) 
reduces to the expression of the constancy of the total 
momentum of the particle pa = m'ua + Up (dSZPjds). 
This equation is formally identical with the result of 
Weyssenhotf and Raabe8 for the fre-e motion of a 
classical (nonquantum) particle endowed with intrinsic 
spin sap which is coupled to the orbital motion 
through sapup = O. 

III. EQUATIONS OF MOTION OF A SPINNING 
PARTICLE, AT REST, OUTSIDE A 

ROTATING STAR 

In the coordinate system under consideration in 
this section, the particle is at rest, therefore u i = 0 
and, assuming SI'Vuv = 0, Si4 = O. It follows from (2) 
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that DSii / Ds = ° if u i = 0. This can be written as 

as
i
} _ r} SPi _ r i Slli S· = ° at - p4 p4,.4· 

In the following we shall assume that the gravita
tional field is produced by a rotating spherical body 
at the origin of the "rest system" of the test particle. 
This will constitute a physically realizable situation if 
there exist, besides the' gravitational force and the 
force due to the coupling of spin and gravity, other 
nongravitational constraining forces acting on the 
particle which keep it at rest. Owing to the special 
coordinate system under consideration, further speci
fication of such forces will not be necessary in what 
follows, except that they should be nonzero only in 
a small region around the test particle. It is assumed, 
however, that these forces exert no net torque on the 
particle. Let us assume that the gravitational field 
can be described by the Kerr metric9 

-ds2 = gpv dXIl dX
v = 1:('~2 + de 2

) 

+ (r2 + a2
) sin2 e d4} 

+ 2mr (a sin2 () def> - dt)2 - tlt 2, 1: 
l: =: ,.2 + a2 cos2 e, 
f). =: r2 + a2 

- 2mr, 

where a spherical system of coordinates has been used. 
The source of the field is assumed to be a spherical 
object of mass m and angular momentum ma about 
the z direction. It is easy to see that in the (r, e, T, t) 
coordinate system 

p 1 
A(1) : --! (1, 0, 0, 0), 

(gn) 

A~2): (g22)-!(0, 1, 0, 0), 

( 
2 )-L ) 1P . g34 t g34 

1l(3)' g33 - - 0,0,1, --
g44 g44 

are appropriate tetrads together with 

;,:~) = ul': ( - g44)-t(0, 0, 0, 1). 

One can then convert the equations obtained for spv 

to those for SI', and then using S(o) = Ara)Sp, to equa
tions involving S(a) , which are directly measurable by 

the observer. The vector S (according to the observer) 

is then S = Sill + S(2)0 + S(3)tP, since S(4) = 0. In 
the following we shall put T = 0, without any loss 
in generality. 

It is found that dS/dt = n x S, where n is a 
vector given in terms of rand e. In the case m/r « 1 
and air « 1, Q is given by 

Q = (ma/r3){[3(2. r)r/r2 
- 2] 

+ (m/r)(2 x r) x r/r2 + ... }, 
where 2 is a unit vector in the z direction. In the lowest 
order of approximation one obtains 

n = Q. = ma [3(2, r)r - =J 
., y3 r2 

This is Schiff's mass-current effect. 10 We emphasize 
that for any choice of supplementary conditions other 
than SI'Vuv = 0, dS/dt =r6 n x S, and consequently the 
magnitude of the spin, is not a constant of the motion. 

If the spinning particle is outside the Earth, r ~ 
REal'th' then m/r < 7 X 10-10

, air < 6 X 10-7 , and 
Q s = I/r 3 [(3r/r2)(w· r) - w], where w = 0)02. I is 
the Earth's moment of inertia, and 0)0 ~ 7.29 X 

10-5 sec-1 is the frequency of the rotation of the Earth. 
The next-higher-order correction is smaller by a factor 
of m/r < 7 X 10-10• 
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We derive the Lagrangian function for four different rotating universes simultaneously. These models 
correspond in a certain sense to Godel's "symmetric case." 

1. INTRODUCTION 

In a previous paperl we developed a formalism in 
order to treat the problem of spatially homogeneous 
universes: especially models allowing the most 
general motion of the "Weltsubstrat," that is, having 
nonvanishing shear, expansion, and rotation. This is 
an interesting basic question within Einstein's theory 
of gravitation and has some hopes for applications. 
This paper formulates the mathematical problem one 
is faced with by looking for the simplest expanding 
and rotating model without the compactness condi
tion for the space sections. In order to save space, we 
only state some results obtained in Ref. I. The reader 
might simply take these from us, or consult Ref. I for 
proofs. Suppose there is given a spatially homogeneous 
geometry by the line element 

ds2 = dt 2 + Yab(t)WaWb
, a, b = 1,2,3, (1.1) 

invariant under the left translations of the group G3 

given by 
(1.2) 

It is shown in Ref. I that for Class I groups, that is, if 

Cfla = ° (1.3) 

is satisfied, Einstein's field equations with incoherent 
matter reduce to a mechanical problem characterized 
by the Lagrangian function 

L = yi[K/ K/ - (K/)2 + R*] - 2K/(l - ujul)i, 

(1.4) 
by the integrals 

K/CIga= -(K1Jyi)ua, a= 1,2,3, (1.5) 

satisfy the equations 

ua = CfgaugufJ(1 - ufuf)!. (1.7) 

Explaining the notations, we mention that 

y = -det (Yab)' (l.8) 

(I.9) 

R* is the Ricci scalar of the group space G3 , K is the 
relativistic constant of gravitation, / > ° is a constant 
connected with the density p of the matter through 
the equation p = lJ[y(1 - up')]!, and 

(1.10) 

is the I-form corresponding to the motion of the 
matter. 

We apply the above formulas for the groups 

Vlo: dw 1 = w2 II w3, dw 2 = -w3 II WI, dw3 = 0, 

VIIo: dw 1 = -w2 II w3 , dw2 = -w3 II WI, 

dw3 = 0, 
VIII: dw 1 = w2 II w3 , dw 2 = _w3 II wI, 

dw3 = -WI II w2 , 

IX: dw1 = -w2 II w3 , dw2 = -w3 II WI, 

dw3 = -WI II W 2, (1.11) 
and for the special case 

U1 -:F 0, U2 = U3 = 0. (1.12) 

Most of the calculations can be carried out for the 
four cases simultaneously by observing that the 
structure constant tensors can be written as 

(1.13) 

and by the requirement that the constant of energy is with the values given in the following table. 
zero, that is, 

H = yi{K/K/ - (Kff)2 - R*} 

+ 2K!(1 - ufuf)! = h = 0. (1.6) 

(Solutions of the mechanical problem, for which the 
constant of energy is different from zero, have nothing 
to do with the cosmological problem at hand.) 

As a consequence of the field equations, the u's 

a b c 

Vlo -1 +1 0 
VIJo +1 +1 0 (1.14) 

VIII -1 +1 +1 
IX +1 +1 +1 

We now specialize the above formulas for the case at 
hand. 

1078 
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2. EXPLICIT FORMULATION OF THE 
PROBLEM 

Equations (1.7) read as 

bU3U2 - CU 2U3 . CU1U3 - aU3uI 
UI = (1 _ u/u f )l ' U

2 = (1 _ u/u/)l ' 

. au2UI - bU l U2 
Us = (1 _ u/u/yi . 

Using (1.12) and the fact that a ~ 0, we obtain 

From this it follows that 

UI = V ~ 0 const, y31 = y21 = 0 

(2.1) 

(2.2) 

and further that 

and 

Therefore, 

and 

U1 = V ¢ 0 const (2.3) 

Yl2 = Yl3 = o. (2.4) 

o 
CI(BC - D2) 

-DI(BC - D2) 

-DI(B~ - D2») , 
BI(BC - D2) 

(2.5) 

Kab = (AI:A ("~ _ Db)~2(BC _ D') (iJD - iJD)~2(BC - D'»)' 

o (C D - C D)/2(BC - D2) (BC - D b)/2(BC - D2) 

(2.6) 

where a is the row and b is the column index. One 
might mention that 

u" = [(l - V2IA)t, V, 0, 0] 

and A V 2/4 gives the length of the vector of rotation. 
The line element reads then as 

ds2 = dt 2 + A(Wl)2 + B(W2)2 

+ C(W3)2 + 2Dw2W 3 , (2.7) 
where 

A,B,C,D (2.8) 

are the unknown functions of t only. 
The three equations (I .5) reduce to 

[(bB - cC)iJ - (bB - cC)D]/2(BC - D2) 

= -KlVlyl (2.9) 
and (\.4) reads as 

R* = [2(a2A2 + b2B2 + C2C2) 

- (aA + bB + CC)2 + 4bc D2]/2A (Be - D2), 

(2.11 ) 

which can readily be computed by using the corre
sponding formulas in Ref. I. Therefore, our problem 
is reduced to a mechanical problem characterized by 
the Lagrangian function (2.10) and the first integral 

(2.9). We are interested only in those solutions for 
which the constant of energy is zero as we mentioned 
above. 

We now reduce the mechanical problem by one 
degree of freedom with the help of the first integral. 

3. GENERAL REMARKS TO THE REDUCTION 
OF THE PROBLEM 

Since the integration theory is developed for 
mechanical systems written in Hamiltonian form, we 
introduce the conjugate momenta as usual by the 
equations 

p = oL oL R = oL aL 
aA' Q=aB' oC' S=ab' (3.1) 

As the first step we express the integral (2.9) with the 
momenta. A straightforward calculation shows that 
(2.9) takes the fOllowing remarkably simple form: 

(bR - cQ)D + tS(bB - cC) = -KlV. (3.2) 

The integral is linear and homogeneous in the mo
menta; consequently, the reduction problem is very 
simple. 

For the convenience of the reader we quote the 
relevant remarks from the textbook literature. 2 

Suppose that our mechanical system is described by 

Xk and Yk 

as coordinates and momenta, respectively. Our first 
remark: A point transformation 

(3.3) 
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where Xk(~j) are arbitrary functions subject to the 
only condition 

det (OXk) ;06 0 ae ' (3.4) 

can be extended to a conical transformation by 

oxk 

Xk = xk(e), 1Jj = t d~i Yk' (3.5) 

Our second remark: If the mechanical system has an 
integral of the form 

(3.6) 
k 

we can impose the following additional conditions on 
(3.3): 

(3.7) 

As a consequence of all that, the new momentum rt 
is constant; therefore, the Hamiltonian function does 
not depend on ~n. The point transformation reduces 
naturally the Lagrangian function too. 

In our case, (3.2) has the form (3.6) and the relevant 
system of ordinary equations corresponding to (3.7) 
has the form 

with 

aA = 0 
dw ' 

ac = bD, 
ow 

aB 
-= -cD 
dw ' 

aD 
- = t(bB - cC), ow 

x,y, z, w 

(3.8) 

(3.9) 

as the new coordinates in the configuration space. 
Equations (3.8) and a glance at (1.14) suggest that we 
split the four systems into two pairs and treat them 
separately. 

4. TYPE VIo AND VIIo 

Using (1.14), we obtain in the case of Type VIo and 
VIIo,from (2.10) and (2.11), the Lagrangian function 
to be 

!( A(BC - D2)" A(BC - j)2) 
L = Y - 2A(BC _ D2) - 2A(BC _ D2) 

+ (A ± B)2 ) _ 2Kl(1 _ V2)!. (4.1) 
2A(BC - D2) A 

The integral (2.9) takes the form 

(Bb - BD)/2(BC - D2) = -KlV/y! (4.2) 

and the system (3.8) gives the equations 

dA = 0 
dw ' 

dB == 0 
dw ' 

dC = D 
dw ' 

dD ,,; iB (4.3) 
dw 

to be integrated. The integration can be carried out 
trivially 

A = IX, B = fl, C = tflw2 + bw + y, 

D = tflw + b, (4.4) 

where IX, fl, y, and b are arbitrary functions of x, y, 
and z subject to (3.4) only. 

We pick 

A = -x, B = y, C = tyw2 + z, D = !yw, 
(4.5) 

where naturally 
Z, y, z, and w (4.6) 

are the new unknown functions of t. Substituting 
(4.5) into (4.2), we obtain 

W = -4 KIV/xy2 (xyz)! , (4.7) 

and (4.1) reads as 

L = -(xyz)! 

This completes the reduction. 
In order to obtain the world models with the 

symmetries in question, we have to find those solutions 

x = x(t), y = yet), and z = z(t) (4.9) 

of the mechanical system (4.8), for which the constant 
of energy has the value zero, as mentioned already. 
We then compute 

w = wet), 

using (4.7), and find the functions 

(4.10) 

A = A(t), B = B(t), C = C(t), D = D(t) (4.11) 

by (4.5). The line element is given by (2.7), where in 
the case of Type VIo 

(4.12) 
The differential forms 

Wi = ie-",3 dx1 - ie+x3 dx2 , 

w2 = !e-X3 dx1 + te+x3 dx2, (4.13) 

w3 = dx3 

satisfy (4.12). The finite transformations of the group 
are given by 

yl = ez3x1 + ZI, y2 = e-z3x 2 + Z3, 

y3 = x3 + Z3, (4.14) 
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meaning that we translate the group element 
(Xl, X2, Xl) with the help of the group element 
(Zl, Z2, Z3) into the group element (yl, y2, y3); we 
"multiply" (xl, X2, Xl) by (zl, Z2, Z3). The corre
sponding formulas in case of Type VIIo are given by 

and 

w2 = cos Xl dxl + sin x3 dx2, 

yl = Xl cos Z3 - x2 sin Z3 + Zl, 

y2 = Xl sin Z3 + x 2 cos Z3 + Z2, 

y3 = x3 + Z3, 

respectively. 

(4.15) 

(4.16) 

(4.17) 

One sees, therefore, that in both cases the under
lying manifold is given by 

R X Ga , (4.18) 

where Ga is homeomorphic to R3 and geometrically a 
"distorted E3," E3 denoting the three-dimensional 
Euclidean space. 

These models would allow, within the theory of 
gravitation, a study of the rotation of space sections 
extending into infinity. 

5. TYPE VIII AND IX 

Using (1.14), we find, from (2.10) and (2.11) in case 
of Type VIII and IX, that the Lagrangian function 
reads as 

A(RC - N) 
2A(BC - D2) 

(5.1) 

The integral (2.9) takes the form 

[(B - C)b - (R - C)D]/2(BC - D2) 

= -KiV/yi, (5.2) 

and the system (3.8) gives the equations 

dA = 0 
dw ' 

dB =-D 
dw ' 

dC = D 
dw ' 

dD = t(B - C) 
dw 

(5.3) 

to be integrated. One integrates easily and obtains 

A = IX, 

B = - y sin w + (j cos w + {3, 

C = Y sin w - (j cos w + {3, 

D = Y cos w + (j sin w, 

(5.4) 

where IX, {3, y, and (j are arbitrary functions of x, y, 
and z subject to (3.4) only. We pick 

where 

A= -x, 

B = -iCy + z) + iCy - z) sin w, 

C = -iCy + z) - iCy - z) sin w, 

D = - Hy - z) cos w, 

x,y, z, w 

(5.5) 

(5.6) 

are the new unknown functions of t. Substituting 
(5.5) into (5.2), we obtain 

tV = - [4KiV/x(y - Z)2](xyZ)!, 

and (5.1) reads as 

!( iy yx ii 
L = -(xyz) - + -.- + -

2xy 2yx 2zx 

2(x2 + l + Z2) - (±x + y + Z)2 
+~--~--~--~--~--~ 

2xyz 

- 2Kl(1 + :2t 

(5.7) 

(5.8) 

This completes the reduction and we obtain Godels 
Lagrangian.3 

In order to obtain the world models with the 
symmetries in question, we have to find those solu
tions 

x = x(t), y = yet), z = z(t) (5.9) 

of the mechanical system (5.8) for which the constant 
of energy is zero, as we mentioned already. We then 
compute 

w = wet), (5.10) 

using (5.7), and find the functions 

A = A(t), B = B(t), C = C(t), D = D(t) (5.11) 

with the help of (5.5). The line element is given by 
(2.7), where in the case of Type VIII 

dWI = w2 A w3 , dw2 = -w3 A WI, 

dw3 = -WI A w2• (5.12) 
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The differential forms 

WI = dxI + ex2 dx3 , 

w 2 = cos Xl dx2 + ex2 sin Xl dx3, 

(1)3 = -sin Xl dx2 + ~2 cos Xl dx3 

(S.13) 

satisfy (S.12). The group manifold is given by the 
hyperboloid 

(a1)2 + (a2)2 - (a3)2 - (a4)2 = I, (5.14) 
where 

(5.15) 

are the Cartesian coordinates in a four-dimensional 
Euclidean space £4 and the group operations are 
defined by the one-to-one correspondence 

( 
al + a 4 

a
2 + a 3

) 
(al, a 2, a 3, a

4
) ~ • 3 1 4 

-a- + a a - a 
(5.16) 

between the points of the hyperboloid (S.14) and the 
elements of the SLG(2, R).4 

The corresponding formulas in the case of Type IX 
are given by 

d(l)l = _ (1)2 II (1)3, d(l)2 = - «)~ II (,)1, 

dw3 = - «)1 II (I) 2 . 

The diffetential forms 

(1)1 = dxI + cos x 2 dx3
, 

(1)2 = cos Xl dx2 + sin x 2 sin Xl dx3, 

w3 = -sin Xl dx2 + sin x 2 cos Xl dx3 

(S.17) 

(5.18) 

satisfy (5.17). The group manifold is given by the 
sphere 

(S.19) 

and the group operations are defined by the one-to-one 
correspondence 

( 
al + ia4 a 2 + ia3) 

(al a 2 a 3 a 4) ~ (5.20) 
, " -a2 + ia3 a l - ia4 

between the point of the sphere (5.19) and the ele
ments of the S U2 • 5 

6. MISCELLANEOUS REMARKS 

Problem (4.8) is much simpler than (5.8). The 
singularities of the system are quite different, at first 
glance anyway. 

Since the systems are conservative, one would 
reduce them by one further degree of freedom with 
the help of the energy integral.2 I plan to investigate 
the properties of this system at some later time. 
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We consider an arbitrary physical system possessing a set of currents and an energy-momentum 
tensor. Without the use of canonical commutation rules we derive in a unified way equal-time commu
tation relations between the components of the currents and the energy-momentum tensor. The currents 
and energy-momentum tensor are defined by the response of the physical system to the variations of 
external fields. The formalism of infinite-dimensional continuous transformation groups is utilized. 

INTRODUCTION 

In this paper we derive in a unified manner the 
following equal-time commutation relations: 

(i) ETCR's for the energy-momentum tensor, 
(ii) ETCR's between the components of a current 

and the energy-momentum tensor, 
(iii) ETCR's between the components of a current. 

The ETCR's for the components of the energy
momentum tensor have been derived in a previous 
paper,! using a method outlined in Ref. 2. The result 
was, in flat space-time, 

- i[Toix'), ivo(x")]o(x~, x~) 

- ap o'Tpix') -Id4 CP T () (1) - x /l'V" po X • 
ogVO(x") 

The energy-momentum tensor is here defined using 
the response of the physical system to a change of 
an external gravitational field g/lV(x): 

oR = I T/lvCX)ogltv(x)d4x == T/lvog/lV, 

where 
- ! T/lv = (-g) T/lv' 

The C~,v" are three-point functions given as follows: 

CP .. = oPo(4)(x X/)O(4)(X x") - oPo(4)(x X")O(4)(X x') p'y I' ,v, , V,Jl' ,. 

(2) 

The method used to derive Eq. (1) is a generalization 
of the procedure described by Schwinger in Ref. 3. 
In deriving Eq. (1), we have to study the infinite
dimensional general coordinate transformation group 
in four-dimensional Riemannian space-time.4 The 
C='v. can then be thought of as "structure constants" 
for this group. 

We consider now an arbitrary physical system, and 
with this system we also associate the currents Jk/l(x), 
where fl = 0, 1, 2, 3 and k = 1,2," ',N is an 
internal index. The currents are assumed to couple 

with the external parameteq; Ak/l(x). Thus the response 
in this case is 

(3) 

In Ref. 2 we used this response, here with negative 
sign, to derive the ETCR's between the components of 
the current operator Jk/l(x): 

- i[JiO(x'), JkP(X")]o(x~, x~) 

= _a" o'Jiix') _ C~ J (X')6(4)(X' x"). (4) 
OAkP(x") 'k /p , 

We remark that, in the derivation of the ETCR's 
expressed in Eqs. (1) and (4), one assumes that, to 
lowest order in the external fields, the divergencies 
D/l = avr/l V and Di = aVJiv respond linearIy~ to the 
variation of the external fields, suggesting the diver
gence conditions 

o'D,,(x') = f d4x f d4X"C~'v"T"p(x)og"V(x") 
and 

o'Di(x') = I d4x f d4x"C;k°(4)(X, x') 

X o(4)(x, x")J1P(X)O( - AkP(x"». 

In this paper we shall construct the ETCR's between 
the current components and the energy-momentum 
tensor. These ETCR's must yield the correct transfor
mation properties of the current under the Poincare 
group. In order to achieve this, it is strongly suggested 
that the ETCR's (1) and (4) be put on equivalent forms 
in such a way that they can be looked upon as emerg
ing from a common, unified set of relations. By 
introducing the generalized structure constants 

Ch" = c;k0(4)(X, X/)O(4)(X, x"), 

we can write Eq. (4) as 

- i[JiO(x'), JkP(X")]O(x~, x~) 

= a" o'Jiix') -Id4XC1, .. J (x). (5) 
O(-AkP(x"» tk lp 

1083 
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The current algebra (5) and the energy-momentum 
algebra (1) would then be unified into one infinite
dimensional algebra if Tllv(x) and Jkv(x) could be 
considered as components of a symmetric quantity 
Tab(x), and also if gll~(X) and AkV(X) were elements of 
a symmetric quantity ,gab(x). The indices a and b 
range over the space-time and the internal indices. 
Jkv(x) would be identified with Tkv and - Akv with gkV. 
In such a manner Eqs. (1) and (4) would be contained 
in a single infinite-dimensional algebra. 

This reasoning leads us then naturally to the study 
of the general ETCR's by using an infinite-dimensional 
group, which is obtained from a compact Lie group 
and the general coordinate transformation group in 
curved space-time. With the help of the Lie group we 
generate the corresponding Yang-Mills group and 
then combine this infinite-dimensional group with the 
coordinate transformation group. 

We are thus led to consider an abstract space of 
(4 + N) dimensions. The fields Akl'(X) will now be 
identified with the universal field of the Yang-Mills 
group generated from the compact Lie group. The 
field Akll(X) gives the connection between space-time 
and the space of the Yang-Mills group, the internal 
space. 

In Sec. I we state the results and show that the 
ETCR's between the currents Jkll(X) and Tov(x) in 
flat space-time give the right transformation properties 
of Jk/x) under the Poincare group. In Sec. 2 we derive 
the commutation relations using the method of Ref. 2, 
generalized to the infinite-dimensional continuous 
group consisting of the combined Yang-Mills and 
coordinate transformation groups. 

1. ETCR'S BETWEEN THE CURRENTS AND THE 
ENERGY-MOMENTUM TENSOR 

The ETCR's between the components Tllo(x) of 
the energy-momentum tensor derived in this paper are 
given by Eq. (I). Thus in flat space-time we have 

-i[Tllo(x'), Tvo(x")]o(x~, x~)· 

= ap o'Tpp(x') -fd4xCP'vnT o(x). (1') 
ogVO(x") p P 

We construct the generators 

(6) 

and 

MpvCxo) = f d3x[x
"
Tvo(x) - xvTpo(x)]. (7) 

It is shown in Ref. 1 that Eg. (1') gives the Poincare 
algebra for the momentum operators P/xo) and the 
angular momentum operators MIl.(xo). Using the fact 

that Til v is conserved in flat space-time makes it 
possible to rewrite Eq. (I') in the following way. We 
consider first the case f1, = v = O. Then 

- i[Too(x'), Too(x")]o(x~, x~) 

= ap o'To/x') 
ogOO(x") 

- [Too(x")o~t)(x", x') - Too(x')o~t)(x', x")]. (8) 

We eliminate the time derivatives of the delta func
tions, using the conservation law for Tllv , 

allTpvCx) = - f d4X'b~,~)(x', x)T''v(x') = 0, (9) 

and we obtain the expression 

- i[Too(x'), Too(x")]b(x~, x~) 

= ap o'Top(x') 
ogOO(x") 

- o(x~, x~)[Tom(x") + Tom(x')]o~~~(x", x'). (10) 

In the same way we have 

-i[Too(x'), TOm(x")]o(x~, x~) 

= ap o'Top(x') 
ogom(x") 

- [Too(x")o~~(x", x') - Tom(x')o~g)(x', x")] 

= ap O'Top(x') 
ogOm(x") 

- o(x~, x~)[Too(x")b~~(x", x') - T m n(x')o~~)(x', x")], 

m, n = 1,2,3. (11) 

We next consider the commutator 

-i[Too(x'), Tmn(x")]b(x~, x~), m, n = 1,2,3. 

In this case we must have an expression which is 
symmetrical in 111 and n. Thus the following expression 
is suggested: 

- i[Too(x'), T mn(x")]o(x~, x~) 

= ap b'To/x') 
ogmn(x") 

- [o~~(x", x')Ton(x") + o~~)(x", x')TOm(x") 

- o.(g)(x', x")Tmn(x')], m, n = 1,2,3. (12) 

In the same way 

-i[TkO(x'), Trnn(x")lo(x~, x~) 

= (l b'TkP(x') _ T (X")b(4)(X" x') 
ogm11(x") kn .m' 

- Tkm(X")b~~)(x", x') + T mn(x')o~!'(x', x"), 

k,m,n=1,2,3. (13) 
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Equation (13) has the consequence that 

-i[Mkl(X~), Tmix)]xo=xo' 

= (XlOk - Xko1)Tmn + Tkngml 

- T1ngmk + Tkmg1n - Tlmgnk . (14) 

Compare with Ref. 5. 
The ETCR's between the components Jk/x) of the 

current and the energy-momentum tensor T vo(x) 
derived in Sec. 2 are, in the limit of flat space-time, 

-i[Tpo(x'), JkV<X")]O(x~, x~) 

= oP o'Tl'p(x') _ rd4XCp'v"Jk (x), (15) 
O(-Ak'V(x"» ~ I' P 

where C~,v" is given by Eq. (2). 
We now check that these ETCR's give the right 

transformation properties of Jkl'(X) , i.e., that it 
transforms correctly as a vector under Lorentz trans
formations. For this purpose we compute the ETCR's 
between MI'Jxo) and Jk/x): 

[MpvCx~), Jk/x")]xo'=xo' 

= I d4x' x~['rvo(x'), JkP(X")]O(X~, x~) 

-J d4x'x~[Tl'o(x'), Jk/X")]O(X~, x~) 
= + i(x~op - X~OV)Jk/X") 

+ i(gv"gI'P - gl'"gvp)Jk"(x"). (16) 

We also get the following desired relation by inte
grating Eq. (15) over d4x': 

i (J d3
x'Tvo(x'), JkiX"») 

= i[Pv(x~), Jkix")] = OJkl'(X"). (17) 

2. DERIVATION OF THE EQUAL-TIME 
COMMUTATION RELATIONS 

As mentioned in the Introduction, we shall use an 
infinite-dimensional continuous group to derive all the 
ETCR's in a unified way. We start with a compact Lie 
group with the structure constants C~k' From this 
group we generate the corresponding infinite-dimen
sional Yang-Mills group with the "structure con
stants" C}'k" given by the relation 

C~'k" = C~kO(4)(X, X')O(4J(X, x") i, j, k = 1,2, ... , N. 

(18) 

Then we consider the general coordinate transfor
mation group in a four-dimensional space with the 
metric tensor gI'V(x). The corresponding "structure 

constants" are 

C~,,,,, = o~o~!J(x, X')b(4J(X, x") - o~o~!J(x, X")O(4J(X, x'). 

(19) 

We now combine the two groups into a single infinite
dimensional continuous group. The Yang-Mills trans
formation is thought of as being performed first and 
then followed by a coordinate transformation. The 
new set of "structure constants" are denoted by cg,c" , 
where the indices a, b', and e" run over the internal 
indices i, j', k" and the space-time indices fJ., v', a". 
The three-point functions c~,c" are given as follows: 

C~'k" = C~kO(4)(X, X')O(4\X, x"), 

Ci Ci .d.<:(4)( ').<:(4J( ") 
k',," = - ,,"k' = UkU ." x, X U x, x , 

C~'a" = q'l" = Ci,'!T" = 0, 

and 

(20a) 

(20b) 

(20c) 

C~'a" = o~o~!J(x, x')b(4)(x, x") - o~o~!J(x, x")o(4)(x, x'). 

(20d) 
See Ref. 4, Problem 57. 

As is seen from Eq. (20), the combined group is not 
the direct product of the two groups. 

The adjoint representation is given by a vector field 
with 4 + N components denoted XI' and Xi . Xa obeys 
the following transformation law: 

oxa = C~'c"Xc"oe' == J d4x' J d4x"C~'c .. xc"oe'. (21) 

The parameters O~b are in component form, 

(22) 

A general coordinate transformation is written as 

xl' = xp, + o~p,(x), fJ. = 0, 1,2,3. (23) 

The O~i are the parameters of the Yang-Mills group. 
They depend on the coordinates xl' of space-time. 
The co-adjoint representation is a vector field with 
4 + N components with the following transformation 
law: 

oXa = - J d4x' J d4x"C~:'aXc,oe". (24) 

We consider now the matrix gab defined as 

(25) 

where AiJ.t(X) is the universal field of the Yang-Mills 
group. It is to be identified with the external field 
mentioned in the introduction that couples with the 
currents Jkp,(x).· gii" is an internal metric and is used 
to raise and lower the indices i,j, and k. At the end 
of the calculations when we go to flat space-time and 
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the external fields vanish, gii is to be identified with 
the group metric of the compact group.2 The matrix 
gab transforms as the matrix with elements 

XiXi , Xixv, XI'Xi , X/lXv. (26) 

The matrix 

(_ )1- _ (_ )l(g;; AiV) 
g gab - g A . + A Ak 

JI' g/lv k/l v 
(27) 

transforms contragredientIy to gab. Further, gab 
satisfies the following relations: 

gabgbc = ba
c 

and 
gabgab = g/lVgl'v + giig;i = 4 + N. 

The matrix gab can then be used to raise and lower 
indices a and h. However, we do not necessarily 
interpret gab as a fundamental tensor in a (4 + N)
dimensional Riemannian space. 

An infinitesimal variation of gab is written 

b-ab = (b(gii + Ai"Ai") b(_A
iV»). 

g b( _Ail') bgl'V (28) 

The response of the physical system to a change of 
the matrix gab is now assumed to be 

where 
(29) 

(29') 

and it is assumed that bR is invariant under the 
combined group. The tensor Tab is defined as follows: 

T _ (Tii J iV ) ab - . 
Jil' T/lv 

The divergence of Tab (x) is written 

aWfal' = Da , 

(30) 

(31) 

where the index "a" ranges over the space-time 
indices and the internal indices. We now assume the 
following variational equation as a consequence of 
Schwinger's variational principle: 

- i[to(x'), TbC(X")]!5(x~, x~) 
= a/l b'tix') _ b'Dix') , 

bgbC(X") bgbC(X") 
(32) 

where 15' gives the explicit dependence of the operators 
Tap(x) and DaCx) on the matrix gab(x). The following 
reciprocity condition must be satisfied under the 
variation3 : 

lJ'Tab(X')/bgCd(x") = b'Tca(x")/bgab(x'). (33) 

When the external perturbation is turned off, Eq. (32) 
provides information about the closed physical 
system. In this limit, gl'V equals the Minkowski metric 

tensor, gkl tends to the metric tensor of the compact 
internal Lie group, and the fields Akl' go to zero. 

As a straightforward generalization of the results in 
Refs. 1 and 2, we assume that the explicit dependence 
of the operator Da(x) on the external fields gab can be 
expressed in terms of the "generalized structure 
constants" C~'c' of the combined group. We can then 
write down the following six relations for b'Da(x')j 
bgbC(X"), assumed to be valid to lowest order in the 
external fields: 

b'D (x') -
I' =Jd4

X C~'v"Tpa<x), (34) 
bg"V(x") 

b'Dix') Jd4 CP T- ( ) = X /l'V" kp x, 
b(-Ak·(x"» 

(35) 

b'Dix') Jd4 Ci T- ( ) = X Il'k" i! x, 
bgkl(x") 

(36) 

b'Di(x') -Jd4 C l T ( ) 
b(-AkP(x"» - x i'k" Ip X , (37) 

--'-'--'. = d x Ci'k"Tm!(x), b'D;(x') J 4 m-

bgkl(X") 
(38) 

-~~ = d x C"p"Tma(x). b'D;(x') J 4 m-

bgPaex") 
(39) 

Because gab is a symmetric quantity, these expressions 
should be symmetrized when it is necessary. The six 
responses given above give rise to six equal-time 
commutation relations. From Eq. (32) there follows, 
in the limit of flat space-time and vanishing Ak/l, 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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Equations (40) are the previously derived ETCR's for 
the energy-momentum tensor. Equation (41) gives the 
right transformation properties of the current under 
the Poincare group. Equation (42) means that Tkl 

transforms as a scalar under the Poincare group. 
Equations (43) are the ETCR's for the currents, and 
Eq. (44) means thaLTkl transforms as a tensor in the 
internal space. 

We note that the symmetrized version of Eq. (45) is 

- i[JiO(x'), TfW(X")]b(x~, x~) 

- ap b'J,)x') -Jd4:( Cm"J (x) 
- '" 1'( mco 

bgfW(x") 

+ Jd 4X C~W,J?nf(X) (45') 

and that Eq. (45) is related to Eq. (41) through the 
reciprocity condition 

b' Ji/x')/bgfW(x") = b'TfW(x")/b( - Aip(x'». (46) 

Note added in proof We remark that our ETCR's 
(40)-(45) are obtained by making a "minimal" as
sumption for the explicit dependence of Dix) on the 
external fields in Eq. (34)-(39). Clearly, one can add 
terms, which are total four-divergencies, on the right
hand sides of Eqs. (34)-(39), without spoiling the 
Poincare invariance and the current algebra. These 
terms will then, together with the Schwinger terms, 
constitute the so-called model-dependent part of the 
ETCR's.5-8 

3. DISCUSSION 

In unifying the Poincare group and a current 
algebra into the relations expressed by Eq. (32) and 
Eqs. (40)-(45), we introduced the symmetric quantity 
T~'I(X) that couples with the external perturbation 

time averages of Tab(X) since T"bbgab is an integral 
over some space-time region.] Hence Tab constitutes 
a set of observables for the system. So, if ()gkl in Eq. 
(47) is a variation of a set of external scalar fields, 
then Tkl is an observable for the system in addition to 
the observables JkJl and T vJl • 

If the variation bgkl is nonphysical, one has, of 
course, Tkl = 0 and Eqs. (42) and (44) disappear. 

Possibly the situation is such that the complete 
Poincare group observable set plus the invariants 
Lk' Qk,Qk' (Qk' = S Jk'od3x constant of motion, genera
tor of an invariant subgroup of the internal group) 
and mutually commuting conserved charges Ql' do 
not suffice to specify the physical system completely. 
Then perhaps a complete set of observables could 
be constructed by briaging into consideration the 
internal tensor S T k1d3x. 

Our observables belong to infinite-dimensional 
representations (if they exist) and the ETCR's we 
have put forward in this paper, loosely speaking, form 
an infinite-dimensional algebra. People have tried to 
combine the Poincare group with an internal symmetry 
group of finite dimension with the result that only 
trivial direct sum combinations exist. 9 

We have tried to link the ETCR's to the geometrical 
structure of a fiber bundle. If this is correct, the 
current algebra dynamics has the same foundation as 
electromagnetic interaction theory and Einstein's 
gravitation theory expressed in the framework of 
gauge or "compensating field" theory. Our external 
perturbing fields are then connected to so-called 
Yang-Mills fields. 10 We have employed the general 
formalism of De Witt4 for handling this type of theory. 
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Now the variations bgab are interpreted as changes in 
an external physical c-number field. A variation 
b(a.1 ~) of the transition amplitude (a. 1 ~) is induced 
according to Schwinger's principle: 

()(a.1 P) = i (rt.1 Tabbgab I~). (48) 

In principle b(rt.1 ~) can be measured and, since 
bgab is externally controlled, one actually measures 
TUb(x), [More strictly speaking, one measures space-

interest in this work. 
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A study is made.of Kill~ng vect?r fields in vacuum Einstein spaces with a restriction primarily to those 
fields whose assocIated blvector IS nonnull. However, a well-known theorem of Robinson is modified 
slightly to show that if such a space admits a null bivector associated with a Killing vector, the space 
~ust be algebr~ically spec~al. Consequently, all algebraically general spaces admit a nonnull Killing 
blvector (KBV) If they admIt a symmetry at all. Furthermore, it is shown that if a vacuum Einstein space 
admits a spacelike or timelike Killing vector field whose associated KBV is nonnull, the Killing trajectories 
are not ge~desi~s. Computation of. inv~riants from the curvature tens?r and the KBV allows an ap
~roach whl~h. gIves a general classificatIon to. such spaces which admit at least one hypersurface or
tll.ogonal Kllhng vec!or field. A few geometrIcal properties involving the principal null directions of 
the KBV are also denved for the hypersurface orthogonal cases. In addition, a topOlogical result follows 
immediately from the behavior of the invariant J. 

1. INTRODUCTION 

This work is concerned with both algebraically 
special and algebraically general vacuum Einstein 
spaces. No attempt is made at this point to find new 
examples of gravitational fields with symmetry since so 
many are already known. The Robinsons1 noted the 
existence of an algebraically special space2 without 
symmetry, and the Weyl-Levi-Civita class (see Refs. 
3 and 4) contains spaces which are algebraically 
general and yet possess two or three Killing vector 
fields. Consequently, there can be no obvious con
nection in general between the existence of a symmetry 
and the algebraic Petrov classification. 5 

The approach taken in this paper is to assume the 
existence of a Killing vector field K and examine the 
necessary conditions following the assumption that 
the bivector KIl;v is nonnull. Theorem 2 says that no 
algebraically general space can have a Killing vector 
field whose bivector is null. Hence, to allow Petrov 
Type I spaces, we must examine the nonnull bivector 
case.6 The invariants introduced in Sec. 6 give a way 
of describing the Petrov type without having the 
conformal scalars in some kind of canonical form. 
The Killing bivector represented in one of its canon
ical forms restricts the tetrad freedom so drastically 
that the conformal scalars cannot individually give 
much information. 

The imposing of hypersurface orthogonality on K 
makes Sec. 7 a study of generalized Weyl-Levi-Civita 
spaces. Here the ordinarily independent set of invar
iants are not independent and, in fact, depend on one 
another in the manner indicated in Table I (Sec. 7). 

A result obtained in Sec. 5 is given through Theorem 
3. Here it is apparent that a space of Petrov Type I 
cannot have a geodesic Killing vector field. In fact, 
the only way a Killing vector (with KIl ;, nonnuH) in 

any space can be geodesic is for it to be null itself; 
i.e., KIlKIl = O. The latter case, however, is a geodesic 
and shear-free nulI vector field; hence, only algebrai
cally special spaces admit this sort of geodesic Killing 
vector. 

2. TETRAD FORMALISM 

Let t: be a COO Lorentz 4-manifold with a metric 
tensor field g over e having signature (+ + + -). 
The tangent space at any point PEe is denoted by 
T p and is the space of contravariant vectors. The 
space of covariant vectors at P, T} is the vector-space 
dual of T p. An orthonormal basis for T p is any set 
offour linearly independent vectors {ea I a = 1,2,3, 4} 
for which g(ea, ea) = 1 for a = 1,2,3 and g(e4, e4) = 
-1; all other inner products are zero. If we define7 

gab == g(ea, eb) at PEe, then, as a matrix, (gab) = 
diag (1,1,1, -1). 

It is further possible to choose linearly independent 
vector fields {ea} over a neighborhood of P so that 
the diagonal form of (gab) is preserved over the entire 
neighborhood.s The set {ea} is then an orthonormal 
tetrad for e. It is a basis for all contravariant vector 
and tensor fields over a neighborhood of PEe. The 
same argument may be applied to the tetrad 
{Ea I a = 1,2,3, 4}, dual to {ea} and taken from 
T}. Hence a basis for all tensor fields locally over e 
is established. 

If {Oil I f1 = 1,2,3, 4} is a coordinate basis with 
respect to a local coordinate system {XII}, the basis 
dual to {all} is {dxll I f1 = 1,2,3, 4}; {Ea} is defined to 
be dual to {ea} and E

a = E
a, dx'. The fact that {ea} 

and {Ea} are dual implies 

(2.1) 

Any contravariant vector field V may be expressed as 

(2.2) 

1088 
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where va = ea" Vil. Any covariant vector field W is 
given by 

W = Waea = W" dx", (2.3) 

where wa = ej' W". Similar multilinear relationships 
occur between coordinate components and tetrad 
components of higher-order tensor fields. 

A complex null tetrad may be introduced in the 
following manner. Define 

* 2 t( +.) * 2-t( ')-* el == - e1 le2 , e2 == f'l - le2 = el , 
e: == 2-t (e3 + e4), e: == 2-t (e3 - e4), (2.4) 

where i = .J -1 and "complex conjugation" is 
denoted by a bar.9 An inner product (called g*) on 
the set spanned by (2.4) over the complex numbers is 
defined by formal expansion of e: . et, using the 
values ea' elJ. Hence, define g(~1J = g*(e~ , et) == 
e! . et. Then 

been developed by Newman and Penrose,12 Cahen, 
Debever, and Defrise,13 and others. 

The connection coefficients (generalized Christoffel 
symbols) are most easily defined by means of the 
exterior derivative and the first structure equations of 
Cartan14 

dea = eb Arab = r\eeb A ee (2.8) 

or through the definition of the covariant derivative15 

V, where 
(2.9) 

and where r a
b = rabl'dx" = rabCee. The connection is 

chosen so that r(ablc = 0, where rabe == gamrlllbe' If 
between vector fields ea and eb we have [ea, eb] = 
C"'abem denoting the Lie bracket operation, we choose 
the connection to satisfy also r ,n

ab - r lll
bC = C"'ba' 

The Riemannian curvature tensor components 
with respect to the connection above satisfy 

tR\Cd = -r\[C.d] + rabmrm[Cd] + ram[crmbid]' 

(2.5) (2.10) 

In view of the nullity of each e: , this tetrad (2.4) is 
called a complex null tetrad. The matrix (2.5) is its own 
inverse. The corresponding vectors dual to (2.4) are 

e*1 = 2-t(e1 - ie2), 

e*3 = 2-t(e3 - e4), 

e*2 = 2-t( el + ie2), 

e*4 = 2-t( e3 + e4). (2.6) 

F or the work to follow, this complex null tetrad is 
used to express all geometric objects and fields over E. 
The asterisk is then removed since no confusion should 
result, and all the algebraic properties before com
plexification go directly over into themselves. 

The set of all nonsingular linear transformations on 
Tl' (and T1,) preserving the constant form of the 
metric gal) is called the set of Lorentz transformations 
of the complex null tetrad (2.4). The proper ortho
chronous subgroup of these is given by 

e~ = exp (- iB) 11 - exfJl-l (e1 + afJe2 - ae3 + {3e4) , 

e~ = exp (iB) 11 - exfJl-l (expel + e2 - exe3 + pe4), 

e~ = exp (-A) 11 - exfJl-l (- pel - fJe2 + e3 - fJPe4) , 

e~ = exp (A) 11 - exfJl-l (exel + ae2 - exae3 + e4), 

(2.7) 

where A and B are real, ex and {3 are complex param
eters, and exfJ ¥- 1. 

The formalism discussed here corresponds to that 
used by KerrlO and (modulo a transposition 1 +::t 2 
and 3 +::t 4) Sachs.l1 In the former instance el ,-...., t, 
e2'-"'" f, e3 ,-...., m, and e4 ,-...., k. Similar formalisms have 

where ",d" denotes a directional derivative in the ed 

direction. The Ricci tensor and Ricci scalar com-
ponents are 

Rab == R rn
abm and R == R m 

m' (2.11) 

respectively. Weyl's conformal curvature tensor is 
expressed by 

Cabcd = Rabcd + ga[CRd]b + gb[dRe]a 

- -t(gaegbd - gadgbe)R. (2.12) 

In view of (2.8) and the properties of the exterior 
derivative, 

d(VaEa) = Va.beb A en + Va dea 

= Va.be b A ea 
- VmrmabEb A ea 

= Va:be b A ea. 

The components Va;b are the components of the 
covariant derivative of V with respect to eb • Now 

gUbVb:C = gabVb.C - gabrmbcVm = va. c - r mncV'" 

= V a.c + ramevm = Va:b· 

Similarly, we can get all the familiar properties of 
covariant derivatives expressed in terms of tetrad 
components, directional derivatives, and connection 
coefficients. 

3. CANONICAL REPRESENTATIONS AND 
INVARIANT CLASSIFICATION FOR 

BIVECTORS OVER E 

A bivector16 may be represented in the system 
introduced in Sec. 2 by 

(3.1) 
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Bivectors form a subspace A2 (Tj,) of the larger 
second-order covariant tensor space. The dimension 
of A2 (Tj,) is t x 4 x 3 = 6. An example of a basis 
for the space of bivectors is {lOa A lOb I a < b}. 

The following set of vectors is taken as a basis for 
the space of contravariant bivectors: 

eI == e4 A e2 , en == t (e1 A e2 + e3 A e4), 

eIn == e3 A e1 , elV == er = e4 A e1 , 

ev == ell = t (e2 A e1 + e3 A e4), (3.2) 

e VI == ern = e3 A e2 • 

A contravariant bivector V = vabea A eb may also be 
expressed as VAeA' where A = I, II, ... , VI. If 
ordinary double contraction of indices is allowed to 
form an inner product or "metric" (also called g) on 
bivectors, it is expressible as the linear extension of 

g (e" A eb , ec A ed) == gabcd == gacgbd - gadgbc 

over any basis {ea A eb},l7 As a 6 x 6 matrix the metric 
of the above basis with A = I, II, ... , VI is 

where 

(gAB) == [g(eA' eB)] = (~ ~), 

(

0 0 

A= 0 -i 
1 0 ~) 

and 0 is the 3 x 3 zero matrix. Note that the inverse of 
(gAB)' (gAB), is given by substitution of 

(

0 0 

A-I = ~ -~ ~) 
in place of A above. 

By ordinary methods of finding the basis dual to 
(3.2), we see that 

€! = 2104 A 102, €IV = 2,,4 A 10\ 

"II = 2 (101 A 102 + 103 A 104), €V = 2 (102 
A 101 + 103 

A 104), 

where £A(eB ) = bA 
B' 

(3.3) 

Assuming that e admits an orientation, we can use 
any tensor T, skew-symmetric on two covariant 
indices (ftv), to form the (Hodge) adjoint 

T: .... == 11//l.paTpa ... , (3.4) 

where 1//lvpa = [det (g/lv)]! . €/lvpa' with €/l.pa the com
pletely skew-symmetric Levi-Civita permutation sym
bol. This goes over into 

(3.5) 

in terms of tetrads, where 1/1234 = i = J -1. Similarly 
one finds that 

T*ab'" = 11/abcdTcd... (3.6) 

on contravariant tensor indices. If V is any bivector, 
* V denotes the adjoint bivector whose components 
are V:b • 

Let F be a (covariant) bivector and define 

:;H) == F - i *F, :F(-) == F + i *F. (3.7) 

Then F = H:F(+) + :F(-». Furthermore, *:F<+) = i:F(+) 
and *:FH = -i:FH . Writing F as a 6-vector, 
F = FA€A = Fr€T + ... + FVI€VI, and insisting that 
F be reaps implies 

F = Fr€I + FIl€II + FUI€III 

+ (complex conjugate of first three terms). (3.8) 

The 6 X 6 matrix 

E1 == i( ~I ~), 1= 3 x 3 identity, (3.9) 

acts as an operator taking components of a bivector 
to their respective adjoints; i.e., * FA = E A B F B • 

Hence, 

:F(-) = 2Fr€1 + 2Fu "II + 2FIlI€III. (3.10) 

A proper orthochronous Lorentz transformation 
on the complex null tetrad induces a transformation 
on the space of bivectors indicated by the following 
change in components: 

Fr , = (1 - rx,8)-l[exp (A + iB)] 

X (Fr + 2rxFII + rx2FIJI)' 

FII , = (1 - rx,8)-I[,8FI + (1 + rx,8)FII + rxFm ], 

FIll' = (1 - rx,8)-I[exp (-A - iB)] 

X (,82Fr + 2,8Fn + Fm)· (3.11) 

It is easy to see that 

2J\, == gAB:F<.i)FB = 4(FrFm - FII ) (3.12) 

is Lorentz invariant. Two invariant cases are then 
(a) J\, = 0 and (b) J(, -:;t:. O. The case J\, = 0 is charac
terized by a repeated root OCr in FI' = 0 (or ,8r in 
FIll' = 0). Choosing OCr to be the oc for a Lorentz 
transformation (2.7) gives gratis FI , = FlI , = 0; 
FIlI -:;t:. O. Hence :F(-) has the canonical form 

:;(-) = 2F1II€IIr = 4F1II€3 A 101 = 4F31€3 A 101 (3.13a) 

when F is a null bivector. The case J\, -:;t:. 0 has no 
repeated root in either FI' = 0 or FIll' = O. However, 
rx and ,8 can be fixed (fixing e3 and e4) so that FI' = 0 = 
FIll' and FII' -:;t:. O. Here we have the canonical form 

:F(-) = 2FIl€II = 4Fn (i A ,,2 + 103 A 104) 

= 4(F12 + F34) (e1 A e2 + e3 
A e4

). (3.13b) 
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This classification goes back to the work of Ruse19 and 
Synge20 and their approach to the electromagnetic 
field. The Lorentz transformation group preserving 
(3.13a) allows p, A, and B to be free parameters 
holding oc = O. However, (3.13b) is preserved by 
oc = P = 0 with A and B as free parameters. 

It should be noted that in this formalism the 
equations F[ab;e] = 0 and Fab;b = 0 may be stated 
concisely by 

d:F(-) = 0; (3.14) 

hence, (3.14) characterizes a source-free Maxwell 
field. 

4. THE KILLING VECTOR FIELD IN A 
VACUUM EINSTEIN SPACE 

A Killing vector field K = Kaf.a = KJl dx" is a vector 
field satisfying Killing's equations21 

K(a;b) == HKa;b + Kb;a) = 0 (4.1) 

locally over the space. It induces a local symmetry 
in the sense that if t is a parameter for the integral 
curves defined by dxJl/dt = KJl, then there is a co
ordinate system with t E {xJl'} so that o(g"'v,)/ot = 0 
for each fl, v' = 1,2,3,4. 

Notice that Eq. (4.1) is equivalent to 

(4.2) 

the components of the Killing bivector (KBV) for the 
Killing vector K. Furthermore, integrability condi
tions for (4.1) are22 

(4.3) 

The first Bianchi identity for the curvature tensor 
implies with (4.3) that K[a'ocl = O. Hence, if B == 
Ka;bf.a A f.b, then dB = O. 'Furthermore, Ka;ba = 
- RbmKtn. The field equations for the gravitational 
field in a vacuum are R"b = 0, however, so that 
Ka;ba = 0 in a vacuum Einstein space. If one defines 
$(-) == B + i * B, then it follows from the discussion 
above that d$(-) = O. Consequently, B is a source
free Maxwell field. 

Consider next the possibilities 

$(-) = 0, 

$(-) =;1= 0, d$H = O. 
(4.4a) 

(4.4b) 

Equation (4.4a) says that the Killing vector is a 
parallel field; i.e., K,,;v = O. Furthermore, this gives 

(4.5) 

An argument by Ehlers and Kundt4 gives the result 
that K must be a null vector field, the space must be of 
Petrov type N, and the space represents a pp wave 

of gravitational radiation. Hence, the following 
theorem may be stated. 

Theorem 1: Let [; be a vacuum Einstein space with 
a Killing vector field KJl so that KJl;v = O. Then [; 
represents a pp wave. 

The case considered in the rest of this section is 
that of (4.4b). This further splits into (a) B is a null 
bivector or (b) B is a nonnull bivector (i.e., Ka'bKa;b = 
o = Ka~bKa;b or its negation, respectively). Let {f."A.} 
be the basis (3.3) for the space of bivectors and let the 
KBV be written as 

B = Ka;bf.a 
A f.b = KAf.A, (4.6) 

where A = I, II, ... , VI. Then (3.10) implies 

$(-) = 2(KIf.I + Knf.II + Kmf.
III

). (4.7) 

The null or non null cases are expressed by one of two 
canonical forms respectively ,23 

J(, = 0<;:::> Ka;bKa;b = 0 = Ka~bKab<;:::>$(-) __ 2KIIIf.IIl, 

(4.8a) 

K:oKa;o =;1= 0 <;:::> $<-> -- 2Kn f.
II

, 
(4.8b) 

where J(, is the complex invariant introduced in (3.12). 
These forms are always possible through an appro
priate Lorentz transformation, as was shown in 
Sec. 3. Observation of the transformation freedom 
left on the tetrads gives us that (4.8a) is preserved by 
a null rotation about e4 , whereas (4.8b) is p:ieserved 
by scaling only. As was shown by Synge20 and others 
in the context of the study of the electromagnetic 
field, the relation (4.8a) implies that Ka ' b admits one 
principal null eigendirection which c~incides here 
with e4 • [Alternatively, coincidence with e3 could 
have been arranged just as well.] The case of (4.8b) 
is that where Ka;b admits two distinct principal null 
eigendirections, here coincident with ea and e4 • 

Theorem 2: Let [; be a nonflat vacuum Einstein 
space admitting a Killing vector whose associated 
bivector is null. Then [; is algebraically special in the 
sense of Sachsl1; i.e., [; is not Petrov Type I. 

Proof' This theorem is very similar to that of 
Robinson24 in that the same basic mathematical 
situation exists as in Robinson's null electromagnetic 
case. We know that 

B = KUIf.III + KVIf.
VI == OCf.

III + (if.
VI

, 

(4.9) 

where oc == KIll for simplicity. Hence d$H = 0 
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(Maxwell's field equations) imply 

° = 2 (doc II €Ill - oc d€III) 

= 4 (doc II €3 II €l - oc d€3 II €l + OC€3 II d€l) 

4 (d 3 1 r a II bill = OC II € II € -:- OC 4ab€ € € 

+ OCr2ab €a II €b II €3). (4.10) 

In particular (4.10) implies 4OCr424 = 4OCr242 = 0, 
which leaves r 424 = r 422 = 0. This is one way of 
stating that e4 is a geodesic and shearjree vector field. 
Hence, by the Goldberg-Sachs theorem2s e4 = e/0l' 
designates a degenerate principal null direction of the 
Weyl conformal curvature tensor (here, the Riemann 
tensor, since Rab = 0); i.e., e4 is a multiple Debever 
vector of this non flat space. Hence, the space is 
algebraically special, by the Goldberg-Sachs theo
rem.26 QED 

5. INTEGRABILITY CONDITIONS FOR THE 
NONNULL KBV 

The above forms are valid when one substitutes C(O 
for C m concurrent with C(2) for C(4). 

Type I (for a nonflat space), the algebraically 
general case, also may be broken down into more 
than one canonical form with a study of the invariants 
of Rl'vPu (see, for example, Penrose's article,23 from 
which the following is taken). The two main forms for 
Petrov Type I are: (I) C!4l = C(2) = 0, C(5)C(l) ~ 0, 
with C(S)C(l) ¥= 9C(3)2; (2) Cm = C(I) = 0, C!4lC(2) ~ 

0, with 16C(4)C(2) ~ 9C(3)2. The exceptions turn out 
to be an algebraically special case in disguise. Flat 
space (RI'\'pu = 0) is excluded from the rest of this 
work since it is well known that it admits ten Killing 
vector fields and that it is the space for special 
relativity. 

The Ricci tensor components Rab must all be zero 
in a vacuum Einstein space so that 

Sachsll and others who have written on Petrov R12 = R1212 + R 1234 - 2R423l , 
types define a set of scalars {C(i) I i = 1, ... , 5} R34 = R1234 + R3434 - 2R423l , R 23 = R3212 + R 3234 , 

associated with canonical forms for the Weyl tensor 2 (53) 
R33 = R3l23 . 

(here, the Riemann tensor). The Weyl tensor may be 
expressed in terms of the basis bivectors of Sec. 3 by are all zero. 

c = R~"pu dxl' II dx" (2) dxP II dxu 

= Rabcd€a II €b (2) €c II €<l = R.W €·l (2) €ll. (5.1) 

For any complex null tetrad of the type introduced 
earlier, the conformal scalars Cli) are expressible as 
the following tetrad components of the Riemann 
tensor27 : 

cIa) == 2R J r = 2R4242 ' 

C(4) == 2R r II = R4212 + R 4234 , 

C(3) == 2R r III = 2RJT II 

= !(R1212 + 2R1234 + R 3m) = 2R423l , 

C(2) == 2RIT TIl = R 3U2 + R 3134 , 

C(I) == 2RIII III = 2R3131 • 

(5.2) 

The significance of these scalars is that there always 
exists a complex null tetrad for which CIS) = ° or 
CO) = 0. The space is algebraically special if and 
only if there exists a tetrad for which CIS) = C(4) = ° 
or Cm = C(2) = 0. The other canonical forms for 
algebraically special spaces are summarized thus: 

Petrov Type II <=? C(5) = C(4) = 0, C(3) ~ 0, 

CW ¥= 0, 

Petrov Type D <=? CIS) = C(4) = CW = C(2) = 0, 
C(3) ¥= 0, 

Petrov Type III <=? CIS) = C(4) = C(3) = 0, C(2) ¥= 0, 

Petro v Type N <=? C(l) ¥= 0, all other C(i) = 0. 

Consider again Eq. (4.3) and the case where B is 
a nonnull bivector. We fix the tetrad directions so 
that B is in its canonical form: KJ = KIlI = 0, 
KII ~ 0. In the formalism of bivector indices, (4.3) 
may be written 

(5.4) 

where A = I, II, ... , VI and Latin indices go from 
1 to 4 as usual. In terms of the conformal scalars, 
(5.4) may be expanded to give 

Ku;c = R IIcmKlIl = Ku,c' 

KI;c = RlcmK'" = KIlr 42C ' 

K IlI :c = RIlJcmK'" = -KIlr 3lC ' 

(5.4'a) 

(5.4/b) 

(5.4' c) 

plus the complex conjugate equations. Further 
expansion yields 

K Il ,l = ° + C(3) K2 - C(2) K3 + 0, 

Kn.2 = _C(3)Kl + ° + ° - C(4)K
4

, 

K Il ,3 = C(2)K 1 + ° + ° + C(3)K\ 

Kn.4 = ° + C(4) K2 - C(3)K3 + ° (5.5a) 

from (5.4' a). The relations 

KUr 421 = ° + C(4) K2 - C(3) K3 + 0, 

KI~r422 = _C(4)K l + ° + ° - C(S)K
4
, 

KUr 423 = C(3)K l + ° + ° + C(4)K\ 

Kuf424 = ° + C(S)K
2 

- C(4)K
3 + ° (5.5b) 
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are the result of (S.4'b). Finally, (5.4' c) becomes 

-Knf 3l1 = 0 + C( 21 K 2 
- C(1)K3 + 0, 

-Kn f 312 = _C(2)K I + ° + ° - C(3)K\ 

_ Knf3]3 = C(1) KI + 0 + 0 + C(2) K 4
, 

-KI[f 314 = 0 + C(3)K 2 
- C(2)K 3 + o. 

( 5.5c) 

Notice that fucKc = falcKc = ° from the skew
symmetry in (5A'b) and (S.4'c). Combining eight of 
these equations yields 

Kn.l = -Knf 314' K n .2 = -Kn f 423, 

KTI •3 = KIIf312' Krr .4 = Kllf421 (S.6) 

and leaves 

Knfm = _C(4)K l + ° + 0 - C(5)K4
, 

Knf424 = ° + C(S)K 2 
- C(4)K3 + 0, 

Knf 311 = 0 - C(2)K 2 + C(I'K3 + 0, 
(5.7) 

+0 
If we define the 4 x 4 determinant of coefficients for 
each of the systems (5.5'a)-(5.5'c) and (S.7) to be 
(.~3)2, (~I)2, (~5)2, and (~;)2 respectively, then 

~3 = C(4)C(2) - C(3)', ~l = C(S'C(3) _ CW ', 

~s = C(3)C(1) - C(2", ~~ = C("C(l) - CW C(2), 

(S.8) 
up to a ± sign. 

Further integrability conditions on (SA) are those 
which come from 

With the nonnull KBV in its canonical form, Eq. 
(5.9) results in 

KC<S) = 2KC(S), KC(1) = -2KC(l) , 

KC(4) = KC(4l, KC(2) = -KC(2), (S.IO) 

KC(3) = 0, K == rnmK'" - Kn , 

where r IIm = rum + r 34m and KC(;) == K"'C(i);m' 
The following equations involve the Lie derivative 

£K of some of the basic objects in the space: 

Furthermore, 

£K(eI
) = Ke I

, 

£K(elI) = 0, 

£K(elII
) = _KellI

. 

£KO\) = (fumKm)fr - RlcmKme", 

£K(fII) = d(fumKm) - RUcmKmec, 

(S.lla) 

(S.l1b) 

(S.llc) 

(S.12a) 

(S.l2b) 

If one defines f == f Acee @ eA
, Eqs. (5.5) are written 

equivalently as £K(f) = O. Hence 

0= £KCfr @ er + l\r @ ell + r IlI @ eIll 

+ complex conjugate) 

= (fnmKm)fr @ eI 
- RrcmKmec 

@ el 

+ d(fIImKm) @ elI - RIIcmKmec 
@ eII 

+ (-fumKm)rIII ® elII 
- RIlIcmKmee @ elll 

+ Kr I @ eI - Kf III @ elII + complex conjugate. 

Therefore, 

(fumK rrl 
- K)frc = R1cmK

m
, (S.13a) 

-(fIImKm - K)fIIIc = RITIcmKm, (S.13b) 

CfIImKm).c = RIIcmKm. (S.13c) 

The last equation says that Kn.c = (rnmKm).c, 
which implies that dK = O. This suggests possible 
future approaches with regard to the cases (1) K = 0, 
(2) Re (K) = 0, (3) 1m (K) = 0, (4) Kn .t = 0, (5) 
Re (Kn .t ) = 0, and (6) 1m (Kn) = O. The special 
case of (4) fIImK'" = ° is the case where the tetrad 
{ea} is parallel propagated along K. 

Theorem 3: Suppose a nonnull Killing vector field 
in a nonf'lat vacuum Einstein space defines a Killing 
bivector which is also nonnull. Then the Killing vector 
field is not geodesic. 

Proof: Let K = Kaea be geodesic. Then along the 
K trajectory 

Ka;b Kb = ocKa 

for some scalar a. This means that K must be an eigen
vector for its own bivector matrix (Ka;b)' Considering 
a tetrad system {ea} for which the canonical form (4.7) 
is a result, we obtain $(-) = 2KIIeII. Next define 
a == Re (Ku) and b == 1m (Ku). Then (Ka;b) may be 
written as diag (-ib, ib, -a, a). Hence, each of these 
four values is an eigenvalue; in fact, if a¥:O ¥: b, the 
eigenvectors are, respectively, el , e2 , ea, e4-the com
plex null tetrad itself. The remaining real cases (a or b 
is zero) are for zero eigenvalues resulting in K = 
KIel + K2e2 for b = ° and K = K3e3 + K4e 4 for 
a = 0. The following lemma is established. 

Lemma: A necessary and sufficient condition that 
a real Killing vector field with nonnull KBV in the 
form (4.7) be geodesic is that either 

K = ke4 , K = lea, a¥:O <;::> a, b both not zero, 

(S.14a) 
or 

K = Kie l + K2e2 , 

Kl = K2 ¥: 0, a = 0, b = 0, a ¥: 0, (S.l4b) 
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or 

K = K3ea + K4e4 , 

K3, K4 ~ 0, at = 0, a = 0, b ~ 0, (S.l4c) 

where k and I are constants. 

Examination of (5.14a) shows that since e4 is 
shear-free, geodesic, and null, the space must be 
algebraically special; K is then a multiple Debever 
vector. Furthermore, note that the hypothesis of 
Theorem 3 does not include this case. The proof of 
Theorem 3 is completed by taking Eqs. (5.l4b) and 
(5.l4c) with Killing's equations and integrability 
conditions to show that each case is incompatible with 
a working assumption. 

Suppose case (5.l4b) is examined. Here K3 = K4 = 0 
so that 

from (5.6). So r 3t4 = rm and r 324 = r 423 . Further
more, K4;3 + K3;4 = 0 yields 

Kt(r3t4 + r413) + K2(r324 + r(23) = O. 

Obviously 

KI(rSI4 - r 41S) + K2(r324 - r (23) == 0, 

so that 
KIr S14 + K2r S24 = 0. 

But KS'4 = a = -(KIr3I4 + K2r324). Hence a = 0, 
a cont~adiction. The case (5.14b) is therefore im
possible. 

The case (5.l4c) remains. Here KI = K2 = 0 and 

ib.1 = -ibrSl4 = -ibr41S , 

ib. 2 = -ibr423 = -ibr324 

from (5.6). Therefore r 314 = r 423 and r 324 = r 423 • 

The eq uation Ku + K2:1 = 0 yields 

K3(r 312 + r 321) + K4(r 412 + r 421) = 0, 
but 

so that 
Kar a1z + K4r 412 = O. 

However, K2'1 = ib = K 3r 312 + K4r 412 . Therefore 
b = 0, a contradiction. Hence we have shown cases 
(5.14b) and (5.14c) to be impossible. QED 

A particular kind of Killing vector in a space-time 
is one which is hypersurface orthogonal; i.e., 
Kr,a;bKC) = 0. For example, a static metric is one having 
a hypersurface orthogonal timelike Killing vector 

field. The following theorem is a characterization for 
this property in the context of nonnull KBV's. 

Theorem 4: Suppose K is a Killing vector field with 
a non null Killing bivector. Then K is hypersurface 
orthogonal if and only if one of the two following 
cases is true: 

Kl = K2 = ° and Ku is real, 

K3 = K4 = 0 and Krr is pure imaginary, 

(5.15a) 

(S.15b) 

where K = KUea • (In terms of the invariants of the 
next section, J\, is real and nonzero.) 

Proof: Notice that K == Ka€u is hypersurface 
orthogonal -¢::> dK /I. K = O. This means 

Hence, 

o = 2(Kn + Kn) (KI €1 /I. €3 /I. €4 + Kz€2 /I. €3 /I. €4) 

+ 2(Krr - Ku) (K3€1 /I. f2/1. f3 + K4f1 /I. €2 /I. f4). 

From this equation one sees that either (5.15a) or 
(5.1Sb) must be true. Evidently (5.15a) or (S.15b) 
implies dK /I. K = O. QED 

Notice that reality conditions on (5.6) give r 312 = 
r 321' r 412 = r 421, and r 314 = r 413, meaning that 

ea and e4 are hypersurface orthogonal and are 2-
surface forming. Hence, the following rather tech
nical result is proved. 

Theorem 5: Suppose K is a Killing vector field (with 
a nonnull KBV) which is hypersurface orthogonal. 
Then if the real principal null rays of the KBV 
are geodesic, they are hypersurface orthogonal and are 
~-surface forming. 

Corollary: Suppose K is aXilIing vector field (with a 
nonnull KBV) and es and e( are 'real geodesic principal 
null rays of the KBV. Suppose also that Kl = K2 = 0 
or K3 = K4 = O. Then a necessary and sufficient 
condition that K be hypersurface orthogonal is that 
ea and e4 be hypersurface orthogonal and 2-surface 
forming. 

Proof' Killing's equations imply that, for e4 and ea 
hypersurface orthogonal (i.e., r a12 = r S21 and r 421 = 
r 412) and 2-surface forming (Le., r 314 = r 413), 

2a = K3•4 - K4,3 + K3r 344 + K4r 343, 

2ib = K1,2 - K2.1 + K1r 122 + K2r121 • 

Then Kl = K2 = 0 => b = 0, and so K is hypersurface 
orthogonal by Theorem 4; K3 = K4 = 0 => a = 0 
and K is, again, hypersurface orthogonal. QED 
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6. INVARIANTS OF Rabed AND Ka;b 

In his paper on a spinor approach to general 
relativity Penrose28 introduces the complex invariants29 

J == i(Rabed + iR:bed)Rabed, 

'l- - 2(R + 'R* )Red Rmnab 
a ="3 abed I abed mn 

of the Riemann tensor. These quantities are invariant 
with respect to both coordinate and tetrad trans
formations. In terms of the conformal scalars, 

J = C(S)C(l) - 4C(4)C(2) + 3C(3)', (6.1) 

'J = 2C(4)C(3)C(2) + C(S)C(3)C(l) 

_ C(S)C(2)' _ C(4)'C(l) _ C(3)3. (6.2) 

These independent invariants, a result of the classical 
study of algebraic invariants, have also been· utilized 
by Geheniau and Debever,so Bel,sl and Zund.32 In 
particular, the space is algebraically special if and 
only if J3 = 2762. The "harmonic" case for Petrov 
Type I is obtained whenever 'J = 0, J:;6 0; the 
"equianharmonic" case of Type I is obtained when
ever'J :;6 0, J = 0.28 

A larger system can be built up by the addition of 
Ka;b into the scheme. Define 

J(, == t(Ka;b + iK:b)Ka;b, 

I: == tKa;b(Rabed + iR*abed)Ke;d, 

.At, == tKa;bRabeaCRedmn + iR*edmn)(Km;n + iK*m;n). 

Then,for the case examined in Sec. 5 (8 is non null 
and reduced to its canonical form), 

J(, = -2K~I' (6.3) 

I: = 4K~IC(3), (6.4) 

.At, = 4K~I(C(4)C(2) - C(3)') = 4K:I~3' (6.5) 

The condition that a principal null direction for B 
coincide with one for Rabed is equivalent to ~ = 0, 
where ~ == 4J(,2J - 8J(,.At, + 1:2. In the case at hand 

(6.6) 

A look at the action of K on the scalars and invari
ants mentioned gives the results that 

K(C(S)C(I») = K(C(4}C(2») = K(C(4)'C(l)) 

= K(C(S)C(2)') = 0, (6.7) 

K(J) = K('J) = K(L) = K(.At,) = O. (6.8) 

since K(Ku) = 0 from (5.4'a). 

7. THE HYPER SURFACE ORTHOGONAL 
KILLING VECTOR FIELD (WITH 

NONNULL KBV) 

It was shown in Sec. S that a hypersurface orthog
onal Killing vector has a certain representation with 

regard to the complex null tetrad chosen. The follow
ing discussion utilizes this representation and the 
transformation freedom left on the tetrad [IX = (J = 0 
in Eq. (2.7)] to get some invariant geometrical results 
for this special case, The gravitational fields with 
such a timelike Killing field are the static ones and 
include the Schwarzschild class3:i and the Weyl-Levi
Civita classes (see, for example, the treatment in 
Refs. 3 and 4). 

Theorem 6: Let & be a nonflat vacuum Einstein 
space which admits a Killing vector field K with a 
nonnull KBV. If K is hypersurface orthogonal, then 
R:vpaR/lvpa = 0; i.e., the invariant J = J. Further
more, K/l~vK/l;V = 0 and the invariants J(" 1:, ,M" and 
~ are real. 

Proof' [Case 1, Kl = K2 = 0 and 1m (Kn) = 0.] 
For simplicity define a == Re (Kn). Equations (5.Sa)
(S.Sc) reduce here to 

- C(2)K3 r a,l- =-a 314, 

a,2 = _c(4)K4 = -ar423 , 

and 

ar422 = -C(S)K" 

ar424 = _C(4)K3, 

a.3 = C(3)K4 = ar312 , 

a.4 = _C(3)K3 = ar421 • 

ar
311 

= C(I)K3, 

ar 313 = - C(2) K4. 

(7.1) 

It is apparent from a.s and a. 4 that C(3) is real. 
Furthermore a. 1 and a. 2 give 

0= C(2)K3 + C(4)K4, 0 = C(2)K3 + C(4)K4, 

from which C(4)C(2) = C(4)C(2) is a necessary condi
tion. From the second set in (7.1) we obtain 

0= CUJ(K3)2 - C(S)(K4)2, 

0= C(I)(K3)2 - C(S)(K4)2, 

from which C(S)C(I) = C(S)C(l) is a necessary condi

tion. Hence, by definition, J = J. 
[Case 2, K3 = K4'= 0 and Re (Kn) = 0.] Define 

b == 1m (Ku). Equations (S.5a)-(S.Sc) become 

ib.1 = C(3)K2 = -ibr314 , ib.§ = C(2)K1 = ibrS12 ' 

ib.2 = _C(S)K1 = -ibr42S , ib.4 = C(4)K2 = ibr421 , 

and (7.2) 
ibr 422 = - C(4) K\ 
ibr424 = CIS) K2, 

ibr311 = _C(2l K 2, 

ibr313 = _C(l)Kl. 

From b. 1 and b. 2 one sees that CIS) is real. Also an 
argument similar to that above gives 

o = C(2) K1 + C(2) K2, 0 = C(1)(K1)2 _ C(1)(K2)2 
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and 

0= C(4)K1 + C(4)K2, 0 = C(5)(K1)2 _ CC5l(K2)2, 

so that C(4)C(2) = CC4lC(2) and C(5)C(1) = C(S)C(l) are 

necessary. Hence J = J. From the expressions 
obtained for C, ..A{" and ~ in Sec. 6, one sees that these 
invariants must then be real. From the basic defini
tions, the invariant Ka~bKa;b = K,,~vK";v is proportional 
to the product abo Hence, this is zero in both instances. 

QED 

The following theorem states a property of all 
Einstein spaces with a hypersurface orthogonal space
like or timelike Killing vector field where 

(one of the indices a or b is zero in the previous 
discussion). 

Theorem 7: Let E be a nonftat vacuum Einstein space 
which admits a Killing vector field with a nonnull 
KBV. If K is hypersurface orthogonal and J(, < 0, 
then the two principal null rays for Ka;b are geodesics; 
if J(, > 0, then the two null rays are shear-free. 

Proof: The representation has been developed so 
that ea and e4 are the principal null rays for Ka;b' We 
assume then that K = Kaea + K 4e4 and, without loss 
of generality, that Ka -:;6 0. (We know, in fact, that 
Ka = ° implies K4 is a constant, and K = K 4e4 is 
then the null geodesic alluded to in the lemma to Theo
rem 3.) From the transformation ea, = exp (-A)ea, 
still allowed, one transforms to K = ea, + K4' e4, , 

taking Ka as originally greater than zero since a 
Killing vector field is unique only up to a constant 
scalar factor. The rUbe and C(i) are only multiplied 
by factors of exp ( - A) and Kn remains unchanged 
as relations (3.11) show. Hence, there is still main
tained Kn == a + ib = a for J(, < O. With the primes 
removed, the canonical form for Ka;b gives (note 
Ka = K 4) 

=> r a44 = ° = K4,3 = K4,2 = K4,1' (7.3a) 

K4;a = Ku = K4r a4a = -a => r a4a = a, (7.3b) 

K4 ;1 = K4,1 - K4r a41 = ° => r a41 = r a42 = 0, (7.3c) 

Ka;l = Ka.1 + Kar a41 = ° => Ka,l = Ka.2 = 0, (7.4a) 

Ka;a = Ka,a - Kar 4aa = 0 => Ka,a = -aKa, (7.4b) 

Ka;4 = Ka,4 - Kar 4a4 = a=> K a.4 = a. (7.4c) 

Now Eqs. (7.1) and (7.4c) imply 

a,l = K a.41 = -ara14 , 

a. 2 = K a,42 = -ar42a , 

a.a = K a,4a = ara12 , 

a,4 = Ka.44 = ar 421' 

(7.5a) 

(7.5b) 

(7.5c) 

(7.5d) 

Commutation relations from Sec. 2 for the tetrad are 
given by 

lab - Iba = Im(rm
ab - rm

ba), 

wherefis any scalar. Consequently, using (7.3c) above, 
we obtain 

Ka.41 - Ka,14 = Ka,41 = - Ka,ar 414 - K a,4r a14 . 

But applying (7.5a) and (7.4c) gives r 414 = r 424 = 0. 
Therefore, e4 is geodesic. Hence (7.1) implies C(4) = ° 
and, since r 314 = r 41a, C(2) = 0. Furthermore, r ala 

is then zero so that ea is also geodesic. Note that it has 
been shown that a,l = a.2 = ° is necessary. 

For the second case let K = K 1e1 + K2e2 , where 
ea and e4 are again principal null eigenvectors for 

Ka.b. Since K2 = K1, neither can be zero. From the 
tr~nsformation el' = exp ( - iB)e1 , still allowed, one 
may transform Kl and K2 into real components, 
Kl = K2. With b == 1m (Kn), Kn = ib is still main
tained for J(, < ° with r abc and C(O being multiplied 
by factors of exp ( - iB). The primes are removed to 
give 

K1 ;1 = K1.1 - K 1r211 = 0, 

K 2;2 = K 2,2 - K 2r 122 = 0, 

K1;2 = K1•2 + K1r 122 = ib => 2K2,2 = ib 

and r 122 = r 121 , (7.6a) 

K1;a = K1,3 + K1r 12a = 0, 

K2;a = K2.a + K2r 21a = ° => r 12a = r 21a = 0, (7.6b) 

K 1;4 = K 1 ,4 - K1r 214 = 0, 

K 2;4 = K2,4 - K 2r 124 = ° => r 124 = r 214 = 0. (7.6c) 

Hence we conclude that K1•3 = K2,a = K1,4 = K2,4 = 
O. Consider next the equations from (7.2) and (7.6a) 

ib. 1 = 2K2•21 = -ibra14 , 

ib. 2 = 2K2•22 = -ibr42a , 

ib,a = 2K2.2a = ibra12 , 

ib.4 = 2K2•24 = ibr421 . 

The commutation relations on the tetrad give 

(7.7a) 

(7.7b) 

(7.7c) 

(7.7d) 

2(K2.2a - K2.32) = 2K2.2a = 2K2.m(rm2a - r
m

a2) 

= ib.3 = 2K2,1r322 + ibr312 · 
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Now K2,1 -:;t: 0 since K2,1 = K1•1 = K2,2 = -lib. 
Therefore, r 322 = 0 from (7.7c) and e3 is shear-free. 
Equations (7.2) further imply that C(2) = 0; hence 
r 312 = r 321 = 0 = b.3 • Also consider 

2(K2 .24 - K2 •42) = 2K2 .24 = 2K2 .m(l'1n 24 - r m
24) 

= ib.4 = 2K2.1r422 + 2K2.2r41~· 
Again, since K2,1 -:;t: 0, r 422 = O. Therefore e4 is 
shear-free; r 422 = r 411 = O. Furthermore, C(4) = 0 
by (7.2), and r 412 = r 421 = 0 = b.4 • QED 

The following corollaries provide a look at the 
hypersurface orthogonal case with regard to Petrov 
types and the invariants of Sec. 6. Recall that J{, = X 
and J{, -:;t: o. 

Corollaries: (Flat space is excluded a priori.) 
(I) Let ..At, = 0 (<=> [ = 0). Then 'J = O. Further

more J = 0 <=> 'J) = 0, and only Petrov Type N is 
allowed in this latter instance. wn -:;t: 0, then the space 
is harmonic Petrov Type I. 

(2) Let JIl, -:;t: 0 (<=> [ -:/= 0). Then ~) = 0 implies 
both :I, 'it -:/= 0 and only Petrov Types II and Dare 
allowed. (The case where ~) -:;t: 0 has three possible 
results, two .of which are nonrestrictive and could 
occur whether or not a Killing vector field is present.) 

(3) Let ..At, -:;t: O. Then 'J) -:;t: 0 allows the harmonic 
Type I and the equi-anharmonic Type I since here 
'it = 0 <=> 3 -:;t: O. For both 3, 'it -:/= 0 the space is Type 
I for 33 -:/= 27'(12, but for J3 = 27'(P the space is re
stricted to be Type II or Type D. 

Proof: This is accomplished by examination of the 
possibilities allowed the invariants ..At" [, 'J), J, and 'it 
when written in terms of the tetrad system, as in Sec. 6. 
Since C(4) = C(2) = 0, these become 

..At, = 2J{,C(3)2, L = - 2']\'9(3), ~) = 4J{,2C(5)C(l) , 

J = C(5)C(l) + 3C(3)2, 'it = C(3)(C(fi)C(l) _ C(3)2). 

(7.8) 

Note that C(5)C(I) = C(3)2 => }l -:/= 27'J 2 since the latter 
corresponds to C(5)C(l) = 9C(3)2. Putting (7.8) to
gether with the canonical forms for Petrov types (see 
Sec. 5) results in the statements (1 )-(3) above, which 
are independent of any tetrad system. 

The corollaries above are summarized in Table I 
below, where the asterisk stands for a nonzero value. 
Note in particular that spaces of Petrov Type III 
cannot then contain a hypersurface orthogonal 
Killing vector field which has a nonnull Killing 
bivector. 

TABLE I. 

.A(" L :0 'J Petrov type 

o 0 0 N 
o 

0 I (harmonic) 

o * * Il,D 

* 0 I (harmonic) 

* 0 I (equi-anharmonic) 

I for J3 ¢ 2162 

* 
II, D for J3 = 216' 

One topological result of Theorem 6 is worth 
mentioning. If a space 6 is compact and orientable 
and satisfies the hypothesis of Theorem 6, then its 
Pontrjagin number p[6] = O. This follows from a 
discussion of Zund.34 The Euler-Poincare charac
teristic ;(6) can also vanish in such a case whenever 
3 = 0 (see, for example, Ref. 32). Table I shows when 
this latter case occurs. 

1 I. Robinson and J. Robinson. "Vacuum Metrics without 
Symmetry" (unpublished) 1969. 

2 "Space" here and throughout refers to a vacuum Einstein 
spare satisfying Rllv = O. 

3 P. Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Lit. (Mainz) 
Abhandl. Math.-Naturwiss. Kl. 23, 21 (1960). 

'J. Ehlers and W. Kundt, in Gravitation, edited by L. Witten 
(Wiley, New York, 1962), Chap. 2. 

5 A. Z. Petrov, Sci. Notices. Kazan State Univ. 114, 55 (1954). 
6 Work on the null case will be reported at a later date if results 

other than those obtained by R. P. Kerr and the author [G. C. 
Debney and R. P. Kerr, J. Math. Phys. 11,2807 (1970)] (on Killing 
vectors in algebraically special spaces) prove useful. 

7 Throughout this paper Latin indices refer to components of a 
tensor with respect to a general basis (tetrad); Greek indices indicate 
components with respect to a coordinate system. 

S See R. L. Bishop and S. I. Goldberg, Tensor Analysis on 
Manifolds (Macmillan, New York, 1968), p. 104. 

9 What is being defined here is a complexification of Tp and T; , 
a formal algebraic generalization of complex numbers. The resulting 
tetrad is used, however, to generate real tensors. 

10 R. P. Kerr, Phys. Rev. Letters 11,237 (1963) . 
11 R. K. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961). 
12 E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
13 M. Cahen, R. Debever, and L. Defrise, J. Math. Mech. 16, 761 

(1967). 
H The "A" is the (Grassman) skew-symmetric product operation 

and "d" stands for the exterior derivation on the algebra thus 
generated. 

15 See Ref. 8, p. 288. 
16 J. A. Schouten [Ricci Calculus (Springer-Verlag, Berlin, 1954), 

2nd ed.) gives the name "bivector" to any skew-symmetric contra
variant or covariant tensor of order 2. We adopt this convention, 
noting that here we are dealing mostly with the space of 2-forms 
over f., i.e., the space of covariant skew-symmetric tensor fields. 

17 If V = Vabea A eb and V = Va·e. A eb, then g( V, V) = gabcd X 
VabV,d = 2Ua,Vab. 

18 This means identical with its complex conjugate. 
19 H. S. Ruse, Proc. London Math. Soc. 41, 302 (1936). 
20 J. L. Synge, Relativi~v: The Special Theory (North-Holland, 

Amsterdam, 1965), 2nd ed. 
21 See L. P. Eisenhart, Riemannian Geometry (Princeton U.P., 

Princeton, N.J., 1960), p. 243. 
22 See Ref. 21, p. 237. 
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23 These cases are sometimes referred to as "singular" and 
"nonsingular." 

2t I. Robinson, J. Math. Phys. 2, 290 (1961). 
25 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13 

(1962). 
2. We note here that e. is then a principal null direction for both 

the Weyl tensor and the KBV. 
27 Some authors have different numerical coefficients on these 

scalars; this is due to the choice of bivector basis in the original 
formalism and to a desire to have these fit other invariant schemes. 
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28 R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960). 
29 There is a difference in numerical factors here from those 

used in Ref. 28. The factors here merely help some computations to 
be simpler. 

30 J. Geheniau and R. Debever, Bull. Acad. Roy. Belg. CI. Sci. 
42, 114 (1956). 

31 L. Bel, thesis, University of Paris, 1960. 
32 J. D. Zund, Ann. Mat. Pura Appl. 78, 365 (1968). 
33 K. Schwarzschild, Sitz-Ber. Preuss. Akad. Wiss., 189 (1916). 
34 J. D. Zund, Ann. Mat. Pura Appl. 82, 381 (1969). 
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Some preliminary results concerning the experimental testability of the free-space constitutive relations 
are discussed in connection with some recent theoretical developments. 

A recent paper by Mol on the electrodynamics of 
accelerated systems seems to make it desirable to 
recall some early experimentation that is relevant to 
free-space constitutive behavior. 

There are few experimental tests on record which 
may be considered as a direct verification of the 
constitutive behavior observed on accelerated systems 
in free space. The only experiments known to the 
present authors are the experiments performed some 
fifty years ago by Kennard 2 and by Pegram3

; they 
. constitute experimental tests for rotational motion. 

The equipment that was used in both experiments 
consisted of a tubular cylindrical condensor which 
was being rotated in a coaxial magnetic field. Kennard 
found a potential to exist on the condensor when 
rotated, while Pegram's observation showed that a 
charge developed on the condensor when it was being 
shorted by a co-rotating short. 

For both experiments it was found that the obser
vations were independent of whether the solenoid 
generating the coaxial B field was stationary or 
rotating at the same angular velocity as the cylindrical 
condensor. 

There has been some controversy surrounding these 
observations. Questions have been raised as to 
whether the observations were correct and, if so, 
how should they be interpreted in the light of the 
circumstance that the effects still exist even when the 

solenoid generating the coaxial B field rotates with 
the same angular velocity as the cylindrical condensor. 
It is the latter fact which, in our opinion, makes it 
desirable to consider these effects as observations 
of a constitutive nature concerning a frame of reference 
rotating in free space. 

To dispel any uncertainty concerning the reality of 
the mentioned observations, the present authors 
constructed a piece of equipment similar to that of 
Kennard and Pegram. Our as yet preliminary obser
vations show a qualitative agreement with those of 
Kennard and Pegram. The conditions of our obser
vations were between those of Kennard and Pegram 
in the sense that our observations were made with an 
electrometer that had an impedance range intermediate 
between open circuit (Kennard) and complete short 
(Pegram). 

To the extent that experimental results are available, 
it seems that the observations can be consistently 
described by a constitutive relation of the following 
form (MKS units) 

(1) 

in which D, E, iJ, and Y, defined on the rotating frame, 
have the usual meaning, EO is the free-space permit
tivity, and n is the angular velocity of the system with 
respect to inertial space. 

For cylindrical symmetry, when using cylinder 



                                                                                                                                    

1098 GEORGE C. DEBNEY, JR. 

23 These cases are sometimes referred to as "singular" and 
"nonsingular." 

2t I. Robinson, J. Math. Phys. 2, 290 (1961). 
25 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13 

(1962). 
2. We note here that e. is then a principal null direction for both 

the Weyl tensor and the KBV. 
27 Some authors have different numerical coefficients on these 

scalars; this is due to the choice of bivector basis in the original 
formalism and to a desire to have these fit other invariant schemes. 

JOURNAL OF MATHEMATICAL PHYSICS 

28 R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960). 
29 There is a difference in numerical factors here from those 

used in Ref. 28. The factors here merely help some computations to 
be simpler. 

30 J. Geheniau and R. Debever, Bull. Acad. Roy. Belg. CI. Sci. 
42, 114 (1956). 

31 L. Bel, thesis, University of Paris, 1960. 
32 J. D. Zund, Ann. Mat. Pura Appl. 78, 365 (1968). 
33 K. Schwarzschild, Sitz-Ber. Preuss. Akad. Wiss., 189 (1916). 
34 J. D. Zund, Ann. Mat. Pura Appl. 82, 381 (1969). 

VOLUME 12, NUMBER 7 JULY 1971 

Note on the Electrodynamics of Accelerated Systems* 

E. J. POST 
123 Clifton St., Cambridge, Massachusetts 02140 

AND 

D. D. BAHULIKAR 

Department of Mechanical Engineering, University of New Hampshire 
Durham, New Hampshire 03824 

(Received 22 October 1970) 

Some preliminary results concerning the experimental testability of the free-space constitutive relations 
are discussed in connection with some recent theoretical developments. 

A recent paper by Mol on the electrodynamics of 
accelerated systems seems to make it desirable to 
recall some early experimentation that is relevant to 
free-space constitutive behavior. 

There are few experimental tests on record which 
may be considered as a direct verification of the 
constitutive behavior observed on accelerated systems 
in free space. The only experiments known to the 
present authors are the experiments performed some 
fifty years ago by Kennard 2 and by Pegram3

; they 
. constitute experimental tests for rotational motion. 

The equipment that was used in both experiments 
consisted of a tubular cylindrical condensor which 
was being rotated in a coaxial magnetic field. Kennard 
found a potential to exist on the condensor when 
rotated, while Pegram's observation showed that a 
charge developed on the condensor when it was being 
shorted by a co-rotating short. 

For both experiments it was found that the obser
vations were independent of whether the solenoid 
generating the coaxial B field was stationary or 
rotating at the same angular velocity as the cylindrical 
condensor. 

There has been some controversy surrounding these 
observations. Questions have been raised as to 
whether the observations were correct and, if so, 
how should they be interpreted in the light of the 
circumstance that the effects still exist even when the 

solenoid generating the coaxial B field rotates with 
the same angular velocity as the cylindrical condensor. 
It is the latter fact which, in our opinion, makes it 
desirable to consider these effects as observations 
of a constitutive nature concerning a frame of reference 
rotating in free space. 

To dispel any uncertainty concerning the reality of 
the mentioned observations, the present authors 
constructed a piece of equipment similar to that of 
Kennard and Pegram. Our as yet preliminary obser
vations show a qualitative agreement with those of 
Kennard and Pegram. The conditions of our obser
vations were between those of Kennard and Pegram 
in the sense that our observations were made with an 
electrometer that had an impedance range intermediate 
between open circuit (Kennard) and complete short 
(Pegram). 

To the extent that experimental results are available, 
it seems that the observations can be consistently 
described by a constitutive relation of the following 
form (MKS units) 

(1) 

in which D, E, iJ, and Y, defined on the rotating frame, 
have the usual meaning, EO is the free-space permit
tivity, and n is the angular velocity of the system with 
respect to inertial space. 

For cylindrical symmetry, when using cylinder 
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coordinates, one may write Eq. (1) in the form 

Dr = EoEr + Eoo.rBz· (2) 

It is a well-known riddle of EM theory that the 
second term of (1) [or (2) for that matter] has all by 
itself a nonvanishing divergence div (n x f) x iJ = 
2C! . iJ ~ 0 (see, for instance, Sommerfeld ,4 last 
page). It would then appear as if an observation made 
from a rotating frame would record a space charge 
where none was to begin with. We will make the 
elimination of this absurdity a cornerstone of the next 
following considerations, the basic idea being that 
divergences of individual electric field components E 
contributing to a total electric displacement D are not 
physically meaningful. 

Let us instead take the divergence of the "surface" 
vector jj and let us insist that its divergence vanish 
also on the rotating system. We obtain then for 
conditions of cylindrical symmetry 

1 0 
- - rDr = O. (3) 
r or 

Solving this equation, we have 

(4) 

with A as a constant of integration. 
The ideal Kennard case (open circuit-no displace

ment) is now characterized by A = O. The Kennard 
potential can then be obtained from (2) as 

Vk =f.r2Er dr = -to.B.(r; - ri), 
r! 

(5) 

r1 and r2 being the radii of the inner and outer cylinder 
of the tubular condensor. 

In the ideal Pegram case, A ~ O. Its value can be 
calculated from the condition that the potential 

f. r
2

Er dr = O. 
rl 

One then finds for the integration constant 

1 Eoo.Bz(r~ - r~) 
A =- . 

2 In (r2(r1) 
(6) 

The Pegram charge Q IJ on the condensor is obtained 
by integrating Dr over the surface of the cylinder of 
length I,say: 

Qp = 2rrAI . (7) 

Substitution of (6) gives 

€orrOlBiri - ri} 
Qp= . 

In (r2(r1) 
(8) 

One easily verifies that the ratio of the Pegram charge 
(8) and the Kennard potential (5) yields (in absolute 
value) the standard expression for the capacitance of a 
cylindrical capacitor 

I 
QIJ I 2 rrEo 1 

C = V
k 

= In (r
2
(r

1
) • 

(9) 

In the light of the mentioned experimental obser
vations and the simple interpretation of these obser
vations in terms of a constitutive relation of the form 
(1), we summarize the following points as absolutely 
germane to any theoretical discussion involving 
accelerated systems in electrodynamics: 

(1) The Pegram and Kennard effects are realistic 
observations that cannot be discounted or disregarded. 

(2) A very simple constitutive relation of the form 
D = D(E, iJ) [see Eq. (1)] directly accounts for these 
observations, rather than the customary relations D = 
EoE or D = E, which only hold for inertial systems in 
matter-free space. 

(3) A constitutive relation of the form (1) for a 
rotating system resolves the difficulty recorded by 
Sommerfeld that a rotation could give rise to an 
apparent space-charge div (n x f) x iJ = 2Q . iJ ~ O. 

In the recent paper by Mol we find that the existence 
of a free-space constitutive dependence of D on iJ is 
considered as a mistaken notion (last paragraph, Sec. 
4). We feel that this statement is at variance with the 
experimental evidence presented by Kennard and 
Pegram as well as with our own observations. In fact 
a discussion of the constitutive nature of this evidence 
appears on p. 490 of Ref. 5 cited by Mo.l 

The fundamental issues touched upon here go well 
beyond Mo's paper. The question is not whether the 
method of "local" inertial tetrads, as used by Mo, can 
be made equivalent to a method of "global" non
inertial references, as used in his Ref. 5. One would 
expect such an equivalence to exist, at least locally. 
Remarks to the contrary by Mo are out of context. 

The fundamental issue is rather whether or not the 
method of local tetrads is a suitable mathematical 
expedient that enhances physical perspicuity such as 
claimed by its proponents. The presented evidence 
hardly supports such claims. 
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1 T. C. Mo, J. Math. Phys. 11, 2589 (1970). 
2 E. H. Kennard, Phil. Mag. 33, 179 (1917). 
3 G. B. Pegram, Phys. Rev. 10, 591 (1917). 
• A. Sommerfeld, 1.ectures on Theoretical Physics, Vol. 3: Electro

dynamics, transl. by E. G. Ramburg (Academic, New York, 1952). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 7 JULY 1971 

A Nonhomogeneous Boundary-Value Problem for the Linear Transport 
Equation for a Slab Geometry 

GERALD R. HINTZ* 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103 

(Received 30 July 1970) 

A ?onhomogeneous boundary-value problem for the infinite slab of finite thickness is considered. 
!n thl~ proble?'l' th~ s~ab !eceives radiation from a time-dependent source on one of its surfaces. The 
~ntenslty ~f this r~dlat.lOn mcreases. from zero ~t time zero until a later time t ~ , after which the intensity 
IS a func!lOn.of dlrect~on only. This problem IS solved in the strong sense. The asymptotic behavior of 
the solu~lO.n IS determmed and related to results for steady-state problems in neutron transport theory 
and radiative transfer. 

1. INTRODUCTION 

Some time-dependent monoenergetic neutron trans
port problems have been solved for the plane-parallel 
slab geometry with isotropic scattering. Lehner and 
Wing1.2 used a generalized Laplace transform tech
nique to solve a nonhomogeneous initial-value 
problem. Bowden and Williams3 used the normal-mode 
expansion method of Case to treat this initial-value 
problem. Recently, Newman and Bowden4 ex
tended these results to the case of a slab surrounded 
by infinitely thick reflectors. A nonhomogeneous 
boundary-value problem was treated by Kuscer and 
Zweife1.5 These authors treated the one-speed equation 
for isotropic scattering in the semi-infinite slab 
subjected to irradiation of the surface with a mono
directional pulse of neutrons at time t = 0. 

In this paper,6 another nonhomogeneous boundary
value problem for the slab is considered. In this 
problem, the slab receives radiation from a time
dependent source on one of its surfaces. The intensity 
of this radiation increases from zero at time zero 
until a later time t~, after which the intensity is a 
function of direction only. This problem is solved in 
the strong sense. The asymptotic behavior of the 
solution is determined and is related to results for 
steady-state problems in neutron transport theory and 
radiative transfer. 

2. PRELIMINARY REMARKS 

Consider the plane-parallel slab geometry of finite 
thickness with no independent sources of neutrons. 
Assume that the neutrons are monoenergetic and 
produced isotropically inside the slab, which is 
surrounded by a perfect absorber. Also, assume that 
the total cross section (1 and the expected number c of 
neutrons which emerge from each collision of a neu
tron with a nuCleus are constant. Let x', -a' :S x' :S 
Of, denote the position coordinate measured from the 

Let fl = cos (), where () , 0:s () :S 1T, is the angle 
between the direction of neutron motion and the 
positive x' axis: 

The expected distribution N(x', fl' t') of neutrons 
at the position x', moving in the direction arccos fl, 
at time t', satisfies the linear Boltzmann equation7 

subject to certain boundary conditions. Lehner and 
Wingl .2 wrote the system for the initial-value problem 
in the form 

where 
ut = Au, 

ou C II 
Au = -fl ox + 2_IU(X,fl', t) dfl', 

u(±a, fl, t) = 0, fl:; 0, t > 0, 

U(X,fl, O) =io(X,fl), Ixl:S a, Ifll:s 1, 

x = ax' (a = aa'), t = avt', 

( t) - ITvt'N-(' ') u x, fl, - ex, fl, t . 

(1) 

(2) 

This formulation leads to a spectral analysisl of 
A on H = L 2([-a, a] x [-1,1]). The domain D(A) 
of A is the set of all IE H such that I is absolutely 
continuous in x for each fl, AlE H, and/(±a, fl) = ° 
for fl :; 0. The spectrum of A is shown to consist of 
a positive, finite number m = mea, c) of positive (real) 
eigenvalues Pi' i = 1,"', m, Pi > Pi for i <j, and 
a left half-plane Re A :S ° of continuous spectrum. 
Since each eigenvalue Pi is of multiplicity one [Ref. 1, 
p. 228, Theorem (5), and Ref. 8, pp. 471-2, Theorem 
(3)], the normalized eigenfunction corresponding to 
Pi can be denoted as 'l'"i' i = 1, ... ,m. The Pi are 
also eigenvalues for the adjoint A * of A with corre
sponding eigenfunctions '1'"1' , i = 1, ... , m. 

In Ref. 2 the authors showed that A is the infinites
imal generator of a Co semigroup T(t), t ~ 0, of 
bounded linear operators on H and that the function 

u(x, fl, t) = T(t)/o(X, fl) 

center of the slab normal to the plane stratification. solves the initial-value problem for (1) in the strong 
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sense if fo E D(A). They obtained the expansion 

m 

u(x, /1, t) = L (fo, 'Yt)'¥i(X, /1)eP;t + ~(x, /1, t; fo), (3) 
i=1 

° < b < Pm. (4) 

This integral, the strong limit of Riemann sums, can 
be interpreted as an ordinary Riemann integral if x 
and /1 are fixed. 

For convenience, let H=L2([-a,a] x [-1,1]) 
and HI = L 2 [-a, a]. We use the usual notations for 
an inner product and a norm for these functions on 
H; for HI we add a subscript 1. 

3. THE MATHEMATICAL FORMULATION OF 
THE PROBLEM 

We consider the slab subjected to radiation due to a 
source on the surface at x' = -a'. The source of 
radiation is turned on at time t' = ° and the intensity 
of the radiation increases in time until t' = t~. At 
t' = t~, the intensity levels off to become a function 
11.(/1) of direction only. We consider 11. E L 2 [ -1, 1]. 
The increase in intensity from t' = ° to t' = t~ is 
indicated by a function E(t') of time which we assume 
to have the following properties: 

(i) EEC2[0,(0), 

(ii) E(O) = dEjdt'(O) = 0, 

(iii) E(t') == 1 for all t' ~ t~. 

From (iii), dEjdt' (t') = ° for all t' ~ t~. 
Under these conditions and the above physical 

assumptions, the expected neutron distribution N(x', 
/1, t') in the slab satisfies the linear Boltzmann 
equation7 in the form 

IoN +. aN + N- Cfji1N-(' , ') d' (5) -- /1- fj =- X,/1,t /1 
vat' ax' 2 -1 

subject to the following conditions: 

N(x', /1, 0) = 0, -a'::;; x' ::;; a', -1 ::;; /1 ::;; 1, 

NC -a', /1, t') = oc(/1)E(t'), ° < /1 ::;; 1, ° ::;; t' < 00, 

ocEL2[-I,I], 

N(a', /1, t') = 0, -1::;; /1 < 0, 0::;; t' < 00. (6) 

We now obtain an equivalent nonhomogeneous 
equation with homogeneous initial and boundary 

values. Define the function I such that 

[ 
fj(x' + a')] exp - , 

/1 
° < /1 ::;; 1, 

I(x', /1) = -a'::;; x'::;; a', 
0, -1 ::;; /1 ::;; 0, 

-a' ::;; x' ::;; a', 

and the function c/> such that 

c/>(x', /1, t') = N(x', /1, t') - E(t')!<x', /1)11.<11). 

Since /1 all ax' + a! = 0, c/> satisfies the system 

1- oc/> + t;,. oc/> + c/> 
fjV at' fj ax' 

= ~ [1 c/>(x', /1', t') d/1' + ~ E(t') 

x [1 lex', /1')11.(/1') dfJ' _/(x', /1)11.(/1) oE (t'), (7) 
11 fjV at' 

c/>(x', /1, 0) = 0, -a'::;; x' ::;; a', -1 ::;; /1::;; 1, 

c/>(-a', /1, t') = 0, ° < /1::;; 1, 0::;; t' < 00, (8) 

c/>(a', /1, t') = 0, -1::;; /1 < 0, 0::;; t' < 00. 

We make the change of space and time variables 
given in (2) and let 

u(x, /1, t) = e"vt' c/>(x', /1, t'). 

Also, let f(x, /1) = l(x', /1), N(x, /1, t) = N(x', /1, I'), 
E(t; fj, v) = E(t'), and to = Vfjt~. For convenience, we 
introduce the functions 

Ho(x, p) = -11.(p)!(x, p) 
and 

Go(x, p) = - E. eHo(x, s) ds 
2 Jo 

for Ixl ::;; a, 1/11 ::;; I. Observe that Go, Ho E H from 
the Cauchy-Schwarz inequality, but neither of these 
functions is in D(A) because they do not satisfy the 
boundary conditions required of functions in DCA). 
Substituting these notations into (7), we obtain the 
equation 

dE 
Ut = Au + etE(t; fj, v)Go + et-(t; fj, v)Ho, (9) 

dt 

where u satisfies the same initial and boundary 
conditions as c/>. Observe that the nonhomogeneous 
part of (9) is the sum of two functions. Each of these 
functions is the product of three factors: (i) an ex
ponential in t, (ii) a bounded Cl[O, (0) function of t 
that is initially zero, and (iii) an H function of x and 
/1 that is not in D(A). In the following, we usually do 
not indicate the dependence of E on the parameters fj 
and v. 
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4. THE SOLUTION OF THE BOUNDARY-VALUE 
PROBLEM 

To solve (9), we first consider the following problem. 

Auxiliary problem: Let K(t) be a bounded CoCO, co) 
function of t that is initially zero. Let g E D(A). 
Solve the equation 

ut = Au + eIK(t)g(x, fl) 

subject to the condition Ult~o = O. 
To solve this problem, we first consider the corre

sponding homogeneous equation 

atp 
- = Atp at 

subject to the condition 

tp/t=T = eT K(-r)g, 

(10) 

(II) 

for T fixed, 0 ::;; T < co. We know (Ref. 2, pp. 128, 
129) there exists a semigroup T(t) of bounded linear 
operators for t ~ 0 such that: (i) T(O) = J, (ii) T(t) is 
strongly continuous for t ;;::: 0, and (iii) T(t) is strongly 
differentiable on D(A) with 

dT 
- (t)g = AT(t)g = T(t)Ag, g E D(A). (12) 
dt 

For fixed T ~ 0, we set 

tpr(X, fl, t) = erK(T)T(t - T)g(X, fl)· 

From (12) we see that tpr E D(A) and satisfies (10) in 
the strong sense. But tpr also satisfies the condition 
(II) in the strong sense because 

lIeT K(T)T(t - T)g(X, fl) - eTK(T)g(x, fl)11 = eT IK(T)I 

x "T( t - T)g - gil -+ 0 as t -+ T 

from the strong continuity of the semigroup. 

The solution tpr of (10) suggests the following 
definition: 

u(t; g, K) = ferK(T)T(t - T)g dT, (13) 

where this integral is to be interpreted as the strong 
limit of Riemann sums. For u, we can prove the 
foIlowing lemma. 

Lemma 1: The function u, defined in (13), is the 
unique solution in the strong sense of the auxiliary 
problem. 

Proof: To demonstrate the uniqueness, we suppose 
U1 and U2 are solutions. Then 

a at (UI - u2) = A(ul - u2) 

and (UI - u2)lt~o = O. Therefore, U1 - U2 == 0 (Ref. 
2, p. 129, Theorem 1). 

To show that U satisfies the partial differential 
equation of the auxiliary problem, we consider the 
difference quotient for u: 

lI(t + At; g, K) - I/(t; g, K) 

At 

= LeTK(T>[T(t + At - T~~ - T(t - T)g] dT 

1 it
+

dt 

+ - erK(T)T(t + At - T)g dT 
At t 

i t dTI -+ eTK(T) - g dT + etK(t)T(O)g 
o dt /-T 

from Lebesgue's dominated convergence theorem for 
Bochner integrals [Ref. 8, p. 48, Theorem 3.6.6] in 
view of the bound given below. From (12), this is 
equal to 

LerK(T)ATlt_r g dT + etK(t)g 

since g E D(A); this is also equal to Au + etK(t)g 
(Ref. 9, p. 83, Theorem 3.7.12). Therefore, U E D(A) 
and 

du (t; g, K) = Au(t; g, K) + eIK{t)g. 
dt 

To apply Lebesgue's theorem above, we use the 
bound given by the following inequalities: 

/I er~;T) (T(t + At - T)g - T(t - T)g) /I 

= II e'K{T)T(t - T) (T(A~t- J)g II 

::;; eT IK(T)I eC(I-r) /I (T(A~t- J)g II 

(from Ref. 10, p. 203, Corollary 2.2, and Ref. 2, pp. 
128-129) 

::;; eT IK(T)I eC(t--T){1I (T(A~t- /)g - Ag II + II AglI} 

~ ect IK(T) I e(l-C)T{1 + IIAglI} for At < 15(1). 

Hence, for At < 15(1), II [er K(T)/At][T(t + At - T)g -
T( t - T)g] II is bounded by an integrable function of T. 

The function u(t; g, K) satisfies the initial condition 
in the strong sense since (Ref. 10, p. 203, Corollary 
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2.2, and Ref. 2, pp. 128-29) 

lIu(t; g, K)II ~ feT IK(r) I edt-T) dT Ilgll 

~ ecto~~~o[lK(T)I]fe(l-c)T dT Ilgl! 

- 0 as t - O. Therefore, u(t; g, K), as defined in (l3), 
is the solution in the strong sense of the auxiliary 
problem for g E DCA). QED 

We wish to solve (9), where Go, Ho E H - D(A). 
The bounded linear operator defined in (13) can be 
extended to all of H since D(A) is dense in H (Ref. 2, 
p. 128). Thus, it makes sense to talk about u(t; Go, E) 
and u(t; Ho, dEldt), but it remains to show that 
u(t; Go, E) + u(t; Ho, dEldt) is the solution of (9). 
From the linearity of (9) and the fact that Go, Ho E H, 
this result follows from the foHowing theorem. 

Theorem 1: Let K(t) be a bounded Cl[O, (0) 
function of t such that K(O) = O. Let G E H. Then the 
function u(t; G, K) satisfies uniquely in the strong 
sense the equation 

du 
- (t; G, K) = Au(t; G, K) + etK(t)G, 
dt 

subject to the initial condition ult=o = O. 

To prove this theorem, we need the following 
lemma. 

Lemma 2: Let G E H. Then duldt (t; G, K) exists and 

- (t; G, K) = u(t; G, K) + u t; G, - . du ( dK) 
~ ~ 

Proof' Since 

u(t; G, K) = etfe-SK(t - s)T(s)G ds, 

the difference quotient 

u(t + ~t; G, K) - u(t; G, K) 

~t 

(~t _ 1) ft 
= ~ etJo e-SK(t + ~t - s)T(s)G ds 

+ et fe-s (K(t + M - ~~ - K(t - S») T(s)G ds 

et+Atlt+4t + - e-SK(t + ~t - s)T(s)G ds 
~t t 

- etfe-SK(t - s)T(s)G ds 

+ et e-S 
- T(s)G ds it dK/ 

o dt t-a 

from Lebesgue's dominated convergence theorem for 
Bochner integrals (Ref. 8, p. 48, Theorem 3.6.6). But 
this sum is u(t; G, K) + u(t; G, dKldt) as desired. 

QED 

We can now prove Theorem 1. 

Proof: The uniqueness and the fact that u satisfies 
the initial condition in the strong sense follow from 
the corresponding proofs given for u(t; g, K), g E 

D(A), in Lemma 1. 
To show u(t; G, K) is a solution of the equation, let 

G E Hand {gn} be a sequence in D(A) such that 
gn - G in H. For each n, 

from Lemmas 1 and 2. Therefore, 

Au(t; gn' K) 

= u(t; gn' K) + u (t; gn' ~~) - etK(t)gn 

- u(t; G, K) + u (t; G, ~~) - etK(t)G 

du = - (t; G, K) - etK(t)G 
dt 

as n - 00, from Lemma 2. But, since A is a closed 
operator (Ref. 2, p. 128), this implies that 

u(t; G, K) E D(A) 
and 

du 
- (t; G, K) = Au(t; G, K) + etK(t)G. QED 
dt 

For convenience, we introduce the notation 

J(t; G, K) = fOK(T)eTT(t - T)G(X, f-t) dT, G E H, 

where K(T) is a bounded CO[O, (0) function of l' such 
that K(O) = O. 

We gather our results in the following theorem. 

Theorem 2: There exists a solution N in the strong 
sense for the system in (5), (6). This solution can be 
written as 

N(x, f-t, t) = I(x, f-t}rx{f-t)E(t; a, v) 

+ e-tu(t; Go,E)(x,f-t) 

+ e-tu (t; Ho, ~~)(x, f-t). 
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In particular, for t > to, 

N(x, fl, t) = I(x, fl)fJ.(fl) 

-t ( ) -I ( dE) + e J t;Go,E + e J t;Ho, dT 

+ rtexP(T - t)T(t - T)Go(x,fl) dT. 
Jlo 

5. OTHER REPRESENTATIONS FOR THE 
SOLUTION N 

Since the expression in Theorem 2 does not reveal 
the asymptotic behavior for Nfor large t, we now find 
other representations for N. In the above sections, the 
only restriction placed on fJ.(fl) is fJ.EL2[-I, I]. In 
this section and the sections that follow, we require 
that 

Let b be fixed such that ° < b < min [t. Pm], 
where Pm is the smallest eigenvalue for A. To simplify 
the notation, we define '(x, fl, t; G) as in (4) for 
G E D(A) u {Go, Ho}. That' makes sense follows 
from the following bound given on the vertical line 

ReA = b 
1(,1. - A)-lG(X, fl)1 ~ M(b, G)/IAI, (14) 

G E D(A) U {Go, Ho}. M(b, G) is a finite constant 
that depends only on band G. Lehner and Wing [Ref. 
2, p. 135, (3.6)] give this bound for functions in D(A) 
and for all ,I.E peA) with M = M(P, G), P = Re (A). 
In Sec. 8, we give a proof of (14) for Go and Ho· 

From Theorem 2, a new representation for u 
provides a new representation for N. A representation 
for u is obtained from semigroup theory in the 

following lemma. 

Lemma 3: Let G E H. For all t> to, 

u(t; G, E) = J(t; G, E) 

to' _1_ fY+1+iWexp [I.(t - to)] (A-A)-lG dA + e l.I.m. , 
w-oo 27Ti y+1-iw A-I 

where y > max [0, PI - 1]. 

Proof' Let G E H. By definition, 

u(t; G, E) - J(t; G, E) = et{-toe-ST(S)G ds. 

But Z(s) = e-sT(s) is a semigroup of operators whose 
infinitesimal generator is A - I. Therefore, the 
equation [Ref. 8, p. 232, (11.7.1)] guarantees 

u(t; G, E) - J(t; G, E) 

= etl.i.m. -. exp [A(t - to)] [A - (A - J)]-lG--;-1 lY+iw dA 

",-00 27T1 y-iw FI. 

t· 1 i (y+1l+iw exp [A( t - to)] (1 A)-lG d" 
=e°l.I.m.- FI.- A. 

",-00 27Ti (y+1l-iw ,1.- 1 

if Y > max [0, PI - 1]. QED 

Now suppose Pi ~ 1, i = 1,'" ,m. As in Ref. 2, 
p. 129, Theorem 1, we shift the line of integration of 
the representation in Lemma 3 to the left. This proc
ess, which picks up the contributions of the residues, 
can be accomplished by means of a rectangular 
contour C about the poles of the integrand. We know 
that the singularities of the resolvent are simple poles 
(Ref. 2, p. 131, Lemma 2). The factor (A - 1)-1 
introduces another simple pole at A = 1. 

Since A-I appears in the denominator of the 
integral in Lemma 3, the inequality [Ref. 2, p. 135, 
(3.5)] ensures that the integrals on the horizontal 
paths approach zero in H as 11m AI---+ 00. Thus, we 
obtain the following lemma. 

Lemma 4: Let G E H. If Pi ~ 1 for i = 1,2, ... ,m, 
then 

u(t; G, E) 
m (l-Pil/o Pil 

= J(t; G,E) + e'(J - Arl G + Ie e (G,1pt)1pi 
i~l fJi - 1 

for all t > to. 

This lemma enables us to write N as in the following 
theorem. 

Theorem 3: If Pi ~ 1 for i = 1,"', m, then 

N(x, fl, t) 

= I(x, fl)fJ.(fl) + (J - Atl Go 

+ i~ (Go, 1p;)1/'i(X, fl{fOE(T) exp [(1 - Pi)T] dT 

+ exp [(1 - (Ji)lo]J exp [(Pi - 1 )t] 
Pi - 1 

m (lOdE 
+i~(Ho, 1pt)1pi(X,fl)Jo dT (T) 

X exp [(1 - Pi)T] dT exp [(f1i - 1)t] 

+ e-tfoE(T)e"(X,fl, t - T; Go) dT 

+ e-t (lOdE (T)e"(x,fl, t - T; Ho) dT 
Jo dt 

+ exp (to ~ t) tHiooexp [(A)(t - to)] (A _ Arl G
o 

dA 
27T1 Jd-ioo ,1.- 1 

for all t > to. 
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Proof' Equation (3) enables us to write J(t; g, some i = io, then for all t ~ to 
K), for g E D(A), as follows: 

J(t; g, K) 

= fOK(r)et~ (g, "Pi)"P;(x, ft)ef!i(t-r) 

+ ,(X,ll, t - r; g») dr 

= it (g, "Pt)"P;(X,ft)ef!itfoK(r) exp [(1 - pi)r] dr 

to + Jo K(r)er,(x, ft, t - r; g) dr. (15) 

For the terms in the series in (15), we have fixed x 
and ft and have interpreted the integral as an ordinary 
Riemann integral. That this is valid follows from the 
dominated convergence theorem for Lebesgue integrals 
since eTK(r) is a continuous function of r. We can 
extend the bounded linear operators in (15) to all of 
the Hilbert space H since D(A) is dense in H. The 
representation remains the same for Go and Ho in 
view of the bound in (14). Substituting this represen
tation into the expression in Lemma 4, we obtain the 
series terms above. 

Now let t be fixed. Then 

on the vertical line Re A = 15, from (14). Therefore, 
for each t, the 

l.i.m.l
Hi

", exp [A(t - to)) (A _ Afl Go dA 
"'-'00 0-;'" A-I 

= (HiOO exp [A(t - to)] (A _ A)-lG
o 

dA. 
J6-ioo A - I 

The representation for N now follows from Theorem 
2 and Lemma 4. QED 

If Pi = 1 for some i = io, the pole at A = 1 pro
duced by the factor (A - 1)-1 and the pole produced 
by the ioth eigenvalue coalesce. To avoid the difficulty 
involved in computing the residue for this case, we 
obtain a different representation for u(t; Go, E) and 
u(t; Ho, dE/dt). (Some further remarks are made in 
Sec. 7 below.) This representation can be obtained by 
using Eq. (3) and extending the operators to all of H 
as for Jin the proof of Theorem 3. Thus, if Pi = 1 for 

u(t; Go, E) 

= (Go, "PZ)"Piix,ft)et(foE(r) dr + E(to)(t - to») 

m 

+ I(Go, "Pi)"Pi(X'P) 
;=1 
i*io 

x exp (P;t) (foE(r) exp [(1 - PiH dr 

+ E(to) (exp [(1 - Pi)t] - exp [(1 - P;)(o))) 

1 - Pi 

+ feTE(rmx, ft, t - r; Go) dr. (16) 

For t < to, the terms involving E(to) must be omitted 
and the integrations that extend from 0 to to should 
extend only as far as t. The same argument obtains a 
similar expression for u(t; Ho, dE/dt). Therefore, we 
can write N as in the following theorem. 

Theorem 4: If Pi = 1 for some i = io, the)} for all 
t ~ to 

N(x, ft, t) 

= I(x, ft)\I.(ft) 

+ (Go, "PZ)"Pio(X,ft)(foE(r) dr + (t - to») 

ito dE + (Ho, "PZ)"P;o(x, p) - (r) dr 
o dr 

m 

+ 1 (Go, "Pi*)"P;(X, ft) 
i=1 
i*io 

x (exp [(Pi - l)t] fOE(r) exp [(1 - pi)r] dr 

+ 1 - exp [(1 - P;)to] exp [(Pi - l)t]) 

1 - Pi 
m 

+ I (Ho, "Pi)"P;(x, p) exp [(Pi - l)t] 
;=1 
i*io 

To study the asymptotic behavior of the solution N 
as given in Theorems 3 and 4, we require the following 
lemma. 
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Lemma 5: The residual terms for N satisfy 

(a) fE(T) exp (T - t)~(X,fl, t - T; Go) dT = 0(1), 

to 
(b) Jo E(T) exp (T - t)~(x, fl, t - T; Go) dT 

= O{exp [(<5 - 1)t]), 

i to dE 
(c) - (T) exp (T - tmx, fl, t - T; Ho) dT 

o dT 
= O{exp [(<5 - l)t]), 

(d) exp (to .- t)lHiooexP [A(t - to)](J _ A)-I
GO 

dJ 
2m d-ioo A - 1 

= O{exp [(<5 - l)t]), 
as 1-00. 

Proof: To prove (a), we consider 

I fE(T) exp (T - tmx, fl, t - T; Go) dT I 

= l.1.m. -. E(T) 
I

· 1 it 
00-+ 00 27Tl 0 

X L~~:OO exp [(A - l)(t - T)](A - A)-lGO dA dT I 

= \l.i.m. ~ rHioo 
tE(T) 

00-+00 27Tl Jd-ioo Jo 

X exp [(A - l)(t - T)] dT(A - A)-IGO dAI 

= - -E(t) + --1 \ 100 

( it dE(T) 
27T -00 0 dT 

(A - A)-lGO ) I 
X exp [(A - l)(t - T)] dT A _ 1 dy 

~ M(<5, Go) [1 + max (I dE(T) 1)1 + exp [(<5 - l)t]J 
2<5 o:o;.:O;to dT 1 - <5 

= 0(1) as t - 00, 

by Fubini's Theorem for Bochner integrals (Ref. 9, 
p. 84). We obtain (b), (c), and (d) from similar argu
ments. QED 

6. ASYMPTOTIC RESULTS 

We are now ready to obtain the asymptotic formulas 
for N. We distinguish three cases: (i) Ih < 1, (ii) 
/31 = 1, and (iii) /31 > 1. For the first case, we now 
prove the following theorem. 

Theorem 5: For PI < 1, the asymptotic formula for 
Nis 

N(x, fl, I) = f(x, fl)rx.(,,) + (I - A)-IGO 

+ 0 {exp [(/31 - 1)/]) as t - 00, 

where (1- A)-lGO is given by the resolvent expres
sions in Ref. 2. 

Proof: We consider each term in the representation 
for N given in Theorem 3. Clearly, the series terms 
are 0 {exp [(/31 - 1)/]) as t - 00. The integral terms 
are 0 {exp [(<5 - l)t]) from Lemma 5(b)-(d). Since 
the remaining terms are constant in t, the formula 
now follows. QED 

Before we consider the remaining cases, we recall 
that, even though the number of eigenvalues of A is 
always positive as a function of a > ° and e > 0, 
there are positive values of a and e for which there 
is only one eigenvalue /31. This unique eigenvalue is 
greater than or equal to one if the product ea is 
sufficiently small. A graph of /3ile vs ea, for ea ~ 20, 
is given in Ref. 3, p. 1536, Fig. 2. 

For the case (ii), we obtain the following theorem. 

Theorem 6: For /31 = 1, the asymptotic formula for 
Nis 

N(x, ", t) = (Go, 1fi)vh(X, f-l)t + 0(1) as 1- 00. 

That is, N increases linearly with increasing time t. 

Proof: We consider the representation for N given 
in Theorem 4. If m ~ 2, there are series terms which 
are O{exp [(P2 - l)t]) as t - 00. From Lemma 5(a) 
and (c), we know the residual terms are 0(1) as 
t - 00. The formula now follows. QED 

We now consider the remaining case PI > 1, which 
has subcases that depend on the values of the other 
eigenvalues of A. The asymptotic formulas, which 
follow from arguments similar to the above, are given 
in the following theorem. 

Theorem 7: 
(a) If /31 > 1 and /32 < 1, the asymptotic formula 

for N is 

N(x'f-l' t) 

= (Go, 1ft) LOE(T) exp [(1 - (31)T] dT 

exp [(1 - /3I)tO] 

+ 
/31 - 1 

+ (Ho, 1ft) rto 
dE (T) exp [(1 - (31)T] dT) 1fl(X, ,,) 

Jo dT 

X exp [(/31 - l)t] + I(x, f-l)rx.(,,) 

+ (l - A)-IGO + O{exp [(/32 - l)t]) as t - 00, 

where (l - A)-IGO is given by the resolvent expressions 
in Ref. 2. If /31 is the only eigenvalue for A, the last 
term in this formula is O{exp [(15 - l)t]) as 1- 00. 
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(b) If PI > 1 and P2 = 1, the asymptotic formula 
for N is 
N(x, fl, t) 

= [(Go, V'n(foE(1') exp [(1 - PI)1'] d1' 

+ exp [(1 - Pl)tO]) 

PI - 1 

+ (Ho, V'i/to dE (1') exp [(1 - PI}r] d1']V'I(X, fl) Jo dT 

X exp [(PI - l)t] + (Go, V'nV'2(X, fl)t + 0(1) 
as t - 00. 

(c) Further subcases depend on the values of other 
eigenvalues for A in a similar manner. 

Hence, N increases exponentially with increasing 
time t if P > 1. 

We are interested in the time-dependent scattering 
function S, which is defined such that 

S(t, fl) = flN( -a, -fl, t), 0 < fl S 1. 
To show the connection between S for the case PI < 1 
and the steady-state scattering function S of Chand
rasekhar,ll we need some information about S. 

Consider the steady-state problem of uniform, 
monodirectional radiation striking the left face of the 
slab at the incoming angle °0 , 0 S 00 < 1T/2. Let 
flo = cos °0 • The diffuse radiation V'(x, fl; flo), radi
ation that has been scattered at least once, for the 
steady-state problem satisfies [Ref. 11, p. 22, (129)] 
the equation 

fl oV' + V' = ~ (1 V'(X, fl'; flo) dfl' + exp (_ (x + a») 
ax 21-1 flo 

(17) 
and the boundary conditions 

V'( -a, fl; flo) == V'(a, -fl; flo) == 0, 0 < fl S 1. 
It is known that V'( -a, - fl; flo) has the representation 

fl'lf( -a, -fl; flo) 
= S(fl, flo , 2a) 

flflo 
= -- [X2aCfl)X2a(flo) - Y2a(fl)Y2aCflo)], 

fl + flo 
where X 2a and Y2a denote the X and Y functions 
respectively of Chandrasekhar for a slab of thickness 
2aY 

In the formula of Theorem 5, we have the term 
(I - A)-lGo. Defining ?jJ = (/ - A)-IGo , we see that 
?jJ satisfies the equation 

o?jJ _ C i l 
_ , , 

fl - + V' = - V'(x, fl ) dfl ax 2 -1 

+ ~ fCX(S) exp ( - (x : a») ds. 

From the linearity of this equation, 

'fJ(x, fl) = ~ i1cx(flO)V'(X, fl; flo) dflo, 

where 'If denotes the solution of (17). Hence, 

fl'fJ( -a, -fl) = £. (ICX(flo)S(fl, flo, 2a) dfl, 
2 Jo 

(18) 

o < fl S 1. (19) 

Since f(x, -fl) == 0 for fl > 0, Theorem 5 and Eq. 
(19) provide the asymptotic formula in the following 
theorem. 

Theorem 8: If PI < I, the asymptotic formula for 
the time-dependent scattering function is 

S(t, fl) = £. (Irx(flo)S(fl, flo, 2a) dflo 
2 Jo 
+ O{ exp [(PI - l)t]) 

= ~ flX 2ifl) e florx(flo)X 2a(flo) dflo 

2 Jo fl + flo 

_ .: fl Y2o(fl) (1 florx(flo) Y2a(flo) dflo 

2 Jo fl+flo 

+ O{exp [(PI - l)t]}, 

o < fl S 1, as t - 00. 

In the just critical case, PI = 1, the asymptotic 
formula for N in Theorem 6 provides the following 
theorem. 

Theorem 9: If PI = 1, the asymptotic formula for 
the time-dependent scattering function is 

S(t,fl) = (Go, V'i)flV'I(-a, -fl)t + 0(1), 

o < fl S 1, as t - 00. 

That is, S increases linearly with increasing time t. 

Theorem 7 provides the formulas for the remaining 
case in the following theorem. 

Theorem 10: 
(a) If PI > 1 and P2 < 1, the asymptotic formula 

for S is 

Set, fl) = [(Go, V'~)(foE(1') exp [(1 - PI}r] dT 

exp [(1 - PI)tO]) + (H *) 
+ PI _ 1 0' V'I 

X [to dE (T) exp [(1 - PI)T] dTJ Jo dT 

x flV'I( -a, -fl) exp [(PI - l)t] 

+ fl(I - Ar1Go( -a, -fl) 

+ O{exp [(P2 - l)t]), 

o < fl ~ 1, as t --joo 00. 
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If P1 is the only eigenvalue for A, the last term in this 
formula is O{exp [(6 - l)t]) as t ---+ 00. 

(b) If P1 > 1 and P2 = 1, the asymptotic formula 
for S is 

Set, fl) = [(Go, 1J'~)(foE(1') exp [(1 - (1)1'] d1' 

+ exp [(1 - Pl)tO]) + (H *) 
PI - 1 0' 1J'1 

X ltOdE 
(1') exp [(1 - PI)1'] d1'J 

o d1' 

X fl'IPI( -a, -fl) exp [(PI - l)t1 

+ (Go, "Pt)fl"P2(-a, -fl)t + 0(1), 

o < 11 ::;; 1, as t ---+ 00. 

(c) Further subcases for S depend on the values of 
other eigenvalues for A in a similar manner. 

Therefore, S increases exponentially with increasing 
time t if P1 > 1. 

In order to write (J - A)-IGo in terms of the X 
and Y functions as in the case PI < 1, it is necessary 
to extend the theory of the X and Y functions. We 
do not give this extension to the case PI > 1. 

The time-dependent transmission function 'b is 
defined such that 

'b(t, fl) = flN(a, fl, t), 0 < fl S 1. 

We can now obtain the asymptotic formulas for 'b 
and indicate the connection between 'b and the 
steady-state transmission function T of Chandrasek
harH for the case PI < 1. 

It is known that the solution 1J' of (17) has the 
representation 

fl1J'(a, fl; flo) = T(fl, flo, 2a) 

ftfto = -- [X2aCfl)Y2iflo) - Y2n(fl)X2aCI10)]' 
fl - flo 

Therefore, we obtain from (18) 

ftip(a,fl) = £. iIrx(fto)T(fl,fto, 2a) dfto, 0 < It S 1. 
2 0 

Since f(a. fl) = exp (-2alfl) for 0 < fl S 1, this 
representation for ip(a, fl) and Theorem 5 provide the 
following theorem. 

Theorem 11: If PI < 1, the asymptotic formula for 
time-dependent transmission function is 

'b(t, fl) = flrx(ft) exp (-2a/fl) 

+ £. (Irx(flo)T(fl. flo. 2a) dfto 
2 Jo 

+ O{exp (PI - l)t]) 

= flrx(fl) exp (-2a/ft) 

+ -2C 
flX 2a(fl)i

l 

flo lX(,l o)Y2iflo) dflo 
o fl - 110 

_ ~ /J Y ( )i I 
flolX(flo)X 2a(flo) d 

r 2a II, flo 
2 0 fl - flo 

+ O{exp [(PI - l)tJ), 

o < fl ::;; 1, as t -+ 00. 

From Theorem 6, we obtain the following theorem. 

Theorem 12: If PI = 1, the asymptotic formula for 
the time-dependent transmission function is 

'b(t, fl) = (Go. 1J't)p1J'1(a, p)t + O(l), 

o < p ::;; 1. as t -+ 00. 

That is, 'b increases linearly with increasing time t. 

Theorem 7 provides the formulas for the remaining 
case given in the following theorem. 

Theorem 13: 
(a) If PI > 1 and P2 < 1, the asymptotic formula for 
the time-dependent transmission function is 

'b(t, fl) = [CGo. 1J'i)(foE(r) exp [(1 - P1)1'] d7' 

+ exp [(1 - PI)tO]) + (H *) 
PI - 1 0, 1J'I 

xl tOdE 
(1') exp [(1 - PI)1'1 d1'J 

o d1' 

X fl"Pia, p) exp [(PI - l)t] 

+ fllX(fl) exp (-2a/p) + p{l - AtIGo(a, fl) 

+ O{ exp [(P2 - 1 )tJ), 

o < p ~ 1. as t ---+ 00· 

If PI is the only eigenvalue for A, the last term in this 
formula is O{exp [(6 - l)t]) as t -+ 00. 

(b) If PI > 1 and P2 = 1, the asymptotic formula 
for'b is 

"lJ(t.p) = [(Go, 1J'i)(foE(1')eXp [(1 - PI)1'] d1' 

+ exp [(1 - PI)tO]) + (H *) 
PI - 1 0, 1J'1 

X lt~ dE (7') exp [(1 - 111)7'] d7'J 
o d1' 

X 1"1J'I(a,l") exp [({JI - l)t] 

+ (Go, "P:)fl1J'2(a, p)t + 0(1), 

o < p ::;; 1, as t -+ 00. 

(c) Further subcases for 'b depend on the values of 
other eigenvalues for A in a similar manner. 

Therefore, 'b increases exponentially with increasing 
time t if PI> 1. 
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7. FURTHER REMARKS ABOUT THE CASE 
Pi = 1 FOR SOME i 

We now discuss a representation like that· in 
Theorem 3 for the case f3i = 1 for some i = io. 
Moving the contour C of integration for the integral 
in u(t;G,E)-J(t;Go,E) past f3i' i=I,2,"', 
(io - 1), picks up the contributions of the residues at 
these eigenvalues. 

Let 

L(A) = exp [A(t - to)] (A _ Ar1Go(x, fl) 
A-I 

for x, fl, and t fixed. The function L(A) is an analytic 
function of A on peA) (Ref. 2, p. 138, Lemma 10). 
(Observe that this analyticity is not vector analyticity.) 
For the case f3io = 1, it can be shown that L(A) has a 
pole of order 2 at A = 1. Hence, we can shift the 
contour of integration further to the left to pick up 
the contribution of the residue at A = 1, provided we 
can compute this residue. 

Consider the expansion for the resolvent given in 
Ref. 12, p. 213, as follows: 

(A - Arl G = ~1(G) + ~ An(A - ItG 
A-I r,=O 

for G E Hand IA - 11 sufficiently small, where HI 
and An, n = 0, 1, ... , are bounded linear operators 
on H. The limit for the series is taken in the sense of 
the topology induced by the operator norm. 

H can be shown that the coefficient of (A - 1)-2 in 
the expansion of L(A) about A = 1 is 

exp (t - to)Hl[GO(X, fl)]. 

Hence, Res,,=1 L(A) can be computed as 

lim ((I. _ I)L(A) _ exp (t - to)Bl[GO(X, fl)]). 
;'(rc"I)--+1 A-I 

Since this limit can be computed, the contour C of 
integration can be moved past f3i

o 
= 1 and then 

moved past the other eigenvalues Pi' i = (io + 1), ... , 
m. 

Recall that the operator 

A;,' = E fa £l(Alx - yl) . dy 
2 -a 

is a self-adjoint, completely continuous operator on 
L 2 [ -a, aJ for real A. > 0 (Ref. 1, pp. 224-25). The 
eigenvalues li(A) and the eigenfunctions Pi(X; A) of 
A;, are analytic functions of A with the analyticity of 
Pi being vector-analyticity in L 2 [-a, aJ (Ref. 13, 
p. 610, Theorem 2). Also, lio(l) = 1 and 1:

0
(1) = -1. 

The latter fact can be shown in the calculation of 
Res;'=l L(A). 

For convenience, we also define the step functions 
x 1(fl) and X2(fl) such that 

( ) _ {x' fl < 0, d () _ {a, fl < 0, 
Xl fl - an x 2 fl -

-a, fl > 0, x, fl > 0, 

for each X fixed. 
After we perform the necessary calculations, 

Theorem 2, Lemma 3, and the representation for 
J(t; Go, E) given in the proof of Theorem 3 enable us 
to state the following theorem. 

Theorem 4',' Let Pi = 1 for some i = io. Then 

( 
1"(1) (to ) 

N(X'fl' t) = t - to - 2 + ~ + Jo £(7')dT 

X (Go, "P~)"Pio(X'fl) 

+ (Go, 0;;0 (.; 1) )1"PiO(X, fl) 
(""(X' - X) ± (Go, "Pi!) JXl -fl-

x exp [(x' - X)!fl]Pio(x'; 1) dx' 

± (GO,"Pi!) exp -=- --::'O(x'; l)dx' 1"'2 (X' X) op 
"'1 fl OA 

1 i:l'2 (X' - x) ± - exp -_. Go(x', /1,) dx' 
fl Xl fl 

± - exp -=- Al(Go)(X', fl) dx' c IX' (X' X) 
2fl XI fl 

± ~ ~ l~(l) (G ( .. 1 
2fl i~ 1 _ li(l) 0, Pi , »1 

i*io 

exp [(1 - Pi)tO]) (G *) ( ) + f3 o,"Pi"Pix,fl 
i - J 

m 

x exp [(Pi - l)t] + L (Ho, "Pi)"Pb, fl) 
i=l 

I
todE 

x -(T)exp[(l-Pi)T]dT 
o d7' 

X exp [(f3i - l)t] 

+ fOE(T) exp(7' - t),(X,fl, T -7'; GO)dT 

+ (to dE (T) exp(T - t),(X,fl, t - T; Ho)dT Jo ,IT 

+ exp (to .- t) (.l+iOO exp [ .. I.(t - to)] 

21T1 J6-ix> A-I 

x (A - A)-IGO dA, 
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where the upper signs correspond to p, > 0 and the 
lower signs to p, < O. 

From this theorem and Lemma 5(b)-(d), we obtain 
the following theorem. 

Theorem 6': If fJl = 1 and fJ2 < 1, the asymptotic 
formula for N is 

(X' - X) X exp -p,- Pl(X'; 1) dx' 

1"2 (X' - X)ap1 , , ± (Go, tpi) exp -- -(x; l)dx 
"1 p, aA 

± - exp --=- Go(x', p,) dx' 11"2 (x' X) 
p, '" p, 

± - exp -- Al(GO)(X', p,) dx' C 1"2 (x' - X) 
2p, "'1 P, 

C 00 1~(1) .. 
± - .! 1 I. (1) (Go, Pi(', 1»1 

2p, ,=2 - i 

1"2 (x' - x) 
X '" exp -p,- plx'; 1) dx' 

+ I(x, p,)rx(p,) + (H 0, tpi)tptCx , p,) 

x - (T) dT + O{exp [(fJ2 - l)t]) i to dE 

o dT 
as t .... 00. 

If fJl is the only eigenvalue for A, then the last term 
in this formula is O{exp [(15 - l)t]) as t .... 00. 

In a similar manner, we obtain the following 

theorem. 

Theorem 7': If fJl > 1, fJ2 = 1, and fJ3 < 1, the 
asymptotic formula for N is 

N(x, fl, t) = [(Go, tp~)(J:°E(T) exp [(1 - ,81)T] dT 

+ exp [(1 - fJl)tOJ) + (H *) 
fJl - 1 0, tpl 

X [to dE (T) exp [(1 - fJl)T] dTJ 
Jo d7 

x tp1(X, p,) exp [(PI - 1)t] 

( 
1"(1) [to ) + t - to - 2 + ~ + Jo E(7) d7 

x (Go, tp:)tp2(X,P,) 

(X' X) x exp -::;- P2(X'; 1) dx' 

1"2 (X' - X)ap2 , , ± (Go, tp:) exp -- -(x; l)dx 
"1 p, aA 

11"2 (x' x) ± - exp --=- Go(x', p,) dx' 
p, '" p, 

± - exp --=- A1(GO)(X', p,) dx' C 1"'2 (x' x) 
2p, '" P, 

c ~ 1~(1) (G (1» 
± 2p, r:l 1 _ Ii 1) 0, Pi .; 1 

i;t2 

1"2 (x' x) X '" exp -::;- p;(x'; 1) dx' 

+ lex, p,)rx(p,) + (Ho, tp:)tp2(X, p,) 

So
todE 

x -(7) d7 + O{exp [(fJ3 - l)t]) 
o d7 

as t .... 00. If fJl and P2 are the only eigenvalues for A, 
then the last term in this formula is O{exp,[(t5 - l)t]} 
as t .... 00. 

Further subcases depend on the values of eigen
values less than fJ2 in a similar manner. 

This theorem in turn provides more complete 
formulas for Sand b than those given in Theorems 9, 
lOeb), 12, and 13 (b). 

8. THE PROOF OF THE INEQUALITY (14) FOR 
Go AND Ho 

To prove (14), we consider the resolvent for A as 
given in Ref. 1, pp. 231-32, Lemma 10. Let G E H 
and let ~(x; A) denote the unique solution in L2 [ -a, a] 
of the integral equation 

2 fa ~ ~(x; A) + _;1(A1X - yl)~(y; A) dy + F(x; A, G), 

(20) 
where 

E1(z) =ioo 

e-
z
, ds for Re (z) ~ 0, z:;6 0, 

1 S 

and 

F(x; A, G) = [1 dp, [" exp (-\x - Y»)G(Y,P,) dy 
Jo fl La p, 

_ [0 dfl [aexp (-A (x _ Y»)G(Y, fl) dy. 
Ll P, J", p, 
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Then 

(

..£ Ja: exp (-A (x - y») ~(y; A) dy + .! Ja: exp (-A (x - y») G(y, ft) dy, ft > 0, 
2ft -a ft ft -a ft 

(it - Ar1G(x, ft) = (21) 

-c f
a
exp (-it (x _ y»)~(y; A) dy _ .! f

a
exp (-it (x - y») G(y, ft) dy, ft < O. 

2ft Jl' ft ft Ja: ft 

For fixed x, (I. - A)-lG(X, ft) is a continuous function 
of ft at ft = 0; and in fact 

(A - A)-IG(X, 0) = [(c/2)~(x; A) + G(x, 0)]1.-1 , 

. (22) 

provided limp -+o G(x, ft) = G(x, O)(Ref. 2, pp. 141-42). 
Concerning the exponential function E1 , we note 

L: m(lsl) ds = 41n 2. (23) 

Let b be fixed, 0 < b < min H·, Pm]' The proof 
that follows is applicable to a larger set in the it plane, 
but for simplicity we will not consider this generali
zation. For convenience, let Cl = max [Ia(ft)i], -1 ~ 
ft ~ l. We prove the inequality (14) for every function 
G that possesses the following five properties of Go 
and Ho: 

(i) There exists a constant C2(G) such thatIG(x, ft)1 ~ 
C2 for all x, ft and S~a loGjox(x, ft)1 dx ~ C2 for all ft. 

(ii) (ajax) S:1 G(X, ft) dft = S:1 (ojox)G(x, ft) dft for 
all x. 

(iii) The derivative (dF/dx)(x; A, G) exists and is a 
continuous function of x in -a < x < a with a 
finite limit at x = a and at worst a logarithmic 
singularity at x = -a. 

(iv) There exists a constant ca(a, G) such that 

(v) G satisfies the inequality 

1(1. - A)-IG(X, 0)1 < ..!..(E.I~(X; 1.)1 + C2), -litl 2 
for each x. 

We can take c2(GO) = cc1!2, c2(Ho) = Cl, caUl, Go) = 
4ccl«a!0) In 2)!, and ca(o, Ho) = 2(1 + Pm)c1(ln 2)!/ 
[b(l - b)]. Property (v) for Go and Ho follows from 
(22), except possibly for Ho at x = -a. But 

(A - A)-l HoC-a, 0) = ..£ ~(-a; A) 
2A 

from (21) so that the inequality is satisfied for all x. 
We now obtain (14) for functions that satisfy (i)-(v) 

from the representation for the resolvent by integration 
by parts. We first consider p > O. It follows im
mediately from property (i) that 

j .! fa: exp (- ~ (x _ Y»)G(Y, p) dy I ~ 3~2 , 
ft J-a ft IAI 

ft > O. (24) 

-----------------------------------
For the other integral in (21) for ft > 0, we obtain 

I ;p L:exp (- ;(x - y»)~(y; A)dy I 
~ .£..(I~(X; it)1 + I~( -a; ).)1 +ia: I o~ (y; it) I dY). 

21. -a oy 

To bound this quantity, we obtain 
I~(x; it)1 and S~ I(o~/oy)(y; it)1 dy. 

(25) 
bounds for 

For the former, 

I~(x, ;.)1 
cia c ~:2 -aE1(P Ix - yl) I~(y; A)I dy + :2IF(x; A, G)I 

~ ;AL: EWsl) dS)! (L:I~(Y; A)1 2 
dy)t 

c + -IF(x; A, G)I 
2 

< cclb) IIGII (In 2)t + E.IF(x' A G)I 
- b2 2' , 

from (23) and the inequality (Ref. 2, p. 135) 

11~lIl ~ cio) IIGI/. 
o 

(26) 

[In Ref. 2 the closed region {A = P + iy: 0 ~ P ~ 
P' < 00, 1.1,1 ~ AI' lit - Pil ~ t", i = 1,'" ,m} is 
considered. The constant C4(0) depends on this set, 
and t" and Al must be chosen small enough that 
t" < Pm - 0, Al < a and a certain inequality is 
satisfied (Ref. 2, pp. 133-34, Lemma 6). Hence, C4 
depends on 0.] But 

F(x; A, G) Iii lil = - G(x, p) dft - - e-).(a:+al(PG( -a, p) dft 
A -1 A 0 

Hence, 

- .! iO 

e-).(a:-al(p.G(a, ft) dft 
A -1 

-.! f1ia: e-).(:l:-lIl/p oG (y, ft) dy dp 
A Jo -a oy 

+ ! iO 
f"e-).(a:-lIl/P oG (y, ft) dy dp. (27) 

A -1 Jl' oy 

IF(x; A, G)I ~ 6c2/1AI 
from property (i). Therefore, we have from (26), 

I l:(x' 1.)1 < cc4(b) IIGII (In2)! 3cc2 • 
~,- 152 + 0 (28) 

We denote this constant as c5(0, G). 
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We now turn to the existence of o~/ox and of a 
bound for f~a l(o~/ox)(x; ,1.)1 dx. Recalling Eq. (20), 
we can write 

2o~ fa ~ 
--(X;A)= E1(Alx-yl)-(Y;A)dy 
C ox -a oy 

where 
+ K(x; A, G), (29) 

dF 
K(x; A, G) = - (x; A, G) + ~(-a; A)E1(A Ix + al) 

dx 

- ~(a; A)E1(A Ix - ai). 

That o~/ox exists and is the solution of (29) follows 
from property (iii) and the proof of Theorem 35.1 
on pp. 85-87 of Ref. 14. (The theorem stated in this 
reference would require dFldx to be continuous in 
-a < x < a and have finite limits at the end points 
approached from inside the interval. However, the 
proof given there allows dFldx to have logarithmic 
singularities at the end points.) We use (29) to obtain 
the necessary bound for f~a l(o~/ax)(x; .1.)1 dx. 

The function K(x; A, G) E L 2 [ -a, aJ, for each A, 
because it only has logarithmic singularities. Hence, 
(29) is of the same form as (20). Also, 

IIK(x; A, G)1I1 ::; II dF (x; A, G) II + i c5(o, G)(In 2)! 
dx 1 0 (30) 

from (23) and (28). To bound IIdFldx (x; A, G)1I1, we 
use property (ii) to differentiate F as it is given in (27) 
to obtain 

dF(x· A G) 
dx " 

i
1 e-A(x+al!I' 

= G( -a, /l) d/l 
o /l 

i 1 eA(x-al!" ( aG) 
- G(a, -/l) d/l + F x; )" - . 

o /l ax 
Property (iv) now gives 

II ~: (x; A, G) t::; c2 11E1(o Ix + al)1I1 

+ c2 11E1(b la - xl)1I1 + ca(o, G) 
! 

4c2(In 2) (.i: G) < + Ca u, . 
- 0 

Therefore, from (30), 
4(ln 2)t 

IIK(x; A, G)1I1 ::; -- [c5(b, G) + c2 ] + ca(b, G). 
15 (31) 

We are now ready to use (29) to obtain 

II :: (x; }.) t ~ ;0 (L: Ei(lsl) dS)! II :.: t + ~ IIKlll 

~ [cio)W](ln 2)1- IIKlll + (cI2) IIKlll 
(Ref. 2, p. 135) 

~ (ccib)(In 2)! + c12) 

x ([4(ln2)i(o](c5(b, G) + c2] + ca(b, G)} 

from (31). Denote this constant as c6(b, G). Then, 
from the Cauchy-Schwarz inequality, 

I: I :: (x; A) I dx ::; (2a)t 1/ :: t~ (2a)tc6(b, G). 

(32) 

We can now return to (25) and write, for /l > 0, 

I ;/l L:exp (- ;(X - )'»)~(y; A) dy I 

< _c_ [2c5(b, G) + (2a)!c6(o, G)] (33) 
- 21,1.1 

from (28) and (32). 
Therefore, for /l > 0, 

1(.1. - A)-lG(X, /l)1 ::; (1/IAI)[ccs(o, G) 
+ c(a(2)!c6(b, G) + 3c2] 

from (24) and (33). Similar arguments obtain the 
same inequality for /l < O. Also, 

1(,1. - A)-1G(X, 0)1 ~ (1/I;.j)[(cI2) I~(x; .1.)1 + c2], 

by property (v), 

::; (l/IAI)[(cI2)c5(o, G) + c2], 

by (28). 
We now define 

M(b, G) = max [(cc5(b, G) + c(aI2)!c6(b, G) + 3c2), 

«c/2)cs(b, G) + c2)]. 

This definition completes the proof of the inequality 
(14) for all functions that satisfy the properties (i)-(v) 
with Re .1.= 15 fixed in 0 < 15 < (Jm' 
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The necessity and sufficiency of the Rainich differential relation, a basic equation of the "already 
unified field theory," is proved in a simplified way by intrinsic techniques. Some tensor identities of 
interest in their own right are derived and used in this proof. The results in this paper generalize those 
given in a previous paper [Ann. Phys. (N.Y.) 60, 384 (1970)1, where only the necessity of the Rainich 
differential condition was proved. 

I. INTRODUCTION 

In a recent paperl (hereafter referred to as I), we 
used intrinsic techniques to achieve considerable 
simplification in the derivation of the equations of the 
"already unified field theory" of Maxwell, Einstein, 
and Rainich. First, we gave a proof of the necessity 
and sufficiency of the Rainich algebraic conditions on 
the Ricci tensor R in order that the energy-momentum 
tensor T (related to R by the Einstein field equation2 

R - tR"14 = K T, where K is a constant) can be 
expressed in the form3 

T = (811')-lG • G*, (1) 

where G is an antisymmetric complex dyadic function 
satisfying 

*G = iG. (2) 

Secondly, in the case R: R ¢ 0, we gave a proof of 
the necessity but not of the sufficiency of the Rainich 
differential relation in order that the dyadic function 
G of Eq. (1) can be restricted to satisfy the additional 
condition4 

D·G = 0. (3) 

The purpose of the present paper is to generalize 
this proof to show both the necessity and sufficiency 
of the differential relation. In addition to presenting a 
proof somewhat simpler and more direct than others 
previously published (including the one given in I), 
we derive several identities of interest in themselves, 
some of which we believe to be new. We begin by 
obtaining these identities in Sec. II. In Sec. III we make 
use of them to show, in acorn pletely intrinsic manner, 
the necessity and sufficiency of the Rainich differential 
relation in the case R : R ¢ O. 

II. SOME INTRINSIC TENSOR IDENTITIES 

The purpose of this section is to derive some identities 
which are of interest in their own right as well as 

being very useful in the discussion in the next section. 
We being by showing, as a generalization of Eqs. 

(21) and (22) of I, that if M and N are any anti
symmetric complex dyadics such that 

*M = iM, (4a) 

*N = iN, (4b) 
then 

M: N* = 0, (5) 

M. N* = N*. M. (6) 

Proo!, Recall Eqs. (11) and (12) of I, which read 

*A: *C = -A: C, (7a) 

C. *B + B· *C = -HB : *C)14' (7b) 

where A, B, and C are arbitrary antisymmetric 
complex dyadics. If we set A = M and C = N* in 
Eq. (7a), then Eq. (5) results after using Eq. (4a) and 
the complex conjugate of Eq. (4b). Similarly, by 
setting C = M and B = N* in Eq. (7b), we arrive at 
Eq. (6) after making use of Eq. (4a) , the complex 
conjugate of Eq. (4b) , and Eq. (5). 

Also for future use, we state Eq. (23) of I, which is 

M . M = -tM : M14 , 

where M satisfies Eq. (4a). 

Now we show that 

(8) 

B • A = A • B + r : (* A . B), (9) 

where A and B are any antisymmetric complex dyadics. 

Proo!, Recall Eq. (4b) ofI: 

r.r;uvw=UI\VI\W, (10) 

where u, v, and ware arbitrary 4-vectors. Making use 

1113 



                                                                                                                                    

llI4 C. P. LUEHR AND M. ROSENBAUM 

of this expression, we can write have 

r : {[r : (uv)] • (wz)} = -z· r· r: (uvw) 

= -z· (u A v A w) 

= (u A v) • zw + wZ· (u A v) 

- z· W (u A v), 

where z is also an arbitrary 4-vector. Thus it foIIows 
that 

r : {[r : (u A v)]· (w A z)} = -2 (u A v)· (w A z) 

+ 2 (w A z) • (u A v), 

which can be immediately generalized to give Eq. (9). 

Next we shaII prove the identity 

D(B.A) = (DB).A + (DA). B + [D(r.*A)]: B 

(11) 

D(M. N*) = (DM) • N* + (DN*). M. (14) 

Proof" By operating on both sides of Eq. (4b) with 
a· D and using Eq. (l2e), we get 

*(a. DN) = i(a. DN). (15) 

Consequently, from Eq. (6), with N replaced by 
a • DN and with the aid of Eq. (l2c), we have 

M.(a.DN*)=(a.DN*).M. (16) 

Using this result yields5 

a· D(M • N*) = (a. DM). N* + M • (a. DN*) 

= (a.DM). N* + (a.DN*). M, 

and, since a is arbitrary, this implies Eq. (14). QED 

Contraction on the first two files of Eq. (14) gives6 

for anti symmetric complex dyadic functions A and B. D· (M . N*) = (D. M). N* + (D. N*). M, (17) 

Proof" Note first that, from the properties of which is a special case of Eq. (13). 
covariant differentiation, An additional coroIIary to Eq. (13) follows by 

a· Dr = 0, 
(12a) setting B = A = M with M again satisfying Eq. (4a). 

We thus obtain 
a • DA.r = (a. DAh, (12b) 

a·DA* = (a.DA)*, (12c) 

where a is an arbitrary 4-vector function. It foIIows 
from Eq. (l2b) that if A is antisymmetric, a· DA is 
also anti symmetric. From Eq. (l2a) we also get 

Dr=o, 

a· D *A = *(a. DA). 

(l2d) 

(l2e) 

Now, making use of Eq. (9) with A replaced by 
a • DA, together with Eqs. (l2e) and (12a), we find 

a. D(B • A) = (a. DB) . A + B· (a. DA) 

= (a. DB) • A + (a. DA) • B 

+ r: [(a. D *A). B] 

= (a· DB) . A + (a. DA) . B 

+ [a· D(r. *A)] : B, 

and, since a is arbitrary, Eq. (l I) results. QED 

Contraction of Eq. (11) on the first two files gives 
the identity 

D· (B • A) = (D· B) • A + (D· A) . B 

- r: [(D *A). B] (13) 

with the help of Eq. (l2d). 
A special case of Eq. (II) is obtained when B = M, 

A = N*, with M and N satisfying Eqs. (4). We then 

-iD(M : M) = 2(D. M). M - ir : [(DM) . M] (18) 

after resorting to Eq. (8). 

m. NECESSITY AND SUFFICIENCY OF THE 
RAINICH DIFFERENTIAL CONDITION 

For the case R : R =;1= 0, suppose the Ricci tensor R 
satisfies the Rainich algebraic conditions and, 
consequently, can be expressed in the form 

(19) 

where K is an anti symmetric complex dyadic function7 

for which *K = iK. It immediately follows from Eqs. 
(6) and (8) that 

R: R = (R. R). = (l67T)-2K2K : KK* : K*, (20) 

and thus K : K =;1= 0. 
Define now 

(21) 

where q; is a real-valued function. We shall show that 
the following equations are equivalent: 

D.G =0, (3) 

(22a) 

(22b) 

D· K = i(Dq;). K, 

Dq; = 4i(K : K)-I(D • K) . K, 

Dq; = liD In [(K * : K *)(K : K)-l] + f, (22c) 

where 
f == (R : R)-lr : [(DR). R]. (23) 
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Note that taking the exterior derivative of Eq. (22c) 
gives 

D A f = 0, (24) 

which is the Rainich differential relation. On the other 
hand, Eq. (24) implies that there exists a real function 
cp such that Eq. (22c) holds. 

By making a substitution from Eq. (21), one can 
get Eq. (22a) from (3) and vice versa. By taking a dot 
product with K and using Eq. (8), one can get Eq. 
(22b) from (22a) and vice versa. 

We shall now show the equivalence of Eqs. (22b) 
and (22c). One-half the imaginary part of Eq. (22b) is 

0= (K : K)-I(D. K). K + (K* : K*)-I(D. K*). K*, 

and the real part is (25a) 

Dcp = 2i[(K: K)-I(D. K). K - (K*: K*)-l 

x (0. K*). K*). (25b) 

With the aid of Eqs. (8), (6), (17), (19), and (20), 
Eq. (25a) becomes 

0= 4(K : KK* : K*)-I[(D. K). K. K* • K* 

+ (0 • K *) • K * • K . K) 

= 4(K: KK* : K*)-I[D. (K. K*)]. K. K* 

= (R : R)-I(D • R) . R. (26) 

However, the Ricci tensor always satisfies D· (R -
tRs l4)= 0, and one of the Rainich algebraic conditions 
is R. = 0; thus D· R = O. Consequently, Eq. (26) is 
always true and imposes no new restrictions on R. 
We now turn to Eq. (25b), which, by virtue ofEq. (18), 
can be expressed as 

Dcp = tiD In [(K* : K*)(K : K)-l] 

- (K : KK* : K*)-lr : [K* : K*(DK). K 

+ K : K(DK*). K*]. (27) 

Proceeding in a similar fashion as before and using 
Eqs. (8), (6), (14), and (19), we get 

- [(DK). KK* : K* + (DK*). K*K : K] 

= 4[(DK) • K . K * • K * + (OK *) . K * . K • K) 

= 4[(DK). K* + (DK*). K]. K. K* 

= 4[0(K. K*») . K· K* = (l67T)2K-2(OR). R. 

Substituting this result back into Eq. (27) and using 
Eq. (20), we arrive at Eq. (22c). 

Finally, substitution of Eq. (21) into Eq. (19) gives 
Eq. (1). This completes the proof of the necessity and 
sufficiency of the Rainich differential relation on R in 
order that the dyadic function G satisfying Eqs. (1) 
and (2) can be further restricted to satisfy Eq. (3). In 
particular, K can be modified to make K: K real 
without changing Eq. (19) [for example, by choosing 

K = (87TT/K)!G with G defined in accordance with 
Eq. (58) of I); then Eq. (22c) becomes 

Dcp = f, (28) 

and integration of Eq. (28) gives 

cp(x) = ('" f(x) • dx + cp(xo), (29) 
j",o 

which determines cp(x) to within an additive constant. 

1 M. Rosenbaum and C. P. Luehr, Ann. Phys. (N.Y.) 60, 384 
(1970). 

• Either Rs = 0 or Ts = 0 implies that the Einstein field equation 
reduces to R = K T. 

3 The complex conjugate of a complex dyadic C is denoted by 
C*. The dual *A of an antisymmetric dyadic A is given by *A = 
!r : A, where r is the totally antisymmetric tetradic defined in
trinsically in r. Additional notation used in this paper are the 
transpose BT of a dyadic B, the scalar invariant Cs of a dyadic C, 
the unit dyadic I., and the covariant gradient operator D. 

• Equation (3) is a form of Maxwell's equation. This equation 
and its complex conjugate equation D· G* = 0 are easily seen to 
be equivalent to the more familiar form of Maxwell's equations, 
D • F = 0 and D· *F = 0, in terms of the electromagnetic field 
tensor F, if we set G = F - i *F and G * = F + i *F. It also follows 
that Eq. (I) is equivalent to a better known expression T = 
(87T)-1(F. F + *F • *F) for the electromagnetic energy-momentum 
tensor. 

a Note that, by virtue of Eq. (16), (a. DN*). M is symmetric; 
therefore, r : [(a. DN *) • M) = O. This explains why the last term 
in Eq. (11) does not occur in the particular case given by Eq. (14). 

• Equation (17) makes possible a very easy proof of D· T = 0 
from the expression for T given by Eq. (I), where G satisfies Eqs. 
(2) and (3). The proof is 

D· T = (87T)-lD. (G. G*) = (87T)-1[(D. G). G* + (D· G*). G) 

=0. 

7 L. Witten ["A Geometric Theory of the Electromagnetic and 
Gravitational Fields," in Gravitation: An Introduction to Current 
Research, edited by L. Witten (Wiley, New York, 1962») also used 
the dyadic function K (in component form) in his proof of the 
necessity and sufficiency of the Rainich differential relation. 
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The constants of the motion of the linear Lagrangian system ~ + A~ + HI;(t) = 0 are shown to 
generate a useful class of orthogonality relations. For systems with complete sets of eigenvectors, these 
are used to derive the expansion coefficients for arbitrary initial data. We show that every stable system 
possesses a complete set of eigenvectors and that this set is the union of two basis sets. 

I. INTRODUCTION 

In several earlier papers,I-3 we established orthog
onality and completeness properties for the eigen
vectors of the gyroscopic Lagrangian system 

~ + A~ + H~(/) = 0 (I) 

in the special case H ~ O. The present article assumes, 
as before, that Hand iA are linear time-independent 
Hermitian operators on and into the complex Hilbert 
space E; however, we now drop the restriction that 
H ~ 0 and assume E to be finite dimensional with 
dim E = n. We consider the class V of Hermitian 
operators which are constants of the motion of the 
system, construct infinitely many of these, and show 
that the eigenvectors possess useful and general 
orthogonality relations with respect to the operators 
in V. For systems with complete sets of eigenvectors, 
the expansion coefficients are determined for arbitrary 
initial data. We find that the orthogonality and 
completeness properties obtained previously for 
systems with H> 0 generalize to arbitrary stable 
systems. In particular, it is shown that every stable sys
tem admits of a complete set S of 2n eigenvectors with 
real eigenvalues, where S is the union of two sets 
SI and S2' each of which forms a basis for E. The 
sets SI and S2 are orthonormal with respect to a 
positive definite "weight" operator P, and the con
tents of these sets are shown to satisfy self-adjoint 
eigenvalue problems of the form wP ~ = Q ~, where Q 
is Hermitian, so that the usual variational principles 
obtain. 

We shall employ the following notation: The inner 
product on E will be denoted by ( , ), the norm by 
II II, and the adjoint of a linear operator G will be 
denoted by Gt. 

II. THE EQUIVALENT FIRST-ORDER SYSTEM 
AND ITS CONSTANTS OF MOTION 

We begin by converting Eq. (1) to an equivalent 
first-order system in the Hilbert space E2 == E x E. 
The elements of E2 will be denoted by two-component 
column vectors ~ = (~:), where ~1' ~2 E E, the inner 

product 'in £2 will be denoted by <" 'fJ) = ('1, rlI) + 
a2' 'fJ2), and the norm in £2 will be denoted by II 112' 

Let ~(/) E E for I ~ 0 be a solution of the system 
~ + A~ + H~(I) = 0 for 1 ~ 0 satisfying the initial 
data ~(O+) = ~o, ~(O+) = ~o. Then it is readily 
verified that W) == (Wl) E £2 for t ~ 0 is a solution 
of the system 

~ = WW), 1 ~ 0, (2) 

satisfying the initial data ,(0+) = '0 == (~~), where 
W == (_~ !A) maps E2 into itself. We note that the 
unique solution of Eq. (2) for the initial data So is 
given by '(I) = eWt,o, exists for every '0 E £2, and is 
infinitely often differentiable. If W) = (~:l:l) satisfies 
Eq. (2) and the initial data ,(0+) = (j~), then ~(I) = 
'1(/) satisfies Eq. (1) and the initial data ~(O+) = ~o, 
~(O+) = ~o. Furthermore, ~(/) = '2(1) also satisfies 
Eq. (1). It follows that our first- and second-order 
systems are both stable or both unstable, i.e., each 
solution ~(t) of Eq. (I) satisfies II ~(t)11 ::::;; M for some 
constant M and all I ~ 0 if and only if each solution 
'(I) of Eq. (2) satisfies II W)112 ::::;; N for some constant 
N and all I ~ O. We summarize these results in .the 
following theorem. 

Theorem 1: Let ~(t) and '(I) be solutions of Eqs. (1) 
and (2), respectively, and let them satisfy the initial 
data ,(0+) = (~lgtl) = (~~) E E2. Then 

W) = (~(t») = eWt(:o) , t ~ O. (3) 
W) ~o 

Solutions of Eqs. (I) and (2) exist for arbitrary 
initial data (io) E £2, are unique, and are infinitely 
often differentiable. The system (1) is stable if and 
only if the system (2) is stable. 

The orthogonality relations derived in Sec. III 
depend upon the existence of a certain class V of 
Hermitian operators which are constants of the motion 
of the system { = W~. To be precise, we define V to 
be the class of all Hermitian operators G on and into 
E2 such that d<t G~)/dt == 0 for every solution ~(t) 
of Eq. (2). One important element of V is the operator 

1116 
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L == C-~A -;/), with the inverse L-l = C~ £1). Some 
useful properties of the class V are given in the next 
theorem. 

Theorem 2: 

(A) V is a linear vector space over the real numbers. 
(8) G E V if and only if G and iGW are both 

Hermitian. 
(C) LEV. 
(D) G E V if and only if G = LF + FtL, where F 

commutes with W. 
(E) IfG E V, then G(iW)" E V for all n = 1,2,3,···. 

Proof: Statement (A) is obvious. Let W) satisfy 
~ = W, for t ~ 0, with ,(0+) = '0' and let M and 
F be two linear operators on and into £2. Then 

!!.. <" MFO dt 

= <t MFO + <" MF~> 
= <W" MH> + <" MFW,> 

= <" [WtMF + MFWm 

= <" {M[FW - WF] + [MW + WtM]FW, 

t ~ 0. (4) 
We set M = G and F = I to obtain 

!!.. <" G,> = <" [GW + W
t 
Gm, t ~ O. (5) 

dt 

Let G and iGW be Hermitian. Then GW + wtG = 0 
so that G E V by Eq. (5). 

Conversely, suppose G E V, so that the left-hand 
side of Eq. (5) vanishes. Therefore, <'0' [GW + 
wtGno> = 0 for every solution 'Ct) of Eq. (2), and, 
since solutions of (2) exist for arbitrary initial data 
'0 E £2, we must have GW + wtG = 0, which 
implies that iG W is Hermitian. This proves (B). 
Statement (C) follows from (8) since Land iL W = 
- (~ Y) are both Hermitian. Now suppose that 
G = LF + Ft L, where F commutes with W. Then 
G is Hermitian, and Eq. (4) with M = L gives 
d(" LFO/dt = O. Hence 0 = d(2 Re <t LF'»/dt = 
d(" [LF + FtLWldt, so that G E V. Conversely, 
let G E V. Define F == ~L-IG, so that LF = !G = 
FtL and G = LF + FtL. Equation (4) with M = L 
and t = 0+ yields 

° = ! !{ <" G,> = !{ <" LFO 2 dt dt 

= ('0' L[FW - WFgo>, 

and therefore the right-hand side must vanish for all 
'0 E £2. This implies that FW = WF, which completes 
the proof of (D). Finally, if G E V, G(iW) is Hermitian 
by (B). Setting M = G and F = iW in Eq. (4), we 
obtain d(" GiWOldt = 0; thus G E V implies GiW E 

V, so that G(iW)" E V for all positive integers n. 

The existence of a positive-definite operator P E V 
implies that the system (2) is stable and that its 
solution can be reduced to an eigenvalue problem of 
the form wP'rj = Q'rj, where Q is Hermitian. Indeed, 
if such a P exists, then for every solution '(t) of Eq. 
(2), we have 

where 

~ == inf<'rj, P'rj> > 0. 
E2 ('Yj, 'rj> 

The insertion of a solution of the form '(t) = 
1} exp (iwt) into Eq. (2) yields, after multiplication by 
P, wP'rj = -iPW'rj, where -iPWis Hermitian by The
orem 2(B). Thus the construction of a positive-definite 
element of V is, whenever possible, obviously highly 
desirable. Unfortunately, although we show in Sec. 
IV that V always contains a positive-definite P if the 
system is stable, there seems to be at this moment no 
direct way of computing P in the general case with
out first computing the eigenvalues and eigenvectors of 
W. In any given case one might try his luck with poly
nomials of the form L[L~' ak(iW)k] with ak real [every 
such operator is in V by Theorem 2(A) and (E)]; 
indeed, a positive-definite operator of this form always 
exists with N S 2n if the system is stable and the 
eigenvalues of Ware distinct. For example, if there 
should exist a real number rx. such that ociA + H > 11.2, 

then one can readily verify that L( - 11. - iW) is 
positive definite. 

III. ORTHOGONALITY RELATIONS 

We assume solutions to Eq. (2) with a time depend
ence of the form exp (iwt), where w is a real or 
complex number, and Eq. (2) yields the eigenvalue 
problem 

w'=T{ (6) 

for the eigenvalue wand corresponding eigenvector 
, (;6 0), where T == -iW = (/k i~)' We note that 
the adjoint of T is given by Tt = (? -i~H), LT = K == 
(~ Y) E V, and that the class V consists of all Hermit
ian operators G on and into E2 such that GT is 
Hermitian [by Theorem 2(B)]. 
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We define S(JJ == g I { E £2, w{ = Tn and S! == 
{{ I {E £2, w{ = TtQ. If S c: E2 and G is any linear 
operator on and into £2, then G(S) == g I { = G(~) 
for some ~ E S}. The complex conjugate of w is 
denoted by (I). 

Theorem 3: 

(A) dim sl = dim S(JJ' 
(B) dim Sm = dim S(JJ' 

Let G E V. Then: 

(C) S). is orthogonal to G(S(JJ) if A ¢ W. 
(D) sl ~ G(S(JJ)' If G is invertible, then sl = G(S(JJ)' 
(E) For real w, there exists a basis for S(JJ consisting 

of m == dim S(JJ vectors Sl"", Sm such that 
(Sk,GS I> = YI~kl' where YI = ±I or 0, 1=1, 
2, ... ,m. 

(F) For nooreal w, there exist bases gl" .. , 'm} 
and {eI " .• , em} (m == dim S(JJ = dim Sa;) of Sw and 
Sm, respectively, such that (Sk' G{l> = 0, <ek, Gel) = 
0, and (ek' Gs I > = PkOW k, 1= 1, ... ,m,where Pk = 
1 or 0, k = 1, ... , m. 

Proof' Let G E V and 'E G(Sw)' Then ,= G~, 
where w~ = n. Hence 

(os = wG~ = Gn = TtG~ = Tt" (7) 

which implies that {E sl. Now suppose that G-l 
exists, let 'YJ E sl, and set P == G-1'YJ. Then wGp = 
w'YJ = Tt'YJ = TtGp = GTp. Hence p E S(JJ and 'YJ = 
Gp E G(Sw), which proves (D). Since LEV and L-l 
exists, we have L(Sw) = Sl and dim Sw = dim sL. 
Statement (8) now follows at once from the well
known theorem that the null spaces of a linear trans
formation and its adjoint have the same dimension 
(for finite-dimensional E). Now suppose S E G(S(JJ) 
and rES).. We form the inner product of Eq. (7) with 
r to obtain w(Lr) = (Tt{,r) = <{, Tr) = A({,r), 
which yields (C). Let w be real, and let PI be the 
projector onto SO} . Then Sf» is an invariant subspace for 
the Hermitian operator P1GP1 , and there exists a 
basis for S(JJ consisting of m = dim S(JJ orthonormal 
eigenvectors ~1"'" ~m of P1GP1 satisfying Ak~k = 
P1GP1~k' Ak real, k = 1,2,'" ,m. We define 

{~k' Ak = ° 
Sk =! ' k = 1,2, ... , m. 

Ak- ~k' Ak ¢ ° 
Then <{k' Gsz) = (Sk, PIGP1SI) = YkOkl' where 

{ 

0, Ak = ° 
Yk = 1, ~ > 0, 

-1, Ak<O 

which verifies (E). It remains to prove (F). Suppose 
that w is not real. Let m ;: dim So; = dim Sf»' r ;: 
dimG(Sw), N == {~I ~E Sw, G~ = O}, S == {~I ~ 
G(SO}), ~ 1.. So;}, S be the orthogonal complement of S 
with respect to G(S(JJ) , q == dim S, and P be the 
projector onto S(jj' Then dim N = m - r, dim S = 
r - q, and IIP'YJlla > ° for all nonzero 'YJ E S. If q = 0, 
G(S(JJ) 1.. S(jj, and we simply choose e1' •.. , ~m and 
Sl' ... , Sm to be any orthonormal bases of Siii and 
S(JJ' respectively. Suppose q > 0. Choose 'YJ1 E S so 
that IIP'YJlllz = 1, and take el = P'YJI' For 1= 2, ... ,q, 
choose 'YJI E S so that (1]1' ek) = ° for k = 1,2, ... , 
1- 1, where ek == P'YJk, k = 1,' .. ,q. Let {ea+l' '" , 
em} be an orthonormal basis for the orthogonal 
complement of the span of al" .. , eq}with respectto 
S(Jj, let {1]Il+1' ... , 'YJr} be an orthonormal basis for S, 
choose {1" .. , {r from SO} so that 1]k = G({k)' k = 
I, 2, ... , r, and let gr+1' ... , Sm} be an orthonormal 
basis for N. Then {'YJI, ., . , 'YJr} is a basis for G(SO}), 
gl,"', Sm} is a basis for S(JJ' {~1"'" em} is an 
orthonormal basis for Siij, and (~k' G{l) = PkOkZ, where 

Pk =' " {
I k = I '" q 
0, k = q + 1, ... , m' 

Since w ¢ W, (C) implies that (Sk' G{l) = ° and 
(~k> Gel) = ° for k, I = I, 2, ... ,m. This completes 
the proof of Theorem 3. 

In general, since eigenvectors corresponding to 
distinct eigenvalues are linearly independent, d == 
L(JJ dim SO) ~ 2n. Let G E V. Theorem 3 permits us 
to select our eigenvectors as follows: For each eigen
value w with 1m w > 0, choose bases for S(JJ and So; 
so that (F) holds, while, for each real eigenvalue w, 
choose a basis for SO) so that (E) holds. Let C denote 
the union of the bases thereby selected for the eigen
spaces S(JJ with 1m w > 0, let e denote the union of 
those bases selected for the corresponding eigenspaces 
Sa;, and let R denote the union of the bases selected 
for the S(JJ with 1m w = 0. Then C and e each consist 
of 

r == 2 dimS(JJ 
Im(JJ>O 

linearly independent eigenvectors, and we enumerate 
the contents of these sets as C = {'YJl' 1]2, ••• , 'YJr} and 
C = {til' ... , tlr} so that <1]k' GIll) = PkOkl for k, I = 
1,2, ... ,r. The set R consists of d - 2r linearly 
independent vectors, which we enumerate as R = 
gl, ... ,'d-2r} so that <{k' G'l) = YzOkl for k,l = 
1,2, ... ,d - 2r. By combining these results and using 
Theorem 3(C), the d eigenvectors thereby selected are 
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linearly independent and satisfy the following orthpg
onality relations: 

<rJk' GrJ,) =~, <~k' G~,) = O}, (8) _ k,l=l,···,r, 
<rJk' Grit) = PiJkl 

<rJk' G',) = 0, <~k' G'l) = 0, k = 1, ... , r, 
I = 1, ... , d - 2r, 

<'k,G'I)=yijkl' k,l= 1,···,d-2r, 

where Pk = 1 or ° and Yk = ± 1 or 0. This leads us to 
the following definition: A set of d linearly independent 
eigenvectors {rJl' ... , rJr, ~1' ... ,qr, '1' ... , 'd-2r} 
such that 

TrJk=o.krJk' Imo.k>O, k=I,···,r, 

T;lk = o.k~k' k = I, ... , r, 

T'k = Wk'k' 1m Wk = 0, k = I, ... , d - 2r, 

and satisfying Eqs. (8) for some G E V is said to be 
G-canonical. If, in addition, d = 2n, then we say that 
the set is a complete G-canonical set. Note that if ~ is 
an element of a G-canonical set, then G ~ is orthogonal 
to all elements of the set except possibly one; hence, if 
G is invertible and if the set is complete, then no Yk or 
Pk can be zero, i.e., Yl = ± I and Pk = 1 for 1= 
1 , ... , d - 2r and k = 1, ... , r. 

Theorem 4: Let d == Lw dim Sw = 2n (i.e., suppose 
that the eigenvectors of T span £2) and let G E V be 
invertible. Then there exists a complete G-canonical 
set of eigenvectors {rJl, ... , rJ.. 111, ... , q., '1" .. , 
'2(n-rl} satisfying Eqs. (8) with Pk = I, k = 1, ... , r 
and Yk = ± I, k = I, ... , 2(n - r). For every' E £2, 
we have 

2(n-r) r ,= L IXk'k + L (13krJk + Pk~k) (9) 
1 1 

and 
2(n-r) r 

<" G,) = L IIXkl
2 

Yk + 2 Re L PkPb (to) 
1 1 

where 

IXk = <'k, G')y;;\ 13k = <qk' G,), Pk = <rJk' G,). 

(11) 

Proof It only remains to verify Eqs. (10) and (II), 
which follow immediately from Eqs. (8). 

The operator L is always invertible and is a con
venient element of V with which to form a canonical 
set of eigenvectors. The operator K might also be used, 
but K suffers from the limitation that K-l exists only 
if H is invertible; furthermore, since K = LT, the 
eigenvectors of an L-canonical set exhibit their useful 

orthogonality properties with respect to K as well as 
L. The orthogonality relations of an L-canonical set 
can be rewritten in terms of £ alone without any 
reference to £2 by noting that' is an eigenvector of T 
with eigenvalue W if and only if , = (its)' where ~ ;#- ° 
and Hw~ == (w 2] - wiA - H)~ = 0. Such a nonzero 
~ satisfying Hw~ = ° will be called an eigenvector of 
Eq. (1) with eigenvalue OJ, since ~e;(JJt satisfies Eq. (I). 
Thus, if {'I]I , ••• , '1] .. iiI, ... , il .. '1' ... , 'd-2r} is an 
L-canonical set, we have 

'>l = ( <Pk) 1, = ( $k) k = 1 '" r ',k .n, -1..' k .n.,i' " , 
1 :'~k'f'k I ~lk'f'k 

r = ( ~l) 1= 1 ... d - 2r (12) 
'01 '.1:' " , 

IW61 

where <Pk' ¢k' and ~l are eigenvectors of Eq. (I) with 
eigenvalues o.k' o.k, and OJ I , respectively. The orthog
onality relations (8) can now be expressed directly in 
terms of £; for example, the last of Eqs. (8) becomes 

(Wk + (l)l)(~k' ~l) - (~k' iA~I) = YkOkl' 

k,I=I,···,d-2r. (13) 

For a complete L-canonical set and '0 = (n E £2, 
Eqs. (8)-(11) give 

(14) 

2(n-r) r 

.~ = L IXk iWk~k + L (13k io.k<Pk + PkiQk$k)' (15) 
1 1 

21m (x, x) - (x, iAx) = <'0, L'o) 

with 

2( n-r) r 

= L 11X/c1
2 

Yk + 2 Re L PkPk' 
1 1 

(x, Hx) + (x, x) = <'0' K'o) 
2(n-r) 

= L IIXkl
2 

WkYk 
1 

r 

(16) 

+ 2 Re L PkPko.k' (17) 
1 

IXk = (~k' (Wkx - iAx- iX»y~l, 

k = 1, ... ,2(n - r), (18) 

13k = ($k' (nkx - iAx - i.~», k = 1, ... ,r, (19) 

Pk = (<Pk' (Qkx - iAx - ix», k = 1,' . " r, (20) 

and 
2(n-r) 

Ht) = L IXk~k exp (iwkt) 
1 
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is the unique solution of Eq. (1) satisfying the initial 
data ~(o+) = x, t(O+) = x. Equations (16) and (17) 
are equal, respectively, to the constants of motion 

1($) (~)\ '. \ g ,L t / = 2 1m (~, $) - ($, lA $) 

and 

1($) ($)\ . . \ t ,K t / = (~, H$) + (;, $). 

IV. STABLE SYSTEMS 

We now turn our attention to an important class of 
systems which always possess complete canonical sets 
of eigenvectors, namely, the class of stable systems. 
This fact is demonstrated in Theorem 5, and we show 
in the sequel that the eigenvectors of a complete L
canonical set possessing positive y's form a basis for 
E, as do those with negative y's. Finally, we show that 
H", == w2 - wiA - H factors into (w - DD(w - DI ), 

where DI and D2 can be used to put the eigenvalue 
problem into self-adjoint form [see Eqs. (30)-(36)J. 
This provides variational principles for the eigen
values; unfortunately, the construction of the perti
nent operators requires (at least at the present stage of 
development) the knowledge of one or the other of the 
basis sets of eigenvectors. Duffin4•5 has given minimax 
principles for the special subclass of stable systems 
where A and H satisfy ($, iA$)2 + 4($, $)($, H~) > 0 
for all ~ ¥= 0, and these minimax principles are 
formulated directly in terms of A and H; however, it 
is a simple matter to find examples which show that 
these minimax principles are not valid for the general 
class of stable systems. 

Theorem 5: The following statements are equivalent: 
(A) System (2) [or system (I)J is stable. 
(B) All the eigenvalues of T are real and, for any 

G E V, there exists a complete G-canonical set of 
eigenvectors. 

(C) V contains a positive-definite operator P. 

Proof' We show that (A) implies (B), (B) implies 
(C), and (C) implies (A). Suppose the system is stable. 
By Theorem 3(B), the eigenvalues of T occur in 
complex conjugate pairs; hence, if all the eigenvalues 
of T are not real, there exists an eigenvalue w with 
1m w < O. Let 'YJ be the corresponding eigenvector. 
Then '(t) = 'YJei"'t satisfies Eq. (2) and is exponentially 
unbounded. Thus (A) implies that all the eigenvalues 
of Tare real. Now E2 is the direct sum of the subspaces 
of generalized eigenvectors of T corresponding to the 
eigenvalues w; hence, if!", dim S", < 2n,' there exists 
a generalized eigenvector 'YJ of rank 2, i.e., for some 

eigenvalue w there exists 'YJ E £2 such that (T - w)'YJ ¥= ° and (T - w)2'YJ = 0. Then W) == [it(T - w)'YJ + 
'YJJ exp iwt satisfies Eq. (2) and is unbounded since W 
is real. Thus (A) implies (B). Suppose now that (B) 
holds, so that there exists a complete L-canonical set 
of eigenvectors {'I"'" '2n} with real eigenvalues 
WI, ••• , W2n . For, E E2, we define the linear operator 
P by 

2n 
p, == L (L'k' ')L'k' (21) 

Then 
1 

2n 2n 

(', P,) =! (L'k' D(', L'k) = ! I(L'k' DI2 ~ 0, 
1 1 

where the equality holds if and only if , = 0, since the 
'k are linearly independent and L is invertible. 
Furthermore, 

2n 
G, pn> =! (L'k' TDG, L'k) 

1 

2n 
= ! <'k' LTD<', L'k) 

1 

2n 
= L (Lnk' ')<" L'k) 

1 

2n 
= L wk(L'k' ')(', L'k) 

1 

2n 

= ! Wk I(L'k, D12, 
1 

which is real. Thus P and PT are Hermitian and P is 
positive definite. By Theorem 2(B), P E V. That (C) 
implies (A) was demonstrated at the end of Sec. II. 

Lemma 1: Let ~I' ••• , $ m be m linearly independent 
eigenvectors of Eq. (1) with real eigenvalues W k , where 

(Wk + WI)(~k' ~1) - (;k' iA~I) = Ykbkl' 
k, I = 1, ... ,m. (22) 

Let F(x) be the m X m matrix defined for all x E 

(- 00,00) by 

Fk1(X) == X2($k' $/) - X($k' iA$/) - (;k' H$/), 
k,l=l,···,m. (23) 

Then, if Yk > ° for all k = 1, ... , m, F(x) is positive 
definite for x > max1<k<mWk, while if Yk < 0 for all 
k = 1, ... ,m, then -F(x) is positive definite for 

x < minI<;k<;mwk' 

Proof' Equation (22) implies <'k, L'l) = YkbkZ' 
where 
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Then 

(;k' H;z) + 0VVZ(;k' ~l) = ('k' K'z) = ('k' Lnz) 

= WZ('k' L'z) = w1ylJkZ ' 
(24) 

Eliminating (~k' H~I) and (~k' iA~I) from Eq. (23) by 
means of Eqs. (22) and (24), we obtain 

Fkl(X) = (rk, r 1) + (x - (1)YkOkl' (25) 

where rk == (x - Wk);k' k = 1,'" , m. The vectors 
~1' ... , ~m are linearly independent; thus, if x ¥= wk 

for all k = I, ... , m, the m vectors rk are also linearly 
independent and therefore the m x m matrix R(x) 
defined by Rkl == (rk, r l), k, I = I,"', m, is positive 
definite. The m X m matrix M(x) defined by Mkl == 
(x - (l)1)YkOkl' k, I = 1,"', m, will be positive 
definite if either of the following holds: (1) x> 
max1<k<m (l)k and Yk > 0 for all k = I, ... , m or (2) 
x < miu1 <:k<m Wk and Yk < 0 for all k = I,'" , m. 
Thus the hypothesis of the lemma implies that F(x) 
is the sum of two positive-definite matrices, and the 
proof is complete. 

Lemma 2: Let ;1' ... , ~q be q eigenvectors of Eq. 
(1) with distinct real eigenvalues WI' ... , w q • 

(A) If Yk == 2Wk(~k' ;k) - (;k' iA;k) > 0 for all 
k = I, ... , q, then the vectors ~1' ••• , ;q are linearly 
independent. 

(B) If Yk < 0 for all k = 1, ... , q, then the vectors 
~1' ••• , ;q are linearly independent. 

Proof' (A) The proof is by induction. Suppose that 
Yk> 0 for all k = 1, ... ,q. We assume for con
venience that WI < W2 < ... < wq. The vector ;1 
forms a linearly independent set. Suppose that the 
vectors ~1' ••• , ~ m are linearly independent for some 
m < q. Since the W k are distinct, Theorem 3(C) 
implies that Eq. (22) holds, and therefore the previous 
lemma guarantees that the m x m matrix F(x) , 
defined by Eq. (23), is positive definite for x > W m • 

If the set gl, ... , ~m+1} is linearly dependent, then 
~m+1 = L~ rJ.k;k' and the product of F(W m+1) with the 
nonzero column vector 

gives 
m 

[F(wm+1)rJ.h = .2 rJ. I[W;"+lak' ~z) 
1=1 
- wm+Mk' iA;l) - (;k, H;l)] 

= (;k' (W;"+1 - wm+1iA - H);m+1) = 0, 
(26) 

k = 1, ... , m, i.e., F(wm+1)rJ. = 0 for rJ. ¥= 0, which 
contradicts F(wm-u) > O. Hence the linear independ~ 
ence of the vectors ~1"", ~m implies the linear 
independence of the vectors ;1' ... , ~ m+1' The proof 
of (B) is similar, except that it is more convenient to 
assume here that WI > (1)2 > ... > wq • 

Theorem 6: Let ;1" .. , ~ m be m eigenvectors of 
Eq. (1) with real eigenvalues W k satisfying Eq. (22). 
If the Yk are either all positive or all negative, then 
gl, ... , ;m} is linearly independent. 

Proof: Let all the Yk be of one sign. The set {WI' ..• , 
wm} consists of r :::; m distinct real numbers 121 , ••• , 

nr • For each eigenvalue 

wE {WI' ... ,Wm} = {n1 , ••• ,nr }, 

we define J(w) == {k I W k = W, 1 :::; k :::; m}. Let 
L~ rJ.k~k = O. Then L~ 1J!1 = 0, where 

1J!z == L rJ.,ik' 1= 1, ... , r. (27) 
J(!ll) 

Suppose some 1J!z ¥= O. We may then assume, without 
loss of generality, that 1J!z ¥= 0 for I = 1, ... , q and 
1J!1 = 0 for 1= q + 1, ... , r, so that L~ 1J!z = O. The 
1J!1, ... , 1J!q are eigenvectors of Eq. (1) with distinct 
real eigenvalues 121 , ••• , nq , and Eq. (27) gives 

r l == 2nzC1J!I' 1J!z) - (1J!z, iA1J!I) 

L <X jrJ.k[2nMj, ;k) - (;1' iA;k)] 
1.k€J(flI) 

= L lrJ.kI 2 Yk' 1= l,"',r 
J(fl,) 

by Eq. (22), so that the r z have the same sign as the 
Yk' Therefore, Lemma 2 implies that {1J!1,'" , 1J!q} is 
linearly independent, which contradicts L~ 1J!z = O. 
Hence 

0= 1J!1 = L rJ.j;j, 1 = 1, ... , r. 
J(fll) 

Therefore, for each k E J(n l), 

0= (;k' [2nz - iA] L rJ.j;j) 
Ji!ll) 

= L rJ. j[2nMk' ;j) - (;k, iA;j)] 
J(fld 

= rJ.kYk 

by Eq. (22), so that rJ.k = 0 for k = I,"', m, and 
{;1, ... , ;m} is linearly independent. 

Theorem 7: Every complete L-canonical set of 
eigenvectors 

~ _ ( ~k ) 
k - iWk;k 

with real eigenvalues W k can be enumerated so that 

(~k' L~I) = YkOkl' k, I = 1,··· ,2n, (28) 
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where 

{
I k=l,"·,n 

Yk = _ 1 k = n + I, ..• , 211 . (29) 

Each of the sets {~1' ... , ~n} and gn+l' ... , ~2n} is a 
basis for E, and there exist linear operators Dl and D2 
from E into E with the following properties: 

Dl + D~ = iA, D~Dl = -H, (30) 

w2 
- wiA - H = (w - D~)(w - DI ), (31) 

P == DI - D2 > 0, (32) 

(~k' N l) = bw 
k, I = t, ... , n, and k, I = n + t, ... ,2n, (33) 

(34) 
+ 

wkNk = (H + D~Dl)~k' k = t,· .. ,II, (35) 
t 

wkNk = -(H + D2D2)~k' k = n + t, .. ',211. 

(36) 

Proof" The 2n numbers Yk of a complete L-canonical 
set of eigenvectors 

v (~k) ~k = 
iWk~k 

with real eigenvalues W k assume the values ± I, 
k = I, ... , 2n, and the ~k satisfy Eq. (22) for k, 1= 
I, ... , 2n. The number of vectors in each of the 

disjoint sets SI == {~k I Yk = I} and S2 == {~k I Yk = 
-I} totals 2n; by Theorem 6, Sl and S2 are linearly 
independent subsets of E and hence contain no more 
than n vectors each, which implies that Sl and S2 both 
contain precisely n vectors. We can always label the 
'k so that SI = {~I' ... , ~n} and S2 = {~n+l' ... , 
~2n}, in which case Eqs. (28) and (29) hold. Let ~ E E. 
Since SI = gI' ... , ~n} is a basis for E, ~ = Z~ IXk~k' 
where the IXk are uniquely determined. We define D1 
by D1 ~ == Z~ IXkWk~k' Thus D J ~k = O)k~k' k = I, ... , 
n, and 

n 

(D 2 - iADl - H)~ = ~>k(D~ - iADl - H)~k 
1 

= ·~>k(wi - wkiA - H)~k = 0 
1 

for all ~ E E, so that H = (D1 - iA)D1. Equations 
(30) and (31) are now immediate consequences of the 
definition D2 == iA - DI· Let P == D1 - D2 = Dl + 
DI - iA. Then 

and 

(~k' Nt) = (D1~k' ~t) + (~k' [D1 - iAJ~t) 

= (~k' [Wk + WI - iAJ~Z) = bkl , 

k, I = 1, ... , n, 

n n 

(~, N) = Z iklXMk' N I ) = Z JIXkJ2 > ° for ~ ~ 0. 
1 1 

Now PDI = (D; + D1 - iA)D1 = D;DI + (D1 -
iA)D1 = DI D1 + H, and therefore 

t 
WkP~k = PDI~k = (H + DID1)~k' k = 1, ... , II. 

Let I =:; k =:; n, 11 + t =:;) =:; 2n; then 

(~k' [w j - D2J~j) = (~k' [w j + Di - iAJ~j) 

= (D1~k' ~j) + (~k' [Wj - iAJU 

= (~k' [Wk + Wj - iAJ~j) = 0, 

so that (w j - D2)~i is orthogonal to every vector in 
the basis Sl. Hence (D2 - W,.)~j = 0,) = n + 1,"', 
2n. Note that P = D1 - D2 = DI - Dl = iA -
D2 - DJ and thus, for n + I =:; k, I=:; 2n, we have 

(~k' Nz) = -(~k' (D~ + D2 - iA)~l) 

= -(~k' (Wk + Wz - iA)~z) = -Yk(jkl = 15k/> 

which completes the proof of Eq. (33). Since H = 
(D1 - iA)D1 = D1(DI - iA) = (D2 - iA)D2' 

PD2 = -em + D2 - iA)D2 = -DiD2 - H, 

which implies Eq. (36). 
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Let H = Ho + ).H, be the Hamiltonian of a system where). is a coupling parameter for the inter
action H, . The partition function Z = Tr exp (-PH) is then a function of both). and p. We investigate 
various general inequalities involving derivatives of log Z with respect to P and ).. 

I. INTRODUCTION AND SUMMARY 
OF RESULT 

where M, M1 , and M2 are given by 

M = ~2(HIHl)' HI = HI - (HI)' (6) 
Let us consider a Hamiltonian of form 

H= Ho + AHI , 
(1) Ml = M - -h:(34(KK), K = i[Ho, HI], (7) 

where Ho is an unperturbed (not necessarily free) 
Hamiltonian and AHI is an unspecified interaction 
with coupling parameter A. The thermodynamical 
partition function Z defined by 

Z = Tr exp (-~H) (2) 

is obviously a function of A as well as of (3 = l/kT, 
where k and T are the Boltzmann constant and the 
temperature, respectively. It is knowni that the in
equality 

02 

-2 log Z > ° OA -
(3) 

is valid irrespective of any dynamical detail. This 
inequality can also be derived as a direct consequence 
of the convexity theorem.2 

Equation (3) has been applied by Bogoliubovi in 
proving asymptotic exactness of the free energy 
expression for a system with four-fermion positive 
interaction. Kadanoff and Baym3 have shown an 
inconsistency of the random phase approximation 
and Hartree-Fock methods in some physical prob
lems by means of this inequality. Also, if AHI repre
sents the electromagnetic interaction of an isotropic 
medium with a constant external magnetic (or 
electric) field whose field strength is A, then Eg. (3) 
implies that the magnetic (or electric) susceptibility 
is always nonnegative, a result known4 for the case 
of the zero field limit. 

The purpose of this paper is to show that we can 
derive some generalizations of this inequality. Defining 
the expectation value of an operator Q by the standard 
formula 

(Q) = (l{Z) Tr [Q exp (-PH»), (4) 

we can first prove inequalities 

02 

M ~ oA210g Z ~ max (MI' M 2) ~ 0, (5) 

M2 = ~ I([C, Htl)12{([[C, l/], C+]) ~ 0. (8) 

In Eg. (8), the operator C is arbitrary. The upper 
bound (02{OA2) log Z = M in Eq. (5) is attainable if 
and only if Ho and HI commute3 with each other as in 
classical mechanics. Also, Eg. (7) indicates a measure 
of the deviation from the maximally possible value 
M for (02{OA2) log Z. Indeed, it suggests that the 
latter will asymptotically approach the maximal 
value M in the extreme high temperature limit ~ --+ O. 
We will give an application of Eg. (8) in the next 
section. 

With respect to the temperature dependence, we 
can prove inequalities 

0
2 

02 
1 2 (02 F )2 - log'; + - log Z + - + - R - > ° 0(32 0(32 (32.;}J o(3oA - , 

0
2 

[ (OF)2J 0
2 

1 0(32 log .; + (3 OA + 0(32 log Z + (32 ~ 0, 

where, for simplicity, we have set 

02 

; == (3-1 0).2 log Z ~ 0, 

F == -{J-llog z. 

(11) 

(12) 

(13) 

(14) 

Notice that F is the Helmholtz energy. In particular, 
Eq. (9) leads to an inequality 

J.. ( _ l)C > k R3 (OM)2 (15) 
41T ft v - }J op" ' 

where ft, C", and M are the permeability, specific heat 
at constant volume, and magnetization of the system, 
respectively. 

1123 
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If (j(w) represents any diagonal component of an 
electric conductivity tensor for frequency w, then we 
can also show an inequality 

()2 02 
(),82 10g Re (j(W) + (),8210g Z 

+ 1i2w2( 1 \2 > O. 
4 sinh (liw{J/2)J -

(16) 

Finally, if Eo is the ground state energy of the 
Hamiltonian H, then we find 

.£. log; + (Eo + .£ log z) <.!, 
0{J 0{J - ,8 

(17) 

.£.log Re O'(w) + (Eo + .£log z) 
0,8 0,8 

< liw . (18) 
- 1 - exp (-lipw) 

Details of these derivations as well as some more 
general inequalities will be given in the next section. 

II. FORMULATION AND DERIVATION 

In order to maintain generality, we will consider 
a general Hamiltonian of form 

n 

H = Ho + '2, AiHi (19) 
j=1 

rather than Eq. (1). If we choose n = 1, it will reduce 
to Eq. (1) and we will always then set 1,1 = A. 

First, taking a derivative of Z with respect to the 
jth coupling parameter Ai' we find 

oZ = -,8 Tr (Hi exp (-{JH». (20) 
OAj 

Notice that in obtaining Eq. (20) we need not worrt 
about possible effects of noncommutativity among 
operators H j and Hi' i = 0, I, ... , n, because of the 
cyclic invariance of the trace. Another way of deriving 
Eq. (20) is to start with the eigenvalue problem 

H In) = En In). (21) 

Although both En and In) depend in general upon the 
parameter A}, the well-known variational principle 
enables US5•6 to have 

oEn 
~ = (nl Hi In), (22) 

j 

where we normalized the state vector by (n I n) = 1. 
Rewriting Z as 

(23) . 

and taking its derivative with respect to Ai' we obtain 
Eq. (20) again when we use Eq. (22). 

Next, we would like to compute the second-order 
derivative. To achieve this, we use the imaginary time 
formulation7•

g and introduce the interaction and 
Heisenberg operators, respectively, by 

QiD(T) = exp (Ho'T)Q exp (-HOT), 

Q(T) = exp (HT)Q exp (-HT) (24) 

for an arbitrary Schrodinger operator Q. The well
known operator technique7•s then enables us to 
rewrite Eq. (20) as 

oZ . 
- = -{J Tr [exp (-{JHo)U({J, O)H~n(o)], (25) 
oA j 

where the transformation function U({J, 0) is given by 

U({J,O) == exp (PHo) exp (-{JH) 

= Texp (- rPdT~~;;"iH~n(T»)' (26) Jo J=1 

Taking the derivative of both sides of Eq. (25) with 
respect to Ai and re-expressing the final result in terms 
of Heisenberg operators, we find 

From this, we now compute 

0
2 

log Z iP 
- -:.-....::..:= = {J dT(H;(T)HlO», 

OAiOAi 0 

(28) 

where Di(T) is defined by 

D;(T) = exp (HT)fi j exp (-HT) = HiT) - (Hi>' 

(29) 
By means of Eq. (28), we could compute 

02 log Z/aA;OA j 

in terms7•8 of the familiar Feynman diagram tech
nique. However, we avoid the use of the perturbation 
method in this paper. 

Inserting the completeness condition In In) (nl = 1 
in the calculation of the integral in Eq. (28), we 
obtain 

02 

--logZ 
OAtOA j 

= Z-1{J2 2 rp( -PEn' -{JEm) (nl fii 1m) (ml Hi In), 
n.m 

(30) 
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where for simplicity we have set 

<p(x,y) == [1/(x - y)](e:l: - ell). (31) 

This equation is the starting point of our method. 
We may remark that Eq. (30) can also be obtained 
directly from Eq. (23) if we use a formulan 

02E __ n_ 

O},,;OA; 

= _~f 1 [(nl Hi Im)(ml Hi In) + (i ~j)], 
m Em - En 

(32) 

where the summation over m excludes the state 
m = n, and we have assumed that there is no degen
eracy of eigenvalues. The formula Eq. (30) reduces to 
the familiar second-order perturbation result4 if we 
set A = 0 with n = 1. (This n should not be confused 
with those specifying the energy eigenstates.) 

First, let us observe that <p(x,y) defined by Eq. (31) 
satisfies a well-known inequality 

!(e:l: + ell) ~ <p(x, y) ~ 0 (33) 

for arbitrary real numbers x and y. Then, after some 
simple algebra, it is easy to see that Eq. (30) gives us 
inequalities 

i ct 0
2 

log Z C
j 
~ 0, (34) 

U=l OAiOA j 

i Ci*(fJ2(HJij ) - 0
2 

log Z) Cj ~ 0 (35) 
;';=1 OAiOA; 

for arbitrary real or complex numbers C;, j = 1, 
"', n. 

Moreover, if we note another inequality 

o ~ <p(x, y) - He:l: + ell) ~ - 2
1
4 (x - y)2(~ + ell), 

(36) 
we can derive analogously 

~ C:t'(02Iog Z _ R2(H..H.) + -LR4(KK .») c. > 0 . k • :l,:l, 1-', 1 121-' " 1 _ , 
,.)=1 U/liU/lj 

where Kj is given by a commutator 
(37) 

(38) 

In particular, when we restrict ourselves to the case 
n = 1 with Al = A, then these inequalities give us 

02 

M ~ oA210g Z ~ max (0, M 1) ~ 0, 

where M and Ml are defined by Eqs. (6) and (7). 
The upper bound <p(x, y) = H~ + ell) in Eq. (33) 

is now possible only for x = y. Hence, the equality 
in Eq. (35) is possible if and only if ~7=1 CjHj has no 
nondiagonal matrix element, i.e., we must have 
~7=1 Cj [H, Hj ] = O. Especially for n = 1, this implies 
that the upper bound M in Eq. (5) is attainable if 
and only if Ho commutes with H 1 .3 Similarly, an 
equality in Eq. (34) is possible only when we have 
I7=1 C;Hj = O. Since we can eliminate all linearly 
dependent interactions, if any, from the beginning, 
we can assume without loss of generality that the n 
operators Hj , j = 1, ... , n, are linearly independent. 
Therefore, the equality in Eq. (34) is possible solely 
if we have C j = 0 for all j = 1,"', n. Hence, we 
conclude that 02 log Z/OAiOA j , i, j = I, ... ,n, re
garded as an n X n matrix is a symmetric and strictly 
positive matrix. As a consequence, log Z is a convex 
function of the parameters Aj , j = 1, ... ,n. There
fore, if we define 

Z(V) == Tr exp [-fJ(Ho + V)] (39) 

for an arbitrary operator V, we must then have an 
inequality 

'~IXj log Z(Vj) ~ log Z(~XjVj)' (40) 

where the x j ' j = 1, ... , n, are arbitrary nonnegative 
numbers satisfying the condition ~7=1 Xj = 1, I ~ 
Xj ~ O. Equation (40) can also be derived by means of 
the convexity theorem.2 

For simplicity, let us set 

1 02 

~ij == ---logZ. 
fJ OAtOA j 

(41) 

Since Eq. (34) is valid for arbitrary constants C j , we 
must have inequalities 

;ii;;j ~ (;i;)2, ;j) ~ 0 (42) 

for all i, j = I, ... ,n. As an application of these 
inequalities, let us consider the case n = 3 and 
identify ~~=1 AjHj as the electromagnetic interaction 
of an anisotropic medium with a constant external 
magnetic (or electric) field whose jth component is 
given by Aj,j = 1,2,3. Since the magnetic (or elec
tric) susceptibility tensor of the medium is given by 
;ij' we find that Eq. (34) or (42) shows the tensor to 
be always positive. 

Also, when we choose H4 = N to be the occupation 
number operator with - 24 = ft being the chemical 
potential of the system, Eq. (42) gives 

;ff(:;) ~ (:;}, (43) 

where n = -oF/oft is the particle number. 
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Next let x and y be two arbitrary real numbers and 
consider a quadratic form of x and y defined by 

Q(x, y) = Z-lfJ2!, cp( -fJEn, -fJEm) 
n,m 

x I(nl (iij - x - yH) Im)12. 
This is obviously nonnegative because of Eq. (33). 
When we minimize this expression with respect to x 
and y, we find 

02 02 (02 log Z 1 0 \2 
ofJ210g Z oA210g Z ~ OAOfJ - {J OA log Zr (44) 

This proves Eq, (9). Again if we identify AHI to be the 
external magnetic interaction, then it leads to the 
inequality (1S), 

In order to derive the inequalities (S) and (8), we 
consider an inner product 

n,m 

x (nl A+ Im)(ml Bin) (4S) 

for two arbitrary operators A and B. Since cp(x, y) is 
nonnegative, the familiar Schwarz inequality gives us 

(A, A)(B, B) ~ I(A, B)1 2• (46) 

Following the usual technique,lO.n let us, moreover, 
set B =[C, H] for another operator C. After a 
simple calculation, we find 

Z(A, A) Tr [C+, [H, C]] ~ fJlTr [C, A+]12. (47) 

If we use the upper bound (33) for cp(x, y), this gives 
the usual Bogoliubov inequalityl0.11 

!fJ(AA+ + A+A)([[C, H], C+J> ~ I([C, AJ>12. (48) 

In our case, we choose A = H j in Eq. (47) and note 
that (Hi' Hi) = 02 log Z/OAiOAj so that Eq. (47) 
leads to 

02 log Z I([C, H j J>1 2 

~ fJ + ~ 0. (49) 
OAiOA j ([[C, H], C J> 

This establishes Eqs. (S) and (8). It should be noted 
that C is an arbitrary operator. As an application of 
Eq. (49), let us consider an electromagnetic interaction 
of an isotropic medium where both constant external 
electric and magnetic fields are simultaneously 
applied. Then, choosing Aj to be the magnetic field 
strength in the z direction, we have 

HI = ! (Qi/2miC) [(Xi x Pi) + CJi]a, (50) 
i 

where the summation is extended to all particles with 
electric charge Qi and mass m i in the medium and CJ 
is the Pauli spin matrix. If we choose the arbitrary 
operator C specially to be equal to the center-of-mass 

operator 

c = ~ mixi / ! mi , 

then Eq. (49) gives' • 

(1/47T)(/-t - 1) ~ (l/4mc2)[(E - 1)/41T]2E1. ~ 0, (51) 

where /-t, E, m, c, and E1. are the permeability, dielec
tric constant, mass density, velocity of light, and the 
electric field component perpendicular to the mag
netic field, respectively. If the electric field is applied 
perpendicular to the magnetic field, then Eq. (51) 
can be rewritten as 

2(/-t - 1)/(E - 1)2 ~ E2/El ~ 0, (52) 

where E2 is the total electric field energy contained 
in the medium and El is the total rest mass energy of 
all charged particles in the matter. Since E2/El is 
extremely small in general, Eq. (S2) is not practically 
useful. However, it demonstrates the fact that the 
permeability /-t must at least increase quadratically 
with the electric field. 

Finally, in order to derive inequalities involving 
derivatives with respect to fJ, we may state a corollary12 

of Bernstein's theorem for absolutely monotonic 
functions. A real f\lnction f(x) of a real variable x 
is called an absolute monotonic function of x in 
the interval a < x < b if we have d,,/(x)/dxn ~ ° for 
a < x < b and for all nonnegative integers n = 0, 1, 
2, .... We obviously have an inequality 

d 
dx logf(x) ~ 0. (53) 

But a corollary12 of Bernstein's theorem demands a 
less obvious fact, that if f(x) is absolutely monotonic 
over the whole negative axis ° > x > - 00, then 
logf(x) is a convex function in the interval, i.e., we 
must have 

d2 

dx210gf(x) ~ 0, 0 > x > - 00. (54) 

To illustrate this theorem, let Eo be the ground 
state energy of H so that we have En ~ Eo for all 
states In). Moreover, by identifying x = -fJ and 
setting 

f(x) = Z exp (fJEo) = ! exp [x(En - Eo)], 
n 

it is apparent that d,,/(x)/dxn ~ ° for all n = 0, 1, 
2, ... in the interval ° ~ x > - 00. Hence, I(x) is 
absolutely monotonic in the interval, and by the above 
theorem we must have Eq. (54), which is equivalent to 

02 

ofJ210g Z ~ 0. (55) 
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Of course, this relation can be easily obtained by a 
direct calculation since we have 

This proves Eq. (11). Moreover, if we set b = 0 in Eq. 
(64), we derive 

02 
- - --logZ = (HH), H= H - (H). 

0f32 
0

2 
[ (OF \2] 0

2 
1 

(56) of3210g ~jj + f3 0).) + of3210g Z + f32 ~ O. (66) 

However, we can derive more complicated inequalities 
as follows. First we note that a function defined by 

!Pnm(X) = !p(-{3En' -{3E",)exp({JEo), x = -(J, 

(57) 

is absolutely monotonic in the negative interval 
o ~ x > - 00, since we can rewrite 

rPnm(X) = fdt 

x exp {x[t(En - Eo) + (l - t)(E", - Eo)]). 

(58) 
Now, let us consider a function 

gij(X) = ! ! q'lnm(X)!P/k(X) 
n,m t,,,-" 

x I(nl H j 1m) CJ/ k - (II Hi Ik) CJ nm l2• (59) 

This function is also absolutely monotonic since 
products and sums of absolutely monotonic func
tions have the same property. Therefore, we must have 

d2 

dx210g gi/X) ~ o. (60) 

But Eq. (59) can be evaluated to be 

gJx) = {3-1Z2[~ii + ~jj + {3(~~ - ~~JJ exp (2{JEo), 

(61) 

where ~ij is defined by Eq. (41). Especial\y, when we 
set i = j = I with n = 1, we find 

0
2 

(0
2 

) 0
2 

2 0{32 10g 0).2 log Z + 2 0(32 log Z + (f ~ O. (62) 

This is nothing but Eq. (10). 
Similarly, another function h/x) given by 

hj(x) =! !Pnm(x) I(nl H j 1m) - Mnml 2 (63) 
n,m 

is absolutely monotonic for arbitrary constant b, 
so that we derive an inequality 

02 a2 

-2 log [{J-l~jj + (b - (Hi »21 + -2 log Z > 0, (64) 
~ ~ -
Since b is arbitrary, we can set b = + (Hj ) to obtain 

0
2 

0
2 

1 2 (0
2 
F )2 -10 .. -10 Z - - -- > 0 of32 g~}) + of32 g + {32 + ~jj f3 (Jf3o).j - ' 

(65) 

This is Eq. (12). Also, since Eq. (53) must be valid for 
I(x) = hj(x), it leads to 

o 
- 0(3 hi(3) ~ o. (67) 

Choosing b = - (Ht>, we arrive at Eq. (17). 
Final\y, Kubo's formula13 for the electric conduc

tivity tensor O',..{W) is given by 

O'/lv(w) = LOOdt exp (-iwt) LPdr(Jv(-ilir)Jit», (68) 

where f/l(t) is here defined by 

Jit) = exp (iHt/Ii)J" exp (-iHt/Ii), 

Integrating Eq. (68), we find 

O'/lv(w) = (i li f3/Z)! (En - Em - liw + ir;r1 

n,m 

(69) 

x ere-PEn' -PEm) (nl J"llm)(ml J v In), 

(70) 

where 'IJ is the vanishingly small positive number. 
Taking the real part of both sides, we obtain 

n,m 

x !p(-fJEn, -fJEm} (nl J/llm)(ml Jv In), 

(71) 

Due to the presence of the delta function inside Eq. 
(71), this expression is further reduced to 

Re O'".{w) = 7T(Zw)-l[exp (lifJw) - 1] 

x !CJ(En - Em - liw) 
n,m 

x exp (-f3En) (nl J" Im>(ml Jv In). (72) 

Therefore, if O'(w) represents any diagonal component 
O'/l,.(w), then a function 

G( -fJ) = w[exp (lif3w) - l]-lZ Re O'(w) exp «(3Eo) 

(73) 

is absolutely monotonic with respect to x = -p. 
Hence, the corollary of Bernstein's theorem gives 

(J2 (J2 
of32 log Re 0'( w) + 0{3210g Z 

02 

- 0{3210g [exp (li{3w) - 1] ~ 0, (74) 
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which is nothing but Eg. (16). Finally, Eg. (18) can be 
obtained from Eg. (53), i.e., 

a( ~fJ) log G( -fJ) ~ O. (75) 

Last, we may remark that, for arbitrary operators 
A and B, we have a formal identity 

([[A+, H], B]> = «(l/Z) 2, q;( -fJEn, -fJEm) 
n,m 

x (nl [A+, H] 1m) (ml [H, B] In). 

(76) 

Choose A = c-I Ii QiXlli and B = c-I Ii QiXvi, 
where Qi is the electric charge of the ith particle. If we 
note that the electric current III is given by 

J I1 = (i/Ii)[H, A] = 2, (Q)mic)pl'i' 
i 

then Egs. (76) and (71) lead to the Kubo sum ruleI3 

7T-Il ro

dw Re [O'l1vCW) + O'viw)] = 'f(Q;/mic2)bvl" 

(77) 
where we have used the relation 

(78) 

If HI represents the electric dipole interaction, i.e., 
if we have HI = Ii QiXi' then Eg. (71) leads to a 
formal relation 

(79) 

since we have J = (i/cn)[H, HI] = (l/cn)K in this 
case. By this formula, we could compute the electric 
susceptibility tensor ~I'v' However, this integral is 
ambiguous at w = 0 and should be interpreted as 
an integral for generalized functions. Hence, for any 
small positive number 1], we interpret 

l q dw ~ few) 
-q w 

- ~ 1(0) + 1"(0)1] 
1] 

+lq dw ~ [few) - f(O) - j'(O)w - tf"(0)w2
]. 

-q w 

Similarly, from Eg. (72) we compute 

1 let) 
-; -et) dw Re O'l'vCw)w[exp (lifJw) - 1]-1 = (JI1Jv)' 

(80) 

The right-hand side of this equation is related to Ml 
defined by Eq. (7) when we note K = cliJ. 

Some applications to problems of particle physics 
by an analogous technique will be given elsewhere.9•14 
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We pro~e the exi~tence ~f phase transitions in s~veral kinds of two-component lattice gases: Some of 
these a;e Isomor~hlc t? spm systems and/or to flUIds composed of asymmetrical molecules which can 
have. different o~lentatIOns. Among the. models stu~ied .is one with infinite repulsion between particles 
of different species .(hard.cores), ext~ndmgover arbltranly many neighboring lattice sites. Some of these 
systems have been mvestlgated prevIOusly 10 the mean field approximation and numerically. 

1. INTRODUCTION 

Among the most striking aspects of the behavior 
of macroscopic systems are the ubiquity and variety 
of the phase transitions they undergo. The demon
stration that the nonsmooth behavior of the ther
modynamic functions, which characterizes phase 
transitions, follows from the rules of statistical 
mechanics for the computation of these quantities is 
one of the most interesting aspects of the latter study. 

The first demonstration of this kind was Peierls' 
proof of the existence of spontaneous magnetization 
in a two-dimensional Ising spin system with nearest
neighbor ferromagnetic interactions. l Peierls' results 
have been made rigorous and his method generalized 
and used to prove the existence of phase transitions 
for various lattice systems without having (or being 
able) to compute the thermodynamic functions 
explicitly.2 In recent work along this line Dobrushin 
was able to prove the existence of a phase transition 
in a y-dimensional lattice gas, y ~ 2, with hard cores 
which exclude the occupancy, by any particle, of the 
2Y nearest-neighbor sites of an occupied site. 3 This 
required a new extension of the Peierls' method since 
this system does not have the symmetry (between "up" 
and "down" spins) of the spin system. 4 

In this paper we extend the Peierls' method further 
and prove the existence of phase transitions in four 
binary lattice-gas models described below. In one of 
these models the particles have arbitrarily extended 
hard cores: a type of system for which the existence 
of a phase transition has not been proven rigorously 
before. 

2. DESCRIPTION OF MODELS 

Consider a y-dimensional square lattice ZV, y ~ 2, 
and let V be a cubic box containing I VI lattice points. 
Suppose that the sites of V can be occupied by two 
types of particles called A and B. 

and 

for Irl > d 
for Irl ~ d' 

(2.2) 

where r is a vector between lattice sites occupied by 
different particles and d is the lattice spacing. We shall 
call model 2 the generalization of model 1 obtained by 
allowing ({J AB(r) = + 00 for r in some symmetric 
convex set. 

Let tX be a configuration containing NA(tX) and 
NB(tX) particles of type A and B, respectively. If tX 

is allowed, i.e., if on each lattice site there is at most 
one particle and no A particle is within the hard core 
of any B particle, then the Boltzmann factor for tX is 
simply 

(2.3) 

We can observe that the line ZA = Zn is a symmetry 
line for the problem, and we may expect that as ZA = 
Zn = Z -+ 00, this symmetry is spontaneously broken 
and that there are two distinct equilibrium states, one 
A~rich and the other B-rich. If this happens, the system 
Will show a first-order phase transition when one passes 
from the ZA > ZB region to the Zn > ZA region 
through a point Z on the diagonal ZA = ZB with Z 

large enough. 
The technique for showing the spontaneous break

down of the symmetry will be the Peierls' technique 
of introducing a nonsymmetric "surface term" in 
the Boltzmann factor of a configuration and showing 
that its influence will not disappear even for very large 
systems when Z is large enough. 

Calling D the "diameter" of the hard cores in 
model 2, we find an upper bound on the lattice gas 
fugacity above which there is some phase transition. 
This upper bound tends to zero, as it should, when 
D -+ 00. Unfortunately, however, it only goes to 
zero as D-l, which means that if one tries to go to 
the limit of a continuum gas by keeping the hard core 

Model J is described by the activities ZA, Zl!, and 
the following interaction potentials: 

length D fixed while letting the lattice spacing d go to 
(2.1) zero, the upper bound on the critical continuum 

fugacity would go to infinity as d-(v-O since the 
CfAA(r) = ({Jlm(r) = {

o for r ~ 0 

+00 for r = 0 

1129 
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continuum fugacity Zc behaves as zd-v (z the lattice 
gas fugacity) in the lattice ~ continuum transforma
tion. We are thus unable to prove the existence of a 
phase transition at some finite fugacity, in a con
tinuum system: a proof sadly lacking at the present 
time. (The only proofs of the existence of phase 
transitions for continuum systems available at 
present are for systems with infinite range "Kac 
potentials" which exhibit classical van der Waals 
type phase transitions.5) Whether the kind of tech
nique employed in this paper will eventually prove 
useful for continuum systems remains to be seen. 

Model 1 may also be interpreted as a model for 
orientational phase transitions in two dimensions. 
To do this, we imagine a two-dimensional square 
lattice where molecules with two different orienta
tions "horizontal" and "vertical" can be situated at 
the center of each bond. Some sites (bonds) may also 
be empty. When there is a particle in a horizontal 
(vertical) position on some site, then it excludes 
vertical (horizontal) particles from its four neighbor 
sites. We may picture the molecules as narrow rods 
of the same length as the bonds with their centers 
pivoted at the midpoints of the bonds, and require 
that there be no overlap of the rods (Fig. I). Identifying 
the vertical and horizontal particles as species A and B, 
we go back to the two-component lattice gas described 
before with ZA = exp [P(,u + Ev»), ZB = exp [P x 
(fJ- + Eh )], where fJ- is the chemical potential and 
Ev and Eh are vertical and horizontal components of 
the "electrical field." A phase transition in this system 
would correspond to a spontaneous "lining up" 
of the molecules parallel to each other (perhaps 
somewhat similar to what may happen in liquid 
crytals). 

It is also possible to think of model 1 as the limit 
of an Ising spin system: We suppose that on each 
site of our lattice sits an Ising "spin-I" particle 
S = 0, + 1, -1 and that the energy of a configuration 
is 

H3{S} = -J I S;S;(l - SiSi) + hI Si - fJ- I S;, 
<i.i> i i 

(2.4) 

where L<i. i> means sum over the pairs of nearest 
neighbors; then, if we let J -+ + 00 and if we interpret 
Si = 0, + 1, -1 as meaning, respectively, that the 
site i is empty or occupied by an A or B particle, 
we realize that (2.4) defines a model equivalent to 
model! with ZA = eP(ll+hl and ZB = eP(ll-hl. The phase 
transition means, in this case, that for large fJ- there is 
spontaneous magnetization when h = O. 

We shall define model 3 to be the system described 
by the Hamiltonian in Eq. (2.4) but with 0 ~ J < 
+ 00. This system and some variations of it have been 

FIG. 1. An allowed configuration of orientable rods. 

studied extensively by Wheeler and Widom6 in various 
approximations as a model for the separation of 
solutes in a solution. 

M ode/ 4 will be a system similar to model 3 but 
with a Hamiltonian defined as 

This model has been studied in the literature in the 
mean field approximation? and used to interpret the 
magnetic properties of U02 • It can also be interpreted 
as a model for an annealed alloy of magnetic and non
magnetic atoms. The magnetic atoms have spins 
Si = ± I, and fJ- measures their concentration. The 
sums in (2.5) are then interpreted as going only over 
sites occupied by magnetic atoms. For a quenched 
alloy (where the distribution of magnetic atoms 
is random, independent of the temperature), 
the existence of spontaneous magnetization at high 
concentrations of magnetic atoms and low tem
peratures has been proven previously by Griffith and 
Lebowitz.s 

3. EXISTENCE OF PHASE TRANSITION 
IN MODELS 1 AND 2 

Let (X = {Xi}, i = 1, ... , lVI, be a configuration in 
the box. As a boundary condition we shall assume 
that all lattice sites outside V are occupied by A 
particles. Each lattice site is the center of a v-dimen
sional unit cube. If a lattice site X is occupied by an 
A particle (B particle), we shall color that cube 
centered on x red (black). We shall denote by 
C(x, A) [C(x, B)] the union of all cubes from which 
B particles (A particles) are excluded by the hard 
core of the particle located at x. The cubes in 
C(x, A) [C(x, B)] outside the cube centered at x will 
be colored pink (gray). The remaining cubes will be 
colored white. Each cube in the lattice will thus, for 
a permissible configuration, have one of the following 
colors: red, pink, black, gray, pink-gray, or white 
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(red-pink = red, black-gray = black). The cells out
side V will all be red for the boundary condition we 
are considering. 

Without describing the shapes of the particles in 
detail, we shall assume (looking at a single A particle 
on the lattice at x) that C(x, A) is invariant under 
rotations by 1T/2 and that its convex hull does not 
contain in its interior the center of any cell which is 
not pink, i.e., any lattice point where a black particle 
may be placed. We shall assume further that when the 
lattice spacing is unity, then there exists an integer d 
such that, starting from any surface of C(x, A), it is 
possible to move in a direction perpendicular to this 
surface into the interior of C(x, A) for a distance d 
passing through pink cells only. For our modell, 
d = 1, while for "cubical" particles the side of the 
cube is 2d + 1. To investigate the limit in which the 
lattice spacing d - 0, we define the hard core for 
different d's to be the union of all the cubes whose 
centers lie inside the convex hull of the C(x, A) for 
d = 1, i.e., the convex hull of C(x, A) does not change 
as d - O. With this definition d increase as d-I when 
d - O. [A similar description holds of course also for 
C(x, B)]. 

The union of all C(x, B), i.e., the union of all black, 
gray, and gray-pink cubes is separated from the rest 
of the lattice by a (v - I)-dimensional surface S(oc) 
which decomposes as a union of closed connected 
pOlyhedra, which we call contours. To avoid ambiguity 
in this decomposition when all four faces adjacent 
to the same edge belong to S(oc), we may imagine the 
corners of the cubes clipped off. 

Let G be an outer contour, i.e., it is possible to draw 
a path from G to the surface of V without crossing any 
other contour, and let IGI denote the area of this 
contour measured in units of d V

-
I . We have that IGI 

is an integer. The probability of such a contour G 
for Z.A = ZB = Z is given by 

P(G) = I z[NA(<<}+NB(<<}]/I z[NA(<<}+NB(<<}l, (3.1) 
a=>G « 

where oc :::. G means a configuration in which there 
is a contour G. We shall now obtain an upper bound 
on P( G) from which will follow an upper bound on 
the probability 1TB(X) that a site x is occupied by a 
B particle by the standard argument that if x is 
occupied by a B particle it must be inside some 
contour G, so that 

1TB(X) 5: I K([GDP(lGI), (3.2) 
101 

where F(lGI) is an upper bound on peG) and 

is the Peierls' upper boundl - 4 on the number of con
tours of area IGI which contain a site x. It will then 
be seen that the density of B particles PB 5: max",1TB(x) 
is bounded by a decreasing function of the fugacity 
z for sufficiently large z. Since, however, the total 
density of particles P.A + PB is a nondecreasing 
function of z, being the derivative with respect 
to In z of the grand canonical pressure which is a 
convex function of In z, there will exist a z' such 
that, for z > Zl, PB < PA' By symmetry, the opposite 
will be true for a boundary condition in which all the 
sites outside V are occupied by B particles. This will 
show the nonuniqueness of the infinite volume 
"Gibbs state"2-4 for z> z'. It follows further from 
the uniqueness of the state at low values of the 
fugacity4 that there will be some nonanalyticity in 
the correlation functions for some z < z'. We may 
also deduce from the equality of the pressure (in the 
thermodynamic limit) for the different boundary 
conditions that there will be a discontinuity in the 
densities PA and PB whenever the fugacities Z.A and ZB 

cross each other at a value of z > z'. 
To get an upper bound on P(G), we shall restrict 

the sum in the denominator of (4.1). Before doing 
that, we need the following definition: A set of lattice 
points Xi' i = 1, ... , n, occupied by A or B particles 
is said to form a cluster if, by the rules of the hard
core exclusion, these particles have to be all of the 
A type or all of the B type, i.e., we can label the 
particles in such a way that Xi E C(XHl' .) for all i. 
Consider now a configuration IX :::. G. Moving from 
any point on G into the interior in a direction per
pendicular to G, one will find d gray or gray-pink 
cubes; i.e., given G, we know that these cubes cannot 
have any other colorings. Let G d be the set of all 
these cubes. Theit number IGol ~ IGI d/2v. The 
pinkness of these cubes may be due to red particles 
exterior to G or to red particles interior to G or both. 
For each configuration oc :::. G there will be another 
configuration To( oc) in which all the B particles at 
positions Xi in the interior of G whose cores C(xj , B) 
contain any of the cubes in Go, as we]] as all B 
particles which are in the same cluster with any of 
these, are replaced by A particles. The transformation 
oc - To(oc) is not always a one-to-one transformation 
as there may be more than one IX :::. G going into the 
same To(oc). It is clear, however, from our definition of 
C(x, .) that there will be a bound of the form m lGI on 
the number of such oc's with m independent of the 
lattice spacing d. [For v = 2 and C(x, .) a square of 
side (2d + 1), there will at most 2n of these, where n 
is the number of "corners" of G whose angle in the 
interior of G is 31T/2.) It is clear that in the configura
tion To(lX) all the cubes in Go will be colored pink. Let 
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T/(IX), I = 1, ... ,IGol, be the configuration where 
there are A particles in / cubes of G6, i.e., T1(1X) is a 
configuration obtained from IX ~ G by first changing 
IX to To(lX) and then putting I A particles in the region 
Go. We then have as a lower bound on the denomi
nator in (3.1) 

I z[NAC«l+N»C"J 
a 

~ m- 1G1 L z[.YACaH.Y»Ca'] L zl(IGol) 
a=>G /=0 / 

~ m-101(1 + z)IOI ~/2v I z[SACaHS»Ca>J, (3.4) 
a=>G 

where we have used the upper bound IGbl ~ IGI bj211. 
Substituting (3.4) into (3.2), we get an upper bound on 
the density of B particles, for the boundary condition 
used, 

PH ~}; 3-V(~)V/V-\3m)2k(l + Z)-lik!V = PB(Z), 
k-kmln V (3.5) 

Here k = IGI/2 is an integer and kmill = 1IGmi"l, 
where Gillin is the surface area of C(x, A) in units of 
d"-I. For large values of z, Pn(z) is a decreasing func
tion of z. Hence, as discussed earlier, there will exist a 
z' such that, for z > z', PI! < P.\., and thus there 
will be some kind of phase transition for z < z'. 

If the lattice spacing d is decreased, b will increase 
as (Did) while PIl and PA will decrease as (diD)", 
where D is the "diameter" of the hard cores, which 
remains fixed. As mentioned in the Introduction, the 
passage to the continuum involves the replacement 
of Z by zedv and p by Ped\' so that the right side of 
(3.5) would not give any bound on the continuum 
density of B particles for any finite zc' 

4. EXISTENCE OF PHASE TRANSITION IN 
MODELS 3 AND 4 

We now color the cubes which contain A particles 
red and those containing B particles black and the 
empty ones white (no pink or gray) and fill all the 
cubes outside V with A particles. For a configuration IX 

we consider the union of all the white and black 
cubes and let G be an outer contour of such a region. 
Then all the cubes adjacent to G from the outside are 
colored red while the cubes adjacent to G from the 
inside are either black or white. Suppose that there are 
/(G) cubes adjacent to G from the inside, I(G) ~ 
IGI/2v, and k of these, labeled ~1' ••• , ~k' are black. 
The probability of a contour G with specified 
~l , ••• , ~k is given by 

P(G:~l"'" ~k) 

= .2 eJl [)JS(.>-U(alJ/.2 eJlLuN(a>-UCa)), (4.1) 
"=>(0:;1.···.;.> '" 

where N(IX) = NA(IX) + Nn(lX) is the total number of 
particles in this configuration, fl is the chemical 
potential which is the same for the A and B particles 
and U( IX) is the potential energy of this configuration. 
To obtain a lower bound on the denominator in (4.1), 
we restrict the sum there to configurations T(IX) , 
where IX ~ (G: ~1 , ••• , ~~.) and T(IX) is a configuration 
obtained from IX by interchanging all the A and B 
particles inside G and filling all the empty (I - k) 
cubes adjacent to the interior of G with A particles. 
We then have for model 3 

N(T(IX» = N(~) + (l- k) (4.2) 
and 

U(T(IX» ~ U(IX) - Jk + J(2v - 1)(1- k), (4.3) 

the last term in (4.3) arising from the possibility that 
an empty site after being filled with an A particle may 
find itself surrounded on (2v - I) sides with B 
particles. This transformation IX ->- T( oc) is one to one 
since we are specifying the positions of the sites 
adjacent to G which contain B particles. Hence we 
have 

P(G:~l' ... '~k) 

~ exp {-(3Jk - (3[fl - (2v - l)J](I - k)}, (4.4) 

and thus 

I 

peG) = 2 L P(G:~l"'" ~k) 
k=O (h ... ·.h) 

~ [exp (-(3J) + exp {-(3[fl - (2v - l)J]}]1 

~ [exp (-(3J) + exp { - (3[fl - (211 - 1)JJ}JIGI/2\', 

(4.5) 

where the last inequality holds when the term in the 
bracket is less than unity since I ~ IG1/2v. 

We can now find an upper bound on the sum of the 
probabilities '7To(x) + '7TB(X) that a lattice site x is 
empty or occupied by a B particle since in either case 
x will have to be inside some outer contour G because 
of our boundary conditions. Using the same bound 
as in Sec. 3 on the number of contours of area IGI 
which can contain x, we have 

00 (k)V!V-I 
'7To(x) + '7TB(X) ~ k~v3-v ~ 3

2k 

X [exp (-,8J) + exp {-,8[fl - (2v - 1)J]}Jklv. 

(4.6) 

For a given J > 0 there will be a region in the (,8, fl) 
plane bounded by some curve (3(fl) (see Fig. 2), such 
that whenever (3 and fl are in that region the right 
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FIG. 2. The dashed area is contained in the two-phase region 
for model 3. The I dependence of flo is roughly oc 1-'. A similar 
picture holds for model 4. 

side of (4.6) will be less than t. But, since 

7TA(X) = 1 - 7Toex) - 7TB(X), (4.7) 

we will have 

7TA(X) > 7TB(X) whenever 7TO(X) + 7TB(X) < t, 
(4.8) 

and thus the equilibrium state will depend on the 
boundary conditions and not be unique. The existence 
of a phase transition then follows from the same 
arguments as in Sec. 3. 

Model 4 can be treated as model 3 but (4.3) is 
replaced by 

U(T(C'l» 5: U(C'l) - 2Jk + J(2'V - 1)(1- k); (4.9) 

therefore, the conclusions of model 3 can be drawn 
also for model 4. 
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It is shown that the "new symmetry" of Racah coefficients, recently derived in a paper by Minton 
[J. Math. Phys. 11,3061 (1970)], does not exist. 

We wish to point out that the "new symmetry of 
the Racah coefficients," recently derived by Minton,l 
does not exist since it would require that b + c -
e + f + 1 = 0, which can be shown to be violated 
for any b, c, e, or f of W(abcd; ef) satisfying the 
equality (10) in Minton's article.1 

To see this, we recall that one of the Regge sym
metries2 gives 

W(abcd;ej) = (-)e+I-b-CW(a'b'c'd';e'f'). (I) 

We can use another one to show that 

W(t[a + c + d - b], t[e - f - a + d - 1], 

He - f + a - d - I], Ha + b + d - c]; 

He + f + b + c + 1], He + f - b - c - 1]) 

= (_)2f+IW(a'b'c'd'; e'f"). (2) 
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In Eqs. (1) and (2), 

a' = He + f + a - d), b' = Ha + d + b - c), 

c' = !Ca + d - b + c), d' = He + f - a + d), 

e' = Hb + c + e - f), f' = Hb + c - e + j), 

f" = He - f - b - c - 2). 

Clearly, if the equality claimed by Minton has to 
hold for any a', b', c', d', or e', thenf' = fIt or 

b + c - e + f + I = O. (3) 

But b + c - e + f = 2f' must be positive or zero. 
This shows that condition (3) can never be satisfied. 
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It is shown that the symmetry relation for Racah coefficients recently given by Minton holds only 
for an analytical continuation of the Racah coefficients to unphysical angular momenta, and even then 
is valid only under unrealistically stringent conditions. 

In a recent paperl Minton has proposed a new 
symmetry for the Racah coefficients. Denoting the 
Racah coefficient by W(abcd; ef), Minton's result 
reads 

W(abcd; ef) 

= W(Ha + c + d - b], He - f - a + d - 1], 

He - f + a - d - 1], Ha + b + d - c]; 

He + f + b + c + 1], He + f - b - c - 1]). (1) 

Racah2 explicitly defined the coefficient to be non
zero only when the four triads 

(a, b, e), (c, d, e), (a, c,j), (b, d,j) (2) 

each have an integral sum and the elements of each 
triad satisfy the triangle inequalities. One sees 
immediately that the six parameters on the right-hand 
side of Eq. (1) cannot obey the triangle inequalities 
simultaneously with the left-hand side. Moreover, it 

1134 
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can be verified by direct substitution that we never 
get a "physical" Racah coefficient on the right-hand 
side of Eq. (1) for a "physical" W(abcd; ef). 

Thus, at best, Eq. (1) can have a significance only 
as an analytic continuation of the Racah function. 
In this paper, we shall show that even in this extended 

W(abcd; ef) = {~(abe) ~(cde) ~(acf) ~(bdf) 

sense Eq. (1) is true only under further unrealistically 
stringent conditions. 

For the sake of easy comparison we shall use the 
same notation as in Minton's paper. 

A suitable definition for Racah coefficients, valid 
also in analytic continuation, is3 

r[ a+b+c+d+2 J 
x a+b+l-~c+d+l-~a+c+l-lb+d+l-f 

x r[e + / + 1 _ c - b\ + / + 1 - a - dJ} 
x 4F3[e - a - b, e - c - d,f - c - a,f - b - d: 

-a - b - c - d - 1, e + / - a - d + 1, e + / - b - c + 1; 1]. (3) 

The analytic continuation is taken by adding small imaginary parts to the parameters a, b, c, d, e, andf We 
shall assume that the real parts of the parameters a, b, ... ,/are physical angular momenta and obey the usual 
triangle inequalities. Then the gamma functions and the 4F3 series is always well behaved, and the 4F3 series 
is still of Saalschutzian type. 

Now following the approach in Minton's paper, we want to transform the 4F3 series in Eq. (3) to another 4F3 
series by means of the theorem4 

4F3[A, B, C, D; E, F, G; 1] = r[E + F - A - B - D, E + F - A - B - C, F - C - D, FJ 
E + F - A - B, E + F - A - B - C - D, F - C, F - D 

x 4F3[E - A, E - B, C, D; E, E + F - A - B, E + G - A - B; 1]. (4) 

This theorem is only valid for terminating Saalschutzian series; thus we get a condition on the analytic con
tinuation, i.e., 

1- c - a = real negative integer and/or 

1- b - d = real negative integer. (5) 

Using Eq. (4) [with the constraint (5»), we find that Eq. (3) now becomes 

W(abcd; ef) = {-------} 
x r [b + / + d + 2, a + c + / + 2, a + d + e - / + 1, e + / - b - c + IJ 

2f + 2, a + b + c + d + 2, a + e - b + 1, e + d - c + 1 

x 4F3[b + / + 1 - d, c + / + 1 - a,f - a - c,f - b - d; 

where {- - - - - - -} represents a similarly bracketed 
term in Eq. (3). 

We now apply Eq. (3) to the right-hand side of 
Eq. (1), compare it with Eq. (6), and after some 
algebra obtain the following result: 

W(Ha + c + d - b], He - f - a + d - 1], 

He - f + a - d - 1], Ha + b + d - c]; 

He + f + b + c + 1], He + f - b - c - 1]) 

= (CSC (7T[a + b - e)) csc (7T[C + d - e))) 

csc (7T[b + / - dJ) CSC (7T[C + / - aJ) 

x W(abcd; e/). (7) 

e + / + 1 - a - d, 2/ + 2,f - e - a - d; 1], (6) 

Here we have used the relation that r(z)r( -z) = 
-7TZ-1 esc (7TZ). It is particularly important to 
maintain considerable care in deriving Eq. (7) so as 
not to cancel possible infinities in expressions that 
may be indeterminate. For deriving Eq. (7) it was 
necessary to assume that red - b - f) and r(a
f - c) were finite, so that gives us additional con
straints in analytic continuation that 

c + f - a ¥= positive integer or zero, 

b + I - d ¥= positive integer or zero. (8) 

It should be mentioned here that Eq. (7) is the 
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actual result which follows from Minton's work as 
against Eq. (1). In the "physical" realm, the left-hand 
side of Eq. (7) vanishes for quantum mechanical 
reasons [cf. discussion around Eq. (2)] and the 
expression 

csc (7T[a + b - eD csc (7T[C + d - e]) 

csc (7T[b + f - dD csc (7T[C +f - aD 

on the right-hand side of Eq. (7) is indeterminate. 

(9) 

The result for the physical world should be the 
limiting value of Eq. (7) when the angular momenta 
approach "physical" values. Thus to obtain Minton's 
result, we should have, in addition to Eqs. (8) and (5), 
further constraints on the limiting process for the 
values of the six angular momenta, such that, in the 
limit, expression (9) is unity. In general, of course, 
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the expression is not unity, except at some isolated 
points in analytic continuation. 

We conclude, therefore, that the symmetry relation 
[Eq. (I)] proposed by Minton is valid only under the 
special conditions mentioned in Eqs. (5), (8), and in 
the last paragraph and that even then is of no help in 
abbreviating tabulations of the physical Racah 
coefficients. 
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In a fresh look on static gravitational fields in general relativity, eight new theorems have resulted. 
Also in the process of deriving theorems a new solution has emerged. In the first of these theorems an 
invariant necessary integral condition for the existence of a solution has been derived. Physically this 
condition corresponds to the equilibrium of matter. In the second theorem a scalar condition has been 
found which implies the flatness of the static gravitational universe. In the third theorem, it has been 
proved that there cannot occur any group of motion along "the lines of forces." In Theorems 5 and 6, 
the questions of whether the spatial part of a static gravitational universe can be Einstein, projectively 
flat, or Stiickel are investigated. In the seventh theorem, the static gravitational field equations have been 
reduced to the geometrized equations in a spatial universe. In the last theorem, all conformastat 
gravitational universes have been found. One of these is the universe due to "an infinite plate," and this 
is a new solution. 

1. INTRODUCTION 

In the recent years the subject of static gravitational 
fields remained in a rather passive state while gravita
tional radiation carried away most of the popular 
enthusiasm. This area of the general relativity, being 
the closest to the Newtonian gravitation and classical 
potential theory, is far from being barren or exhausted. 
There remain many an intriguing problem in this field, 
of which a few have been mentioned in the present 
investigation. In the following the motivations and 
contents of the various theorems derived here will be 
elaborated. 

The analog of the equations of motion in the static 
case are the equilibrium conditions. That the equilib
rium conditions are inherent in static gravitational 

equations has been provedl exactly in the axially 
symmetric case. In the more general situation similar 
results have been proved only in the approximate 
techniques. 2 In the first theorem of this paper an exact 
invariant integral condition has been derived from the 
field equations, and that corresponds to the equilibrium 
condition. 

In a four-dimensional Riemannian universe the 
necessary and sufficient conditions of flatness are the 
vanishing of the Riemann tensor, and that amounts to 
twenty equations. But in a static gravitational uni
verse a single scalar condition implies the flatness. 
Physically this condition means that "the magnitude 
of gravitational force vanishes." This is the theme of 
the second theorem. 
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In the third theorem it has been proved that if the 
"lines of forces" generate a Killing vector congruence, 
then the gravitational universe is flat. Physically it 
means that "the equipotential surface cannot be 
rigidly transported along the lines of forces." 

The fourth theorem contains two parts. In the first 
part, for subsequent application, Synge's3 result that 
the curvature invariant of the spatial part of a static 
gravitational universe vanishes has been stated. In the 
second part it has been proved that the constancy 
of the curvature invariant of a 3-space conformal to 
the spatial universe implies that the "lines of forces" 
constitute a geodesic congruence in the 3-space. 

In his first attempt to geometrize electromagnetism, 
Einstein equated the energy-momentum-stress tensor 
to Rij - igijR (observe the group-theoretic overtone). 
Outside matter, then, Rij = !gijR. The generalization 
of this property to any finite-dimensional Riemannian 
space introduces the concept of Einstein space. In 
Riemannian geometry there may exist spaces with 
different Riemann curvatures which have identical 
geodesics (which may well be straight lines). Weyl4 
discovered the projective curvature tensor which 
remains invariant under geodesic-preserving mappings. 
The vanishing of this tensor is the criterion of pro
jective flatness. The definition of a space of constant 
Riemannian curvature is well known. In the fifth 
theorem it lJas been proved that if the spatial part, or 
the 3-space conformal to it, is Einstein, or projectively 
flat, or of constant curvature, then the static gravita
tional space-time universe is flat. 

The physical and geometrical implications of these 
theorems are the following: The spatial part of a 
nonflat static gravitational universe cannot have 
straight lines for geodesics. Also the spatial part does 
not have as much symmetry as the Euclidean 3-space 
in the sense of allowing a six-parameter group of 
motion. 

Eisenhart5 and Robertson6 have shown that the 
Riemannian spaces where the Hamilton-Jacobi and 
SchrOdinger equations allow solutions with variables 
separated are Stackel spaces.' It is also known that in 
the Euclidean 3-space the metric forms in the usual 
orthogonal curvilinear systems constitute Stackel 
space. It is pertinent then to enquire about static 
gravitational universes with the spatial part being 
Stackel. In the sixth theorem this question has been 
partially answered. 

Following the pursuit of Rainich8, Misner and 
Wheeler9 completely geometrized electro-gravitational 
equations. Subsequently, combined scalar-gravitation
al equations have been geometrized. lO From the 
analogy of static gravitational equations and the 

combined scalar-gravitational equations (the only 
difference between the two systems is in the dimensions 
of the Riemannian spaces involved), the former has 
been geometrized in a 3-space. Theorem 7 tackles this. 

Brinkmanll proved the nonexistence of conformally 
flat purely gravitational universes. On the other hand, 
there exist important classes of static gravitational 
universes containing other fields which have for their 
spatial parts a conformally flat 3-space.12 For such a 
universe, Synge13 has coined the word "conformastat" 
in his well-known book on general relativity. He 
obtained some interesting results for the purely 
gravitational conformastat universes and concluded 
the topic with the following remarks: " ... the deter
mination of a vacuum conformastat field looks rather 
hopeless .... " By utilizing Schouten'sU criterion 
of the conformal flatness of a 3-space, this problem 
has been solved in the eighth theorem. It turns out 
that the static gravitational universe due to "an 
infinite plate," the Schwarzschild universe, and the 
pseudo-Schwarzschild universe constitute this class. 
Each of these universes allows a four-parameter group 
of motion. 

In the concluding section a classification scheme for 
the static gravitational universe has been suggested. 
The classification turns out to be very simple but 
structureless. Next a cosmological model has been 
arrived at from the universe of the infinite plate by 
interchange of a space and time variables. It has also 
been suggested how to generate combined scalar
gravitational, electro-gravitational, and magneto-gravi
tational universes due to "an infinite charged plate" 
from the purely gravitational case. Before conclusion, 
two open problems have been suggested which are 
both intriguing but unyielding. 

2. DEFINITIONS AND NOTATIONS 

Definition 1,' V4 denotes a four-dimensional Rieman
nian manifold and physically represents the space-time 
universe of events. A point x E V4 has the real co
ordinates Xi, where i and other Latin indices take the 
values 1,2,3,4. V3 denotes an x4-constant submanifold 
of V4 and represents a spatial universe. A point x E V3 
has the real coordinates xa

, where IX and other Greek 
indices take the values 1, 2, 3. 

Definition 2: V4 has the index of inertia -2, i.e., 

the metric form <I> D~ gab (X) dxa dxb is reducible at 
any regular point to <I> = - (dXl)2 - (dXl)2_ 
(dX3)2 + (dX4)2. Here and subsequently, the summa
tion convention is followed unless otherwise men
tioned. 
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Definition 3: The Einstein tensor which represents 
the energy-momentum-stress density is defined by 

Gij D~ Rij - igijR, 

where Rij and R stand for the Ricci tensor and the 
curvature invariant. 

Definition 4: A V4 is called purely gravitational iff 

Gij = O<:=>Rij = O. 

It is also known as a special Einstein space. 

Definition 5: The metric form of a static V4 is given 
by <l> = _e,r(xlg.p(x) dx' dxP + e'C(Xl(dx4)2. Such a V4 

admits group of motions along X4 lines. The X4_ 

constant Va is a totally geodesic hypersurface15 of 

V4 • 

The metric form <i> = g.p(x) dx' dxP defines a posi-
tive-definite Riemannian manifold Va. 

Remark: The topology assumed for V4 is the product 
topology £1 x £1 X £1 x £1 and that for Va or Va 
is £1 x £1 X £1, where £1 is the real number system. 

3. THEOREMS ON STATIC 
GRAVITATIONAL FIELDS 

Lemma 1: Let V4 be a static universe such that 
wand g.P are in C2 and det gaP> 0 in a domain 
D C Va. If the domain D is both static and gravita
tional, then 

(F): 
- I!!FR- 1 -0 GaP - .p + zW,.W,P - , 

2p D~ li 2w = 0, 
(3.1) 

where RaP and li2 are the Ricci tensor and invariant 
Laplacian in Va and subscript, rJ: stands for the partial 
differentiation with respect to xa. 

The proof is straightforward with the use of Rij = o. 

Remark: The static gravitational field equations (F) 
are derivable from a variational principle. 

If three coordinate conditions C.(gllv) = 0 are added 
to (F), then the resulting system is a determinate system 
of coupled nonlinear partial differential equations. 
This is so because of the identities Ga~IP = !-pw,a 
where Gap D~F BaP - 19aPBIl 11' the double stroke denotes 
covariant differentiation in -Va, and indices have been 
raised with gap. The existence of the identities hinges 
on the assumptions of differentiability, 

W E C2(D), g.P E C3(D), det (gap) > 0, (3.2) 

where D is a domain of Va. 

Definition 6: The interior of a regular body in a 
static gravitational universe is a bounded domain 
where (3.1) does not hold but (3.2) does. Moreover, 
in the neighboring exterior points of the body, (F) 
must hold. 

Theorem 1: Let the interior of a regular body DB 
be simply connected and have the piecewise smooth, 
orientable boundary a(DB). Let there exist a Killing 
vector ~a in DB. If, moreover, GapnP, where nP is the 
unit outer normal to a (DB) , is continuous across the 
boundary aCDB), then 

r pW,a~acdav = 0, 
JOB 

where dav is the invariant volume element in Va. 

(3.3) 

Proof Now Gap = ° by (F) in the neighboring 
exterior points of the body. From the assumption of 
the continuity it follows then that Ga(JnP = 0 on a(DB). 

Applying the divergence theorem to convert a surface 
integral into a volume integral, one obtains 

0= r Gacp~anPd2s = r (G/~a)lIpdav 
Ja(OBl JOB 

= r G/IIP~adav = r PW,a~adav, 
JOB JOB 

where d2s is the invariant surface element of a(DB ). 

In the proof above the Killing equation ~alIP + ~PII' = 
o and the contracted Bianchi's identity 

(R} - ~A~ R:y) liP = 0 

have been used. 

As for the physical interpretation it may be men
tioned that in the Newtonian gravitation the integral 
condition (3.3) would have implied the vanishing of 
the total force and the total torque on the body. 

Theorem 2: Let the field equations (F) and the 
conditions (3.2) be satisfied in a domain Dc Va. 
Then the vanishing of curvature invariant R in D 
implies that the corresponding open cylinder in V4 is 
flat. 

Proof The vanishing of R implies by virtue of (F) 
that 

(3.4) 

in D. From the positive definiteness of the above 
expression, it follows that w,a = 0 => W = C, a con
stant. Therefore, from (F) it follows that RaP = 0 => 
Dc Va is a domain of Euclidean space. Using the 
Cartesian coordinates in D, the metric form of the 
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corresponding open cylinder in V, becomes 

This is obviously a flat metric. 
Physically this result means that the vanishing of 

the magnitude of "the gravitational force" gaPw;aw,p 
implies the flatness of the space-time. The converse 
theorem is not true. 

For the statement and proof of the next theorem the 
metric form of the static V, will be expressed as 

11> = g",p(x) dxa dxP + ew(x'(dx')2. 

The metric of the x'-constant hypersurface Va is 

cz, = gap dx'" dxP• 

The field equations (F) and the differentiability condi
tions (3.2) go over to 

Rap + eW
/

2(eW
/
2)laP = 0, Az(eW

/
2

) = 0, (3.5) 

wE C2(D), gaD E Ca(D), det (gaP) < 0, (3.6) 

where R",p and A2 are the Ricci tensor and the Lapla
cian in Va and the bold stroke denotes the covariant 
differentiation in Va. 

Theorem 3: Let the field equations (3.5) and the 
conditions (3.6) be valid in a domain Dc V3 • If 
(eW/2).1l is a Killing vector in D, then the corresponding 
open cylinder in V, is flat. 

Proof: If (ew
/ 2). a is a Killing vector in D c Va, then 

(ew/ 2)laP + (eW
/

2
) PIl = 2(eW

/
2)laP = O. (3.7) 

Therefore, (3.5) gives 

RaP = 0 <=> RaPrd = 0 (3.8) 

in D c Va. But the Riemann tensor of the corre
sponding open cylinder of V4 is16 

R",Pyd = RIlPY~' RafJy4 = 0, Ra44p = _eW
/

2(eW
/
2

) afJ' 

(3.9) 

By (3.7), (3.8), and (3.9) it follows that the cylinder is 
flat. 

The physical meaning of this result is that an 
"equipotential surface cannot be rigidly transported 
along the lines of forces." 

Theorem 4: (i) If static gravitational field equa
tions (3.5) together with the conditions (3.6) hold in a 
domain D C Va, then the curvature invariant R must 
vanish in D. 

(ii) Let the field equations (F) and the differenti
ability conditions (3.2) hold in a domain D C V3 • If, 

moreover, the curvature invariant R is a nonzero 
constant in D, then W.«/(~lW)t constitute a geodesic 
congruence there. 

Proof' (i) From (3.5) it follows that 

R = gafJRaP = _ew/2A2(eW/
2

) = o. 
(ii) From (F) it follows that 

R = -t&lW ~ O. 

If R is a nonzero constant, it has to be a negative con
stant and in that case 

0= R.a = -tC&lW).a = -gPYw.yWllafJ' (3.10) 

Let the unit tangent vector field be introduced by 

Ua D~ W.a/CLlIW)! = w. a/(-2R)! = cw.«, (3.11) 

where c is a constant. From (3.10) and (3.11) it follows 
that uPuallfJ = 0, i.e., the Ua constitute a geodesic 
congruence. 

Definition 7: Va is an Einstein space iff RaP = tgapR. 

Definition 8: Va is of constant Riemannian curva
ture K iff RafJYd = K(gaygpo - ga"gpy). 

Definition 9: Va is projectively flat iff 

W~/iYO DJ:.F R~fJYO - i(b~oRfJY - O~yRfJ6) = O. 

Lemma 2: (i) Va is an Einstein space iff it is of 
constant Riemannian curvature. 

(ii) If Va is projectively flat, then it is of constant 
Riemannian curvature. 

For the proof of part (i) see Schouten and Struik11 

and for part (ii) see Weyl.4 

Theorem 5: (i) Let the field equations (3.5) and 
conditions (3.6) hold in a domain D C Va. If, 
moreover, Va is Einstein or projectively flat, then the 
open cylinder in V, corresponding to D is flat. 

(ii) If the field equations (3.5), conditions (3.6), 
and Va in the previous part are replaced by (F), (3.2), 
and Va, respectively, then the resulting statement is 
true. 

Proof: (i) By Lemma 2, Va is of constant curvature. 
Therefore, by Definition 8, the curvature invariant 
R = -6K, a constant. But, by Theorem 4(i), R = 0 ==> 
K = 0 ==> Va is flat. Via (3.8), (3.5), and (3.9) the 
theorem is proved. 

(ii) By Lemma 2, Va is of constant curvature. There
fore, the curvature invariant R = -6K, a constant. 
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Now, from (F), R ~ O. This implies that 0 ~ K. In 
case 0 < K, by Lemma 2 and (F) one obtains 

RaP = ii!apR = -2Kgap = -tw.«w.P' 

g«p = tK-lw,aw,p => det (i!«p) = O. 

The last equation contradicts conditions (3.2). There
fore, K = 0 => V3 is flat. By Theorem 2 the completion 
of the proof follows. 

Definition 10: Va is a Stiickel space7 provided that 
the metric has the normal form <i> = Hi(dxl)2 + 
H~(dx2)2 + H;(dx3)2, and 

(In H;) ,«Jl + (In H;) ./l(ln H;) ,a = 0, (3.12) 

(In H;),Jly - (In H!),Jl(In H;),l' + (In H;),Jl(ln H:),y 

+ (In H!),iln H~),/l = 0, (3.13) 

where indices ex, (3, and yare all different. The summa
tion convention will be temporarily suspended for the 
discussion of the Stiickel space. 

Theorem 6: Let (F) and (3.2) hold in a domain 
D C Va' If, moreover, Va is Stiickel and W,a ¥= ° is 
in D, then W is transformable to the form 

W = W(XI + x2 + r). 
Proof: From (3.12) it follows that 

[In (H;/H:)J.a/l = 0. (3.14) 

By virtue of (3.13) 

Rpaay = !H!(ln H!),py' (3.15) 

If the field equations (F) are written in the Stiickel 
system, then half of the equations can be expressed 
as 

Defining the functions 

XaCx«) = faCx«) dxa, DEFf 

one obtains from (3.20) 

W = W[X](XI) + X2(X2) + Xa(xa)]. (3.21) 

Now by making a coordinate transformation x'a = 
Xaexa) and dropping primes subsequently, it follows 
from (3.21) that 

W = W(x] + x2 + x3). 

The next theorem can be considered as the solution 
of the Rainich problem for the field equations (F). 

Theorem 7: Let the conditions (3.2) and Rap ¥= 0 be 
satisfied in a domain D C V3 , Consider the geome
trized equations 

R R -0 (F'): _ _ _ «[~ Illv - :.. _ 

R«/lR/l[vllJ.] + R«"Rp[vllJ.] = Ra[vR'MA] = 0, 

where square brackets denote antisymmetrization 
and cyclic permutation. Then equations (F)<=> (F') in 
D provided that 

W = ±2!J] JX( -Ra} dxtl. 

For the proof, see Kuchar.IO 

4. THEOREMS ON THE CONFORMASTAT 
UNIVERSES 

Definition 11: A static V4 with the metric form 

<I> = ga/l(x) dxtl dxP + eW (Xl(dx4)2, 

where the metric form cI» = ga.p(x) dx« dxP defines 
a conformally flatlS V3 , is called a conformastat 
universe.I3 

Comparing (3.15) and (3.16), one obtains 

(In H;).py = -iw,pw,y' 

From (3.14) and (3,17) it follows that 

Synge's Theoreml3: Let D be a domain of a con
formastat, gravitational universe V4 • Let the metric 

(3.17) form of V4 be 

[In (H;/H3)J.a/ly = ° = -i(w,liW,ay - w,aw,/lY)' 
=> w,«/w,/l = F~«(x", x/l). (3.18) 

Permuting (3.18) cyclically and considering the re
sulting equations on three coordinate surfaces in D, 
one can conclude that 

F~(x«, xJl) = laCx«)llp(xP), Iii ¥= 0, (3.19) 

Therefore, from (3.18) and (3.19) one arrives at the 
following relations: 

W,I/h(XI) = w,2/h,(x2) = w,3Ij3(X3). (3.20) 

<I> = - U4(x)[(dxl)2 + (dX2)2 + (dX3)2] + eW (Xl(dx4)2 

such that U, wE C2(D) and U ¥= 0 in D. Then U(x) 
is a Euclidean harmonic function in D, which is a X4_ 
constant subset of D. 

Proof: The curvature invariant R of Va, a x 4-con
stant hypersurface of V4 , as calculated from the 
conformastat metric is 

R = -8U-5V'2U, (4.1) 

where V'2 denotes the Euclidean Laplace operator. 
Now, by Theorem 4(i), R = 0, which together with 
(4.1) implies that U is a Euclidean harmonic function. 
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Schouten's Lemma: A V3 is conformally flat iff 

Rapy D~ RU[PllYl + H'a[yR.fll = 0, (4.2) 

where the square bracket denotes antisymmetrization. 

For the proof, see Schouten.14 

Theorem 8: Let V4 be a conformastat gravitational 
universe with the metric form 

ct> = -e-W(X)gap(x) dxa dxP + e"'(Xl(dx4)2. 

(i) Then a W = const surface ("equipotential"!) in 
V3 (cf. Definition 5) is a surface of constant curvature. 

(ii) Moreover, V4 is (A) flat or due to the infinite 
plate, or (B) Schwarzschild, or else (C) pseudo
Schwarzschild according as the constant of curvature 
is (A) zero or (8) positive, or else (C) negative. 

Proof' (i) From the Definition 11 it follows that for 
the conformastat V4 the corresponding Va must be 
conformally flat. Then by Schouten's lemma Eq. (4.2) 
must hold. Via the field equations (F), it is seen that 
Eqs. (4.2) go over to 

w.[pwilyla + MI'Vga[ywiIPlI'W.v = 0. (4.3) 

To integrate (4.3), three coordinate conditions, which 
one is allowed to impose, are chosen to be 

surface with the metric form rp = j(dX2)2 + g(dx3)2 + 
2h dx2 dx3. Equation (4.8) denotes, by virtue of the 
Definition 8, a surface with the constant curvature abo 

(ii) From the trichotomy of real numbers one has 
to consider three cases: (A) ab = 0, (8) ab > 0, and 
(C) ab < 0. 

Case (A): Now ab = ° => either a = ° or b = ° or 
both a = b = 0. The subcase a = b = ° is excluded 
because U(X1) would be singular. In the subcase a = ° 
it is easy to show that V4 is flat. 

In the subcase b = ° the metric form of V4 can be 
reduced to the following: 

ct> = - (l - mx1)4 [(dX1)2 + (dX2)2 

+ (dX3)2] + (1 - mx1)-2(dx4)2, (4.9) 

where m is a constant. This metric form allows four
parameter group of motions, the generators being 
a/ax2, a/ax3, a/ax4, x2a/ax3 - x3ajax2. From this 
consideration and also by observing the potential 
function 1 - mx1 (cf. Synge's theorem), we conclude 
that the above metric is due to an infinite plate parallel 
to (X2, x3) plane. 

Case (B): In the case ab > 0, the so-called Rie
mannian metric form of the surface of constant 

(4.4) curvature becomes 

Via (4.4), Eqs. (4.3) can be integrated to obtain the 
metric form of V3 , 

ij) = U2(X1)(dx1)2 + U(X1)[j(X2, x3)(dx2)2 

+ g(X2, x3)(dx3)2 + 2h(x2, x3) dx2 dx3], (4.5) 

where U, j, g, and h are arbitrary functions of class 
C3 with the constraint U4(fg - h2) > O. To determine 
these functions, the field equations (F) have to be used. 
But instead of (F) the following equivalent form (F") 
will be more convenient: 

(F"): allapy D~ Rl'aPy + Hgll[yw.Plw.a + ga[pw.ylw. ll ) 

+ t3.1wga[ygPll' = 0, P = 3.2w = 0. (4.6) 

Plugging (4.5) and the coordinate condition W = Xl 
into either a1221 = 0 or a1331 = 0, one obtains the 
solution 

U(X1) = (ae!x! - be-!x1)-2, (4.7) 

where a and b are constants of integration such that 
one of these must be different from zero. On the other 
hand, the equation a2332 = 0 leads to 

r2332 = ab(h2 - jg), (4.8) 

where r 2332 is the Riemann tensor of the "equipotential" 

rp = {I + !ab[(x2)2 + (X3)2]}-2[(dx2)2 + (dX3)2]. 

Plugging above into (4.5), making the coordinate 
transformation 

r(1 + m/2r)2 = [1 - (a/b)e",l]-l, 

() = arctan [tab(x2' + X3')]!, 

rp = arctan (X3/X2), t = (bja)ix4, 

and denoting the constant m = Hab-3)! > 0, we 
find that the metric form of V4 goes to Schwarzschild 
form 

ct> = -(1 + m/2r)4[dr2 + r2(d()2 + sin2 
() drp2)] 

+ (1 - m/2r)2dt2. 
1 + m/2r 

SchwarzschiId's V4 obviously allows a four-parameter 
group of motion. 

Case (C): In the case ab < ° the metric form of V4 
goes to the unphysical pseudo-Schwarzschild form 

ct> = -(1 - m/2R)4[dR2 + R2(d0/2 + sinh2 0/ drp2)] 

+ (1 + m/2R)2dt2. 
1 - m/2R 
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5. CONCLUDING REMARKS 

A few words on the classification of the static 
gravitational V4 should be mentioned. Instead of V4 

the subspace V3 will be considered. This is because the 
static gravitational V4 can be generated by a suitably 
chosen V3 , by Theorem 7. In V3 the Ricci tensor will 
be classified instead of the Riemann tensor. They are 
algebraically related anyway. The classification of 
Ricci tensor is extremely simple due to the field 
eq uations R.p = -~ H" .• II'.p. It is obvious that the 
Ricci tensor at any regular point of Va will have one 
nonpositive and two other zero eigenvalues. 

The non static V4 with the metric 

<I> = -t-~ dx2 - (l(df + dz2) + d(2, (> 0, 

which is obtained from (4.9) via an "illegal" trans
formation, may be of some use in cosmology. 

By application of the theorems of De,lU Buchdahl,20 
Majumdar,21 and Bonnor ,22 respectively, one can 
generate out of (4.9) the static combined scalar
gravitational, electro-gravitational, and magneto
gravitational fields due to an "infinite charged plate." 

One of the open questions which remains to be 
settled is to find the class of Stackel V3 , which is a 
hypersurface of static gravitational V4 • The author 
has a conjecture which arises out of the Weyl23 
solution; Majumdar'sl work, and the physical implica-

JOURNAL OF MATHEMATICAL PHYSICS 

tion of Theorem I. The conjecture is that, from a 
Newtonian potential due to matter at equilibrium, a 
static gravitational V4 can be generated. This problem 
is a challenge to the ingenuity. 
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In this paper we develop a method of performing the analytic continuation of functions that are 
Stieltjes or Laplace transforms. We apply the method to find the regular solution and its asymptotic 
behavior in the left half-plane. The irregular solution and the S matrix are briefly discussed. 

INTRODUCTION 

One of the basic questions in potential scatteringl is 
the nature of the solutions, partial waves, of 

( 

d2 ,12 1.) 
-2 + 1 - V(r) - ~ <I>;.(r) = 0, 
dr r 

(1) 

where ° ~ r < 00, A is a complex parameter, and the 
potential V(r) satisfies the conditions that for some 
O<c 

f r V(r) dr < 00 and i'x>V(r) dr < 00. (2) 

It is convenient to define three, of course, not 
linearly independent solutions of (1). Two are defined 
by boundary conditions at infinity, the irregular 
solutions 

(3) 

and the third is defined by boundary conditions at the 
origin, the regular solution 

lim 7T-!-(trr.l.-1r(1 + A)rp;,(r) = 0, Re A ~ 0, (4) 
r"'O 

where r(z) is the gamma function.2 
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Since (3) does not depend on A and (1) depends on 
A2 , only the irregular solutions are even functions of A. 
But (4) depends on an odd power of A; therefore, the 
regular solution in general will not be an even function 
of A. One needs to find the analytic continuation of 
((l;.(r) from the domain Re A ~ ° into Re A < 0.3 

The boundary conditions were chosen so that 

T i.er) = (2if1 W( (f i( r), r~(r»!-;'(r) 

- (2;)-1 W( go i.(r), f-;'(r»!!(r) 

is the decomposition of the solution of (I) into the 
sum of incoming and outgoing waves. Using this 
decomposition, we define the S matrix by 

The purpose of this paper is to describe a method 
which was designed to perform the analytic continu
ation of the regular solution q;). (x). While it seems 
that no other restrictions on the potential than (2) is 
needed, to show this requires a major effort. It will 
be shown that this method is applicable to a more 
restrictive class, which includes most potentials that 
are used in physics. Other, more pathological poten
tials, at the present, must be investigated individually. 

The numerous efforts to find analytic continuations 
made direct use of (I) or some equivalent integral 
equations. While the theory of differential and integral 
equations aided these efforts, it also limited them. It 
limited the admissable potentials essentially to the 
class of analytic potentials. Some of these efforts are 
described when the present results are compared to the 
previous ones. Others are found in Refs. I and 3. 

The method of this paper differs basically from the 
previous ones. To continue q;ir) for a fixed r = ro 
with the previous methods, one needs to continue 
q;;.(r) for all r in the closed interval [0, ro]. The present 
method finds the analytic continuation only for 
r = '0; thus it avoids the critical point r = O. More
over, knowing the analytic continuation of q; ).(r) for 
an interval (R1' R 2), one can find the analytic continu
ation for r < RI and r > R2 by joining the general 
solution of (l) to q; ).(r) at the points R1 and R 2 , 

requiring that the logarithmic derivatives be continu
ous there. 

The method of this paper uses the integral repre
sentation4 

((l;.Cr) = q;~(r) - fs-2K(r, s)q;~(s) ds (5) 

of the regular solution of (l), where q;Hr) is the exact 
regular solution for some comparison potential Veer). 
To find K(r, s), one needs to substitute Eg. (5) into (1). 

The result is that K(r, s) is the solution of 

r2(::2 + 1 - VCr) + VC(r»)K(r, s) 

= S2(!22 + 1 + VP(S»)K(r, s), (6) 

VCr) - Veer) = -2r-1 :r [r-IK(r, 1')], 

lim K(r, s) = ° uniformly in r in the domain r > s. 
s-o -

A detailed derivation of the equation for the kernel 
of the identical representation of the irregular solutions 
is given in Appendix A. The origins of (6) are found in 
that section. 

When veer) is selected such that the analytic 
properties of q;~(r) are known for all A, it only remains 
to find the analytic continuation of the integral 
H s-2K(r, s)q;1(s) ds. From the existence of q;ir) for 
Re A ~ 0, it follows that this integral will be finite 
for Re A ~ 0. But in general there will be a positive 
number p, such that when Re A ~ -p, this integral 
will diverge. When we choose veer) = -I, then 
<p~(r) = (t7T)t-).r-1(A + I)ri+l; thus the mathemat
ical problem can be formulated as follows: Given 
f (x) such that, for Re A ~ 0, g(A) = f~f(x)x). dx 
is an analytic function, find the largest domain in the 
complex A plane onto which g(A) can be analytically 
continued, and determine the nature of the singular
ities at the boundaries. 

Section I contains the method for performing the 
analytic continuation of functions that are Stieltjes or 
Laplace or other more general transforms. Section 2 
uses this method for the regular solution and its 
asymptotic behavior in the left half-plane. 

There are three applications given. The first one 
shows that, for most potentials that are presently used, 
the regular solution is an analytic function in the 
complex angular momentum plane cut from - 00 to O. 
The second application finds that the S matrix is a 
meromorphic function in the same domain. For 
cutoff potentials we also find the asymptotic behavior 
of the S matrix. In the final application we find new 
integral representations and bounds for the Bessel and 
gamma functions. 

In Appendix A we give a new integral representation 
of the irregular solution. In Appendix B we discuss the 
integral representation of the regular solution. 

1. MATHEMATICAL TOOLS 

In this section two proofs are given. Lemma I is the 
key to the analytic continuation of the regular solution. 
Lemma 2 is a useful variant of Lemma 1. 
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Lemma 1: Let 
(i) f(t) In Ct) be a continuous function of the real 

variable t at t = 0, 
(ii) f(e-W) , w = u + iv, be an analytic function of 

w in the domain u > ° and continuous at u = 0, 
(iii)f(e-W

) be polynomially bounded in the domain, 
and define g(A) by 

g(A) = ffCt)t). dt, fl ~ 0, A = fl + iv; 

then g(A) is an analytic function of ;, in the domain 
fl ~ 0, and its analytic continuation to the domain 
fl < ° can have singularities only on the negative real 
axis and at infinity. 

Proof' By (ii), f(e-U
) is continuous in ° ~ u < 00, 

i.e., f(t) is continuous in ° < t ~ 1. Combining this 
with (i), we have that, in ° < t ~ I, f (t)f). and 
Of(f)f'FJ). = f(f) In (f)f). are continuous functions of 
f and the continuity of Of(t)f;-;OA qua function of ). in 
the domain fl ~ ° is uniform with respect to the 
variable f. Hence g().) is an analytic function of ). in 
the domain fl ~ 0.5 Perform the transformation 
f = e-W to get 

g(A) = L"f(e-W)e-(A+llW dw. 

By (ii), f(e-w)e-<A+llw is an analytic function of w in 
the domain u > ° and continuous at u = 0. We apply 
Cauchy's theorem to the function f(e- w)e-<A+1lw. 
Consider two cases. 

Case 1: v < 0: The closed contour is the positive 
real axis, a circular arc connecting it to the positive 
imaginary axis and the positive imaginary axis. We 
have 

lim [lwf(e-W)e-().+l)wll 
Iwl-+oo 

1.£2:0.112:0 

= lim [If(e-W)e-iu+ivvllu2 + v21~ e-(Il+ilu+hv] = 0. 
Iwl-+oo 
u2:O.v~O 

Therefore, the integral over the circular arc vanishes 
as the radius of the arc goes to infinity. Thus, 

(A) g(A) = i 1"'!(e-iV)eVV-i(/A+U" dv, fl ~ 0, v < 0. 

The integral and the integrand are uniformly bounded 
in v ~ vo < ° and - 00 < fl < 00. Hence the analytic 
continuation can be accomplished under the integral 
sign, and (A) defines g().) in the lower half of the 
A plane. 

Case 2: v> 0: The closed contour consists of the 
negative imaginary axis, a large circular arc con-

necting it to the positive real axis and the positive real 
axis. We have 

lim [lw!(e-W)e-().+llwl] = 0. 
Iwl-+oo 

u20.v:SO 

Hence the integral over the circular arc goes to zero as 
the radius of the arc goes to infinity, and 

(B) g(J.) = -i Loo!(eiV)e-vv+i(Il+llv du, 

fl ~ 0, v> 0. 

Again the integral and the integrand are uniformly 
bounded in v ~ vo > ° and - 00 < fl < 00, and (B) 
is the analytic continuation of g().) to the upper half 
of the A plane. 

This shows that there are no singularities in the A 
plane except maybe on the negative real axis and at 
infinity. To find the singularities, one needs to 
evaluate the integrals (A) and (B) and let v - 0. 
Where these two functions become infinite or where 
they do not match, there is a singularity. This proves 
the lemma. 

Remarks: 
(1) The conditions of the lemma, for example, are 

satisfied by the functions which are analytic in the 
domain It I ~ I, by t In (f), by the Bessel function 
Jp(f), and by fP when p is any positive real number. 

(2) The functionf(t) = fa+ib + fa-ie, a > 0, b > 0, 
and c > ° does not satisfy (iii). But, when v > band 
when v < - c, the integrals over the circular arcs 
vanish as the radii of the arcs go to infinity. Hence 
with the above method one can find the analytic 
continuation to fl < ° excluding the strip -c ~ v ~ 
b. However, one can write f(t) = fl(t) + f2(t),where 
fl(f) = fa+ib and f2(f) = fa- ie and continue fl(f) and 
f2(t) individually. First let T = ). + ib; then 

gl(A) == LI!I(t)t). dt = ff a+iHA dt = Loo e-(a+r+llw dw. 

When 1m T < 0, then 

gl(A) = i 100 

e-i(a+T+llv dv = -(a + T + 1rl. 

When 1m T > 0, then 

gl(A) = _iiooei(u+T+llV dv = -(a + T + 1)-1. 

As 1m T - 0, the two functions match everywhere and 
there is only a polar singularity at T = -a - 1, i.e., 
at Al = -a - 1 - ib. Next let T = A - ic; the same 
procedure gives that f2(t) has only a polar singularity 
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at ,1.2 = -a - 1 + ie. Thus g(A) is a meromorphic 
function with poles at Al and at A2 . 

(3) As an example, letf(t) = sin 7Tt; then 

g(A) = 1\). sin TTX dx, 

and so by Lemma 1, when A = f-l ± i 1'1'1 and 1'1'1 > 0, 

g().) = ± i 100 

e±i(A+l)V sin (7Te±i,,) dv, 

Interchanging the summation and integration is 
permitted since 1'1'1 > 0. We have 

g(A) = (± i (2u e±i(HIlx sin (7Te±iX) dX) I e±2ui,dA+I) 
Jo n~O 

= ± i(1 - e±2Ui().+l)rI i
2U 

e±i(HI)x sin (7Te±il) dx 

= ±i(1 - e±2Ui()'+l)rI(f + fU) 
= ±i(1 - e±2u'('<+l)rl (1 _ e±iuU.+l» 

X iUe±iXCHI) sin (7Te±iX) dx. 

The analytic continuation and its asymptotic form is 
clear. To see what happens when 1'1'1 -+ 0, write u = 
e±i"'; then 

g(A) = (1 - e±2Ui().+l)rl (1 - e±i(HI» e u sin TTU duo 
LI 

(a) When A = 2m + 1 ± i 1'1'1, ±m = 0, 1, 2, ... , 
as 1'1'1 -+ 0, the factor (l - e±iu(HIl) -+ ° and cancels 
the singularity of (1 - e±2ui(HI»-I. 

(b) When A=2m±ilvl, m=O, 1,2,,", as 
1'1'1-+0, 

e u). sin TTU du -+ ° 
1-1 

and cancels the singularity of (1 - e+ 2ui(HI»-I. 

(c) When A = -2m ± i 1'1'1, m = 1,2, ... , there is 
a polar singularity. 

Note that the two halves match everywhere on the 
real axis. 

Lemma 2: Let f(t) be as in Lemma 1, and define 
g(A) by 

g(A) == f!(t)J;.(t) dt, fA-;;:: 0, }. = fA- + iv, 

where J).(t) is the Bessel function. Then g(A) is an 
analytic function and its continuation 'to the domain 
fA- < ° can have singularities only on the negative real 
axis and at infinity. 

Proof' An identical proof to that of Lemma 1 shows 
that g(A) is analytic. To find the analytic continuation 
to the domain fA- < 0, we again employ Cauchy's 
theorem and transfer the integration to the imaginary 
axis. 

Case 1: v < 0: The closed contour consists of the 
following lines: v = 0, ° ~ u ~ e, u = e, ° ~ v ~ e; 
v = e, ° ~ u ~ e; and u = 0, ° ~ v ~ e. Here c > ° 
is a constant. The identity6 J;Jzeim,,) = eim'AJ).(z) 
shows that when v < 0, m and 11 are integers, and 
m > 11, then 

Therefore, 

Thus, 

C--> 00 

and 

sup !J;.(e-C- iV)I = sup IJie-C- iV)I 
osv OsvS2u 
c>O c>o 

= sup IJ ;.(re-iV)I = M. 
0::;'1)'::;211' 
OSr<I 

= lim (Mce- C 1!(e-c-iV)I) = 0, 

lim (c 1/( eU-iC)e-U-iCJ i e-u-iC)I) 
c--> 00 

~ lim (Mee-C 1!(e-U-iC)1 eNu ).) = 0, 
C--> 00 

where N is the greatest integer less than or equal to 
C/27T. Hence the integrals over the lines u = e, ° ~ v ~ 
e, and v = e, ° ~ u ~ c, vanish as e-+ 00, and 

g(A) = iioo!(e-iV)e-iVJie-iV) dv. 

Since the integral and the integrand are uniformly 
bounded in - 00 < fA- < 00 and v ~ '1'0 < 0, the 
analytic continuation is accomplished under the 
integral sign. 

Case 2: v > 0: The closed contour consists of the 
following lines: u = 0, 0;;:: v ;;:: -e; ° ~ u ~ e, 
v = -e; u = e, -c ~ v ~ 0; and v = 0, e ;;:: v;;:: 0. 
Here e > ° is a constant. Henceforth the proof is the 
same as in Case 1, and the conclusion follows as in 
Lemma 1. 

Remark: We have used only certain analytic 
properties of the Bessel functions. The extension of the 
lemma to functions with similar behavior is immediate. 

2. THE ANALYTIC CONTINUATION OF 'P;.(r) 
AND ITS DEHA VIOR FOR LARGE IAI 

We continue q;).(r) , the regular solution of (1), 
using the integral representation 

q;;.(r) = q;1(r) - fs-2K(r, s)q;~(s) ds, 
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where K(r, s) satisfies (6) and !pi(r) is the comparison 
wavefunction. The two most convenient comparison 
wavefunctions with the corresponding comparison po
tentials are 

(i) !p~(r) = (t7T)t2-)-r-l(A + 1)rHt 

and Veer) = -1, 

and veer) = O. 

Theorem 1 gives the analytic continuation when 
veer) = -1 is used as the comparison potential. The 
proof of the theorem when veer) = 0 uses Lemma 2 
instead of Lemma 1. Theorem 2 gives the behavior of 
!pAr) for large IAI. 

As stated in the Introduction, the exact requirements 
on the potential are unknown. It is convenient to set 
the conditions on K(r, s) directly. Appendix B shows 
that these conditions are satisfied when a rather large 
class of potentials is used to determine K(r, s). 

Theorem 1: Let K(r, s) have the following properties 
for a fixed r > 0: 

(i) rlK(r, s) In s, as a function of the real variable 
s, is continuous at s = 0; 

(ii) K(r, re-w ), W = u + iv, is an analytic function 
of w, regular in the domain u > 0 and continuous at 
u = 0; 

(iii) K(r, re-w), as a function of the variable w, is 
polynomially bounded in the domain u ;;:: o. Then, 

!pir) = (t7T)!2-Ar-1(A + 1) 

x (rH! - fs-2K(r, s)sH! dS), ,,;;:: 0, 

and A = " + iv is an analytic function of A and has an 
analytic continuation to the domain fl < 0 with 
singularities, if any, on the negative real axis and at 
infinity. 

Proof: Write s = rt; then 

tpir) = (t7T)!2-Ar-l(A + 1)rH! 

x (1 - r-l fK(r, rt)t-
f 

dt). 

The functions 2-\ r-l(A + 1), and r).+! are entire 
functions of A. The conditions on K(r, s) were selected 
such that t-fK(r, rt) =f(t) satisfies the conditions of 
Lemma 1. Hence the analytic properties of 

f K(r, rt)t).-i dt 

are given by Lemma 1, and the conclusions of the 
theorem follow. 

Remark: Plemelj's method7 provides a way to 
lessen the restrictions on K(r, s). Assume that H(x) is 
differentiable in 0 < x < 1, continuous at x = 0 and 
at x = 1, and that H(O) = H(1) = O. Define 

G(z) =11 H(x) dx , 
o x - Z 

G+(x) == lim G(z) and G-(x) = lim G(z). 
z-+z z-+i:t 

Imz>O Imz<O 

Then, G(z) is an analytic function in the z plane cut 
from 0 to 1, and H(x) = G+(x) - G-(x) for 0 :::;; 
x:::;; 1. 

Claim: If the solutions of (6), K(r, s) = R(r, s) + 
H(r, s), where R(r, s) satisfies the conditions of 
Theorem I, 

lim s-i H(r, s) = H(r, r) = 0, 
8-+0 

and s-fH(r, s), lead to a G(r, z) with the property 
that G(r, -rt) satisfies the conditions of Theorem 1, 
then the conclusions of Theorem 1 hold. 

Proof" We only need to investigate the analytic 
properties of 

I(A, r) ==fH(r, s)s).-i ds. 

The differentiability and continuity conditions needed 
to apply Plemelj's method are satisfied because K(r, s) 
is the solution of (6) and RCr, s) satisfies the con
ditions of Theorem 1. Thus 

I(A, r) = r).-l f H(r, rt)t).-i dt 

= r).-11\G+(r, rt) - G-(r, rt»t).-! dt 

(i1+;. 
= r).-! lim GCr, rz)z).-i dz 

£-+0 0+;< 

- e-2"i().-!)ll~i<G(r, rz)z-i dZ). 
0-" 

Interchanging the order of limit and integration is 
justified because continuity on a closed interval 
implies uniform continuity. We then apply Cauchy's 
theorems to G(r, rz)z-i, using the contour shown in 
Fig. 1, and get 

I(A, r) = ir-l (e-2i().-h - 1) flG(r, rz)z;.-f dz 

- ir).-! i" G(r, reiB)ei().-hB dO 

- ir).-!e-2 .. i().-!) 12

" G(r, reiB)eW-!)B dO. 
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1m z 

-I 

Re z 

- i 

F,G. I. The contour C in the application of Plemelj's method. 

With a change of variable we get 

I()., r) = 2 sin TTA fG(r, -rt)t;·-~ cit 

- ;r i.-! l~(G(r, rei8) 

+ e-i"u-t'G(r, rei("+6'»eili.-t'9 dO. 

G(r, -rf)·was assumed to satisfy the conditions of 
Theorem 1. The second integrand and integral are 
uniformly bounded in - 00 < ft < 00 for any fixed 
v = Vo :;E= O. Therefore, the analytic continuation of 
the second integral is accomplished by continuing the 
integrand. 

But this is not the most general form for K(r, s). 
The derivation of (6) in Appendix A shows that (5) 
may be a valid representation of <PA(r) even when 
K(r, s) is a solution of (6) only in the distributional 
sense. Plemelj's method is also applicable to certain 
distributions. !J 

Theorem 2: 
Let <pir) be defined as in Theorem 1. Then 
(i) for ft = fto as Ivl - 00, rA(r) = 7Tlr-1(1 + 

A)Or)H~[l + 0(1)], 
(ii) for v = Vo :;E= 0 as Iftl- oo<pir) = 7T!r-l(1 + 

A)(tr)H![1 + 0(1)], where fez) = o(g(z» as z - 00 

means that I f(z)/g(z) I - 0 as z - 00. 

Proof: We have 

<p;.{r) = 7T!2-)·-!r-1(1 + A) 

X (rHi - J: K(r, s)si.-! ds), 
ft ~ 0, A = ft + iv. 

Using Theorem I, we obtain 

T i.( r) = 7T!r-1(1 + A)Ur)i.+~ 
x (I ± ;r-1 l'" K(r, re±it)eti(I.-i',-I'·I' dV), 

- 00 < ft < 00 Ivl:;E= 0. 

The plus or minus sign is chosen to be opposite of the 
sign of v. Thus (ii) is a consequence of the Riemann
Lebesgue lemma. IIl To prove (i), we recall that 
K(f, re±il') is continuous and polynomially bounded in 
11'1; thus we write 

e(r, A) = I L" K(,., re±ir)e-ti(II-~'r-I"lr dv I 

~ i"'IK(r, re±if)e-!Ivlrl e-~I"lr dv 

< M roc, e-!Ivl" dv = 2M _ ° as Ivl- 00. 

- Jo Ivl 

This proves the theorem. 

3. APPLICATIONS 

A. Analytic Properties of ip;.Cr) 

We now show that the method of this paper is 
applicable to many often used potentials. The potential 
VCr) is said to belong to class <tJ(R) if 

(i) V(z) is an analytic function of z = rei9 in 0 < 
r < R < 00 and - 00 < () < 00 and continuous at 
I' = R, 

(ii) there exists a y > ° such that 1'2-21 V(reiB ) -). ° as 
r - ° and () is fixed, and 

(iii) there exists a k, ! > k > 0, such that 
V(reiB)O-k -). ° as I(}I- 00 and r is fixed. 

This class contains, for example, VCr) = J'P(er), 
where p > ° and e is any complex number, VCr) = 
(log r)!, and the combination of such potentials. 

Appendix B shows that if VCr) E '\J(R), then the 
corresponding K(r, s) satisfies conditions (i) and (ii) 
of Theorem 1. Condition (iii) of Theorem 1 was given 
to ensure that the integrals over the circular arcs will 
vanish as the radii of the arcs go to infinity. The 
bounds we have in (85) will serve the same purpose, 
since 

It I (1 + 11m tJ)~1c+t 
X exp [e(l + 11m tlk+t)e- IV Tmtl-Ret] _ 0 

for e > 0, Ivl > 0, as Itl- 00 and Re t ~ 0. There
fore, the conclusion of Theorem 1 does hold, and 
p;(r) has an analytic continuation onto the entire A. 
plane with singularities, if any, on the negative real 
axis and at infinity. 
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This result agrees with the result of Cheng. l1 He 
uses the fact that 

(2A.rl LT(rH ! x-H ! - xH~r-i.+!)xP dx 

= r'P+2(p + A + ~)-I(p - A + ~)-t, 
p any complex number, when the integral exists. He 
used the right-hand side to define the integral for all A. 
To find the analytic continuation of p;.(r) in the }. 
plane, he solves the integral equation 

p;.(r) = 17!2-"-!1'-I (1 + A) 

x (rH! - (2ArliT(r"+!x-H! - xH!r-i.+!) 

X V(x)Pi.(x) dx, 

using the above definition for the integral, by iter
ation. He needs to restrict the potentials to those which 
can be written VCr) = 2i airbJ , Re hi > -2 + 2y for 
all j and some y > 0, the sum being absolutely and 
uniformly convergent. He finds that p;.(r) is a mero
morphic function of A. The location of the poles are 
determined by the hi' When all the hi are real, the 
poles are on the negative real axis. 

His potentials with the hi real are in the class 'U(R), 
and thus the singularities of p,,(r) have to be on the 
negative real axis of the A plane. It can be seen from 
the remark following Lemma 1 that the method of 
this paper is applicable to the case where the hi are 
not real, but the analysis is more complicated than 
Cheng's method. 

Mandelstaml2 considers potentials that can be 
represented by 

00 

VCr) = r-I 2 vkr\ 
k~O 

and writes the solution of Eq. (1) in the form 
00 

pir) = ei
" 2 akrk+s. 
k~O 

From the recurrence relations for the ak , his con
clusions about the positions of the possible singu
larities are the same a§ ours. Having made such a 
strong assumption on the potential, he is able to find 
the behavior of the residues. While in theory one could 
reproduce his results with the method of this paper, 
in practice it would involve a great amount of labor. 

B. Asymptotic Behavior of the S Matrix and the Jost 
Function 

In this section the asymptotic behavior of the S 
matrix and the Jost function will be investigated for a 
restricted class of potentials in the domains 

D+ = {A 10< 101 < !17}, 
D- = {A I 0 < 117 - 01 < !17, 0 = arg A}. 

These four sectors were selected because in there we 
can use Stirling's asymptotic formula for the gamma 
functionl3 to find that 1'0 - A)/1'(1 + A) goes either 
to zero or to infinity as IAI -+ 00. Let VCr) E 'U(R) and 
let it have the additional property that VCR) =;f 0 and 
VCr) = 0 for R < r. Then in the open interval (0, R) 
the regular solution of Eq. (I) has the representation 

p;.(r) = l7!1'-I(l + A)2-"-!(rH ! - fK(r, s)s;'-~ dS), 

and in the interval (R, 00) the irregular solutions of 
(1) are 

where 

H-;'(r) = H~I)(r) and H+(r) = Hl2)(r) 

are the Hankel functions. 2 

Since the regular solution,' the irregular solution, 
and their derivatives are continuous, the Jost function 
F±(A) == W(p,,(r) , f1±(r» is determined most con
veniently by evaluating the Wronskian at r = R. 
With the aid of the identity 

H±(r) = ±i csc l7A[J_ir) - e±i1T"Jir)], 

we find 

F±(A) = ±ehu(;'-!)[gtCA) - e±iU"g2(A)], 
where 

and 
gl(A) = csc l7AW(p;,(R), J_iR» 

g2(A) = csc l7AW(piR), JiR». 

Next we rewrite the representation of p,,(r). We define 
U(rs, rs-I) = (rs)-!K(r, s) and let s = re-W. Then 

pir) = l7!1'-I(I + A)(ir)"+! 

X (1 -ioo 

U(r2e-'", eW)e-W dW), 

dp;.(r) = l7~1'-I(1 + A)(tr);'-! 
dr 

x (iA + i)( 1 - 1''' U(r2e-W, eW)e-W dW) 

The subscripts 1 and 2 denote differentiation with 
respect to the first (r2e-w) and second (eW

) arguments, 
respectively. The differentiation under the integral 
sign is justified in Appendix B. Finally, using the 
identities r(1 + z) = zr(z) and r(z)r(1 - z) = 
CSC l7Z and the series expansion 

J'P(z) = - L , (
Z)'P 00 ( -1 )kZ2k2-2k 

2 k~O 2! 1'(1 + ). + k) 
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we find that 

00 ( l)k 2k2-2k 
gl(A) = ;.-1 I ,_---.:.-Z __ 

k~O k! (1 - A)k 

x {(k + A)[1 - [(R, 0)] - R2f 1(R, I)}, 

where we used the notation (a)o = 1 and (ah = 
a(l + a)(2 + a) ... (k - 1 + a) for k = 1,2, ... 
and 

f (R ) - roo v (R 2 -w W) -(Hn)w d 
i"'j ,n - Jo i"'j e , e e w. 

Using the results of Appendix B, we analytically 
continue f(R, 0) and heR, 0) to fl < 0 by transferring 
the integration to the imaginary axis. Moreover, from 
the bounds given in Appendix B for U and VI it 
follows that I(R,O) and Il(R, 1) are both 0(1) as 
IAI-- 00 in D±. Therefore, when IAI is large enough to 
make y > 1, for n = 1,2, ... , 

;.-1 I Z 

I 
00 (_I)k 2k2-2k 

k=n k! (1 - A)k 

X {(k + A)[1 - [(R, 0)] - R2[1(R, l)}! 

~ 11 + 2kr11 exp UR2) = o(rn+l) 
(1 - A)n 

as IAI goes to infinity; hence gl(A) = 1 + 0(1) as 
1..1.1-- 00 in D±. Similarly, 

g2(A) = ;.-lr(1 - A)r-l(l + A) i (-1 tz2k2-2k(!i)2 
k~O k! (l + Ah 2 

x {k[l - [(R, O)J - R2[I(R, I)}. 
Thus 

g2(A) = -A-1r(1 - A)r-1(l + A)(R/2)2)'+2 

x [(1 + A)-1 + 4[1(R, 1) + 0(A-1
)]. 

Integrating Il(R, 1) by parts, we obtain 

I1(R, 1) = -(1 + A)-I[-U(R2, I) + R2In(R, 2) 

- [a(R, 0)] 

= (\ + A)-lV(R2, I) + 0(..1.-1) 

= - HV(R) + I] + 0(..1.-1
) as IAI- 00. 

Therefore, g2(A) = r(l - ;t)r-l(l + A)V(R)A-1(l + 
A)-1(R/2)2H2[1 + 0(1)] as 11.1-- 00. Because of the 
factor r(1 - A)r-I(l + A) when AE D± as 1..1.1 --+ 00, 

we have 
. (i) for fl > 0, g2(;t) = O(gl(A», i.e., peA) = 

±e'FFL.,-!) [l + 0(1)], 

(ii) for fl < 0, gl (A) = 0(g2(A», i.e., 

P(A.) = i=e±h .. (Hil r(1 - A)r-l(1 + A) 

x V(R)A-1(I + Arl(R/2)2H2[1 + 0(1)] 

and hence 

S (1) = ei .. ().+!) P+(A) 
,\ rCA) 

Re A> 0 
{
I + 0(1), 

= exp (21TiA)[1 + 0(1)], Re A < 0 
as IAI-- 00. 

If VCR) = 0, the only complication that arises is 
that one needs to evaluate higher-order terms of 
g2(A). Removing the restriction that VCr) = 0 for 
r > R remains as an unsolved problem. To see the 
difficulties, assume that the potential allows the 
representation 

11(r) = 1~±(r) - f"s-IK(r, s)1~±(s) ds 

for the irregular solutions of (1). Appendix A shows 
that there are such potentials. The first term is 
proportional to r!H'i(r). The argr.ment of Hi(s) is 
integrated from R to 00. Its order is neither small nor 
large nor equal to its argument. 

It is thought that, for Re A > 0, 

(00 .a 
h1(A) == JR s-2K(R, s)L).(s) ds 

dominates 

(00 -i 
hl).) == JR s K(R, s)J;.(s) ds as 1)./-- 00, 

and the same statement holds for their derivatives with 
respect to r. It is equally likely that h2(). + 1) is an 
order of A smaller than h20.). Assuming the above to 
be true, using the identity 

J(z) = ~(JA+b) + .E..J;.CZ»), 
A dz 

and integrating by parts, one can see a certain pattern. 
We write 

P±().) = w( qJ;.(R),f~±(R) - LXlS-~K(R, s)1~±(s) dS) 
= exp [±~i1T(A - i)] 

X [gl().) - hI(A) + exp (±i1T).)] 

X [g2(A) - h2(A)]. 

We find that h1(A) = O(gl(}'» as IAI-- 00, and there is 
no such relation between h2CA) and g2(A). But, since 
it was assumed that, for A EO D±, Re). > 0, and 
IAI-- 00, hI(A) dominates h2(A), we can conclude that 
S). -- I. 

The cancellations between g2(Ji) and h2(Ji) will 
determine the behavior of the S matrix in the left 
half-plane. Assume that the potential has derivatives of 
all order in the interval (R, (0). This enables us to 
take any number of derivatives of K(r, s) and therefore 
integrate by parts any number of times. If VCR) is 
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continuous at R = r, then the first-order terms of 
g2(A) and h20.) cancel each other. The second-order 
term of g2(A) depends on lim (ir)2;'+2 dV(r)/dr as r
R. It is also cancelled by the second-order term of 
h2(A) if the derivative of the potentials is continuous. 
As the powers of A-I in g2(A) increase, so do the 
powers of tR2. If the potential is analytic on (0, 00), 

then the value of the Jost function should not depend 
on R. It seems that g2(A) - h2(A) should be zero. 
This is certainly the case when VCr) = 0. In that case 
S;. - 1 as IAI- 00 in any direction inside D±. How
ever, if any derivative of VCR) is not zero, then S;. -
e2tri

;' as IAI - 00, Re A < 0, A E D±. 

C. New Integral Representation of J;.(z) and rCA) 
As a last application, we derive a known integral 

representation of J).(r) in the domain ft > 0, A = 
ft + iv, and analytically continue it to the domain 
ft ~ 0, getting a new integral representation and a 
new bound that is valid for all A and r. We also find a 
new representation and bound for rCA) in the domain 

ft <0. 
The equation 

(.t.. + 1 - (A.2 - !)r-2
) cp;,(r) = ° (7) 

dr2 

is Eq. (1) with k 2 = ° and VCr) = -1. Hence for 
ft>O 

(}1;.-i(r) = l7i 2-;.-ir -l(1 + A) 

X (rHl -.r K(r, s)s;.-! dS), 

where K(r, s) is the solution of (6) with Veer) = -1, 
i.e., K(r, s) = 2-1rs-!(r - s)-lJ1([r(r - s)]t). There
fore, 

(}1;.-i(r) i 

= l7
i r-1(1 + A)GY+ (1 - r f(1 - t

2
);'Jirt) dt). 

Integrating by parts, we obtain 

(}1;.-l(r) = 217i r-1(1 + A)Gy+i 

x f(1 - t2»).-ltJo(rt) dt. (8) 

But (7) has the solution (}1;.-l(r) = l7t2-1r i J;.(r). 
Comparing it with (8), we get the known represen
tation 

J ir) = (~r r-l(A) f (1 - t2»).-l tJo(rt) dt 

or 

Using the method of this paper and Lemma 1, we find 

(
r);' (00 1 ., 

Jir) = i 2" r-1(A) Jo Jo(r[1 - exp (-iv)] )e-V.v dv 

= i (!:.);'r-1(A) .f e-i21r ).n 

2 11=0 

x f" Jo(r[1 - exp (- iv)]i)e-j)·v dv 

for - 00 < ft < 00 and v ~ Vo < 0. Similarly, for 
v ~ Vo > 0, we find 

Jir) = -iGrr-I(A)(l - ei
2D-)')-l 

X f" Jo(r[1 - exp (iv)]l)ei)·v dv. 

One can show that, as v - 0, the two halves match 
everywhere and are finite. 

Using14 

IJo(r[l - exp (±iv)]i)1 

~ exp (1m {r[l - exp (±iv)]i}) ~ exp (2 l r), 

we find that for - 00 < ft < 00 and Ivl ~ Vo > ° 
IJir)1 ~ (trY' jr-I(A)I 

X exp(21r)11-exp[-i217(±ft- ilvl)-I]I 
(2 .. 

X Jo e-1v1v 
dv 

~ (tr)" jr-l(A.) I exp (21r) IvorI, 

For the gamma function write, for ft > 0, 

rcA) = iooe-Zz).-ldZ = II + 12, 

where 

II = i1e-zz;'-I dz and 12 = i"'e-Zz;'-I dz. 

We use Lemma 1 to continue 11, i.e., repeat the steps 
used in the analytic continuation of J;.(r). We find that, 
for Ivl ~ Vo > ° and - 00 < ft < 00, 

II = =Fi{l - exp [-i217(±ft - i Ivl)]}-I 

X r"exp (-cos v ± i sin v =F iftv - Ivl v) dv. 

Thus 1111 ~ e IVol-i. The analytic continuation of 12 is 
accomplished by letting ft become negative under the 
integral sign. 
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Note that this representation enables one to find 
the asymptotic behavior of the gamma function for 
larg AI = 1T. 

These examples show that with the method of this 
paper one can continue those functions that are 
Stieltjes or Laplace transforms of well-behaved 
functions. 

CONCLUSIONS 

We have demonstrated that when mild restrictions 
are imposed on the potential at the origin, the regular 
solution of the Schrodinger equation has an integral 
representation. We also showed that with severe 
restrictions on the potential at infinity the irregular 
solution also has similar integral representation. The 
analytic continuation of the regular solution then 
depends on finding the analytic continuation of a 
function defined by an integral. We devised a method 
that performs the analytic continuation of a rather 
large class of functions. Thus we are able to continue 
the regular solutions that corresponds to a rather 
large class of potentials. 
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APPENDIX A 

We are looking for a representation of the irregular 
solutions 

f~(r) = f1±(r) - !oos-2K(r, s)f1±(r), (AI) 

where 
~(r) = e-ih(A+!)(tr)~H1(r). 

Substituting (AI) into 0), the natural way to proceed 
is to use Liebnitz's rule15 to differentiate under the 
integral sign. For this we need that the continuity 
of oK(r, s)/or and 02K(r, s)/or2 as functions of r be 
uniform with respect to the variable s in the region 
0< R ~ r < s (Condition 1). The inverse scattering 
problem suggests making K(r, s) satisfy 

(0
2 

) (02

) r2 or2 + 1 - VCr) K(r, s) = S2 os2 + 1 K(r, s), 

(A2) 

2 d K(r, r) 
- - -- = VCr) and lim K(r, s) = ° 
r dr r .-00 

uniformly in r. Using (A2) and integrating by parts, 
we find that (AI) is indeed a representation of the 

irregular solution provided that we also require that 

lim ~ K(r, s) = 0 
8-00 OS 

uniformly in r (Condition 2). It must be emphasized 
that Conditions 1 and 2 are sufficient but not necessary 
conditions. It is probably sufficient that K(r, s) be a 
weak solution of (A2) to make (AI) a valid repre
sentation of ff(r). 

Now we proceed to convert (A2) into an equivalent 
integral equation. Introduce the change of variables 
r = x-iy-i and s = x-iyi. This transformation is one 
to one except for the line at infinity. (See Fig. 2.) 
Also introducing the new function x-iU(x,y) = 
K(r, s), we see that (A2) becomes 

02 

;-;- Vex, y) 
uxuy 

+ ~ [1 - l- V(x-iy-i)]U(x, y) = 0, 
4x y 

d (A3) 
-4x2 

- vex, 1) = V(X-f) 
dx 

and 
lim x-lV(x, y) = 0 uniformly in y, 
",-0 

which can be integrated to give 

Vex, y) 

= -t fdS f dt S-2t-2[1 - t2 
- V(s-it-i)]V(s, t) 

- t i"'S-2V(s-i) ds. (A4) 

The most general condition on VCr) for which this 
integral equation has a solution is not known. But if 
we make the assumptions that ekr2 V(r), ekr2 dV(r)/dr, 
and ekr2 d2V(r)/dr2 remain bounded as r ~ ex) for some 
k > 0 and that d2V(r)/dr2 is continuous,16 then (A4) 

i 

: - r 

J 

R 

R 

FIG. 2. The transformation in Appendix A: r = x-~v-~ and 
s = x-lyJ-. The line r = ro = const goes into y = ro-2x- i and the 
line s = So = const goes into y = s~x. 
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does have a solution satisfying Conditions I and 2. 
To show that we solve (A4) by iteration, define 

00 

(i) Vex, y) = ! V,,(x, y), 
,,=0 

(ii) V,,(x, y) = -t f'us 

then 

X f dt s-2t-2[1 - t 2 
- v(s-~r})]v n-l(S, t) 

for n;;::: 1, 

I Vo(x, y)1 s t f ds S-2 I V(s-~)I 

S 1M LX ds 05-
2 exp ( - ;) 

= tMk-1 exp (- ;), 

IV,,(x,y)1 s ! fdS fdt s-2t-211 - t2 
- V(s-~ri)1 

X IV n-l(S, t)1 
{X (y 

s 1 Jo d5 5-2 Jl dt(M + 2) I V 11_/5 , t)1 

S [l(M + 2)]"iXdXI/_IX~-':1 

l y (Y 1 M (k ) 
X dYn-l'" dyo --exp --

1 .1 4 k Xo 

1 M(M + 2)" ( k)(Y - 1)" <-- -- exp --
- 4 k 4k x IJ! 

Thus 
OCJ 

IV(x, y)1 s! IV,,(x, y)1 
n=O 

< ! M exp (_ 15) ~ (M + 2)" (y - 1)" 
- 4 k x 0 4k IJ! 

= ! M exp (_ ~ + M + 2 (y - l)) 
4 k x 4k 

1M (k M+2) < - - exp - - + -- y . 
4 k x 4k 

(AS) 

Therefore, (A4) has a unique solution for this class of 
potentials. Note that the bound on U(x, y) says that 

! 1 M ( M + 2 s) IK(I', s)1 s (I'S) 4 k exp -kl's + ~; 

< --s exp -s kl' - -- , (A6) 1 M [( M + 2)J 
- 4 k 4kl' 

so that for a given k there always is an R such that for 
I' ;;::: R lim K(r, s) = 0 uniformly in I' as s --* 00. 

To see that Conditions I and 2 are satisfied, observe 
that when s = const, then I' = S-IX -l and y = S2X 

and 0(01' = -x2s d(dx. Thus 

a at K(t, s)ll=r 

= -x2s dd [x-tV(x, s2x)]I.r=r-1,,-1 
x 

= il'-!stV (r-l s-I, r-1s) 

+ tr!s!f-I'dt[l - t 2 - V(I'~stt-!)]t-2U(r-ls-\ t) 

+ trts-! r-18

-

1 

t- 2 [1 - ,.-2S2 - V(r!'s-it-l)] 

x Vet, r-1s) + ir}s]V(r}s!). (A7) 

oK(r, s)(or and 02K(r, s)/or2 are evaluated from (A7) 
by differentiation. Then, using (AS) and the bounds 
on the derivatives of the potential, we easily show that 

- K(r, s) < L" < 00, IJ = 1,2,3, .... I 
0" I 
or" 

Now 

(r-to I an I 
Lllb ;;::: J or" K(r, 5) dr 

\ 1r+o an I > _ - K(I', 5) dr 
- r arn 

I 
a,,-1 I = ar

Tl
- 1 [K(r + b, s) - K(,., s)] 

and thus the continuity of K(,., s), aK(r, s)(ar, and 
a2K(r, s)(ar2 in ,. is uniform with respect to s. This 
proves that Condition I is satisfied. To show that 
Condition 2 is satisfied, observe that when I' = const, 
then s = ry, X = r-2y-l, and a/as = ,.-1 d/dy. There
fore, 

a 
- K(/', s) as 

1 d [ tu( -2 -1 )]1 = -d- ry I' y ,Y y=.,,-1 

r y 

_ 1 -~V( -2 -1 ) + t ~ U( .-2 -1 )1 - lfY I' Y ,y Y d y I Y ,Y y=sr-1 

= (2s)-IK(,., s) 

+ Jr~s! rr- 1

dt (-2[1 - t2 - V(s!,.tt-!)U(S-lr-l, t)] 

_ t r-lr-ldt (-2,.2S-2[1 _ ,.-2S2 _ V(,.ts-it-i)] 

x V(t, ,.-1S) - t,.2V(,.!S!), 
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I :S K(r, s) I 
~ (2sr1 IK(r, s)1 

+ M + 2 s~r~ exp [-s(kr _ M + 2)J 
16k 4kr 

which vanishes as s - 00 uniformly in r for I' ~ R. 
Thi~ shows that Condition 2 is also satisfied. 

APPENDIX B 

Consider (6) with Veer) = -I, i.e., 

(
0

2
) 0

2 

1'2 - - VCr) K(r, s) = S2 ---:; K(r, s), 
o? OS 

- '!:.!£ [r-1K(r, r)] = VCr) + 1, (81) 
r dr 

lim K(r, s) = 0 uniformly in r, in the region 0 ~ s ~ 
8_0 

r < R. 
Introduce the change of variables r = x~y~ and 

s = x!y-t. This transformation is one to one except 
for the point r = O. This transformation leads to the 
differential equation for U(x,y) = r-}r~K(r, s), 

and 

02 
1 1 

-- U(x, y) - iV(x' y2)V(X, y) = 0, 
oxoy 

d 1 
-4 - vex, 1) = V(x 2

) + 1 
dx 

lim vex, y) = 0 uniformly in y, 
x~o 

which can be integrated to give 

Vex, y) = tiXdsfdtV(s!(i)V(S, t) 

(82) 

- i LX [1 + vest)] ds. (B3) 

We will be interested in K(r, s) after the transfor
mation s = re-W

• Therefore, we will proceed directly. 
Let x = e- Z andy = e-w ; then, retaining the notation 

U(z, w) for the new function, we obtain 

Joo jW 1 ! 
V(z, w) = i z ds Jo dtet-SV(e,t-. S)V(s, t) 

- i 100 

e-s[V(e-h ) + 1] ds. (B4) 

Again the most general conditions on VCr) for 
which (84) has a solution with the properties that 
lim K(r, s) = 0 uniformly in r as s - 0 and that the 
continuity of oK(r, s)/or and 02K(r, s)/or2 in r is 
uniform with respect to s is unknown. However, 
sufficient conditions are 

(i) Vex) is an analytic function of z = rei8 in 
- 00 < 0 < 00, 0 < r < R < 00 and continuous at 
r = R, 

(ii) there exists a y > 0 such that r2(1-r) V(rei8
) - 0 

as r - 0 and 0 is fixed, 
(iii) there exists a k < t such that V(rei8 )()-1c - 0 as 

101 - 00 and r is fixed. 
The last two conditions imply that I V(rei8

) I < 
Mr2H(l + 1(1)". 

We solve (84) by iteration and at the same time 
continue U(z, 11') to complex z and 11' by letting them 
become complex in the integral equation. Let 11' = 
U + iv and z = x + iy, x - u ~ -In R; and 

oc 

(1) V(z, w) = Z Un(z, w), 
n~O 

(2) V,,(z, w) = i1°C+iOdsiWdtet-SV(e!t-h)Un_l(S, t) 

for n ~ 1 and the contours of integrations lie in the 
domain of analyticity of Un_1(s, t), 

J
"'+iO 1 

(3) Vo(z, w) = -1 z dse- S[V(e- 2S) + 1] 

and the contour lies in the domain Re s > In R. 
To find Uo(z,11'), we select the contour shown in 

Fig. 3, i.e., 

Vo(z, w) = -i LCe-s-iY(1 + V(e-h +hy) ds 

- i. JO

e-C
-

i8[1 + V(e- ic+!;.,)] ds 
4 y 

- t 1"" e-S [1 + Vee-h)] ds. 

Because of (ii) and (iii) the last two integrals vanish as 
C - 00, and 

IUo(z,11')1 ~ iLooe-sll + V(e-~s+hY)lds 

~ t {'" e-s[1 + Me(l-Y)s(1 + Iyll] ds 

~ (4Yrl(1 + M)(1 + Iyl)ke-Yx. 
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1m s 

z c + 1m z 

L~I'~~_~~ 
Res 

FIG. 3. The contour of integration in Appendix B. 

Thus Uo(z, w) is an analytic function of z in the 
domain x > -In R, Iyl ~ Y < 00. To find U1(z, w), 
we use the contour shown in Fig. 3 for the s integration 
and a portion of the real axis and a line parallel to the 
imaginary axis for the ( integration. Again we let 
C - 00, and use 

11 + 1m (s - ()I ~ 1 + 11m II + 11m sl 
~ (I + 11m (1)(1 + 11m sl) 

to find 

Thus U1(z, w) is an analytic function in the domain 
x - u > -In R, u > 0, with u, I.vl, I~'I bounded. 
Similarly 

IUn(z, w)1 ~ (M + l)(M)" 1 
41' 41' (n + 1)! 

x e-(n+l)yx(1 + lyl)( T1 +Ilk -.l en1'u 

II! 

and analytic in the domain where U1(z, w) is analytic. 

Thus 
00 

IU(z, w)1 ~ 2IUn(z, w)1 
n=O 

Hence, by the Weierstrass theorem,17 U(z, w) is an 
analytic solution of (84) in the domain of analyticity 
of U1(z, w). The bounds on u, Iyl, and Ivl were 
arbitrary in the definition of U1(z, w). Therefore, 
U(z, w) is analytic in the domain u ~ 0 and x - u > 
-lnR. 

Having these bounds on U(z, w) = (rs)-!K(r, s), 
using (84) and the method of Appendix A, it is 
straightforward for us to show that differentiating 
under the integral sign and integrating by parts were 
justified and therefore (5) is indeed a solution of (I). 

To find bounds on K(r, s) = K(r, re- I ), notice that 
r = (xy)! = e~w-!z is real and therefore 1m z = 1m w. 
Then14 

IK(/", re-t) I = le-izU(z, w)1 

~ (1 + 11m tl)h(M + 1)2-i M-!Rh 

x IJ1(i2!M!y-l(t + 11m ti)H!Rh)1 

< (M + 1)y-1Ri (1 + 11m (l)iH! 

x exp (2!M!y-1Rh(1 + 11m tI)H!). 

(85) 
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Prolate-spheroidal expansions of the spin-orbit, spin-spin, and orbit-orbit operators are derived. 
These expansions are analogs of the Neumann expansion for l/r,. and can be used to study the corre
sponding exchange interactions in diatomic molecules. 

I. INTRODUCTION 

An important contribution to the multiplet splitting 
of molecular energy states is attributable to two-body 
interactions involving magnetic fields associated with 
electron spin and orbital angular momenta. A first
order approximation to this splitting is obtained by 
calculating the expectation values of the well-known 
two-electron spin-orbit and spin-spin operators. In 
the multicenter orbital approximation, these expec
tation values reduce to sums of Coulomb, hybrid, 
and exchange integrals. 

In recent articles,! formulas were derived for 
computing one- and two-center spin-orbit, spin-spin, 
and orbit-orbit integrals containing arbitrary com
binations of Slater-type basis orbitals. In particular, 
the two-center exchange integrals were evaluated by 
using partial integration to relate them to electron
repulsion integrals, following the approach suggested 
by Schrader2a and by Hall and Hardisson.2b An 
alternate method of evaluating these integrals is to 
employ prolate-spheroidal expansions of the three 
operators. This allows the integrals to be reduced from 
six to two dimensions. The remaining integrations 
can then be performed either numerically or analyti
cally by means of suitable recursion formulas. The 

expansions required for this purpose are derived in 
the present paper. 

It is useful to note that one- and two-center expan
sions in terms of spherical polar coordinates have 
been reported previously. In particular, Fontana 
and Meath3 have derived such expansions for the 
Breit-Pauli Hamiltonian. Closely related are the two
center expansions of (r12)-n of Sack.4 Additional 
expansions have been reported by Pitzer, Kern, and 
Lipscomb,5 by Chiu,6 by Nozawa,7 and by Kay, Todd, 
and Silverstone.8 

II. TWO-CENTER EXPANSIONS 

In successive subsections, we derive the two-center, 
prolate-spheroidal expansions of the spin-orbit, 
spin-spin, and orbit-orbit :lperators. The notation, 
conventions, and many of the mathematical tech
niques follow those given in previous papers! of this 
series on fine-structure and relativistic effects in 
diatomic molecules. 

Spin-Orbit Expansion 

The two-electron spin-(other)-orbit operator in the 
Pauli approximation to the Breit Hamiltonian9 has the 
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Prolate-spheroidal expansions of the spin-orbit, spin-spin, and orbit-orbit operators are derived. 
These expansions are analogs of the Neumann expansion for l/r,. and can be used to study the corre
sponding exchange interactions in diatomic molecules. 

I. INTRODUCTION 

An important contribution to the multiplet splitting 
of molecular energy states is attributable to two-body 
interactions involving magnetic fields associated with 
electron spin and orbital angular momenta. A first
order approximation to this splitting is obtained by 
calculating the expectation values of the well-known 
two-electron spin-orbit and spin-spin operators. In 
the multicenter orbital approximation, these expec
tation values reduce to sums of Coulomb, hybrid, 
and exchange integrals. 

In recent articles,! formulas were derived for 
computing one- and two-center spin-orbit, spin-spin, 
and orbit-orbit integrals containing arbitrary com
binations of Slater-type basis orbitals. In particular, 
the two-center exchange integrals were evaluated by 
using partial integration to relate them to electron
repulsion integrals, following the approach suggested 
by Schrader2a and by Hall and Hardisson.2b An 
alternate method of evaluating these integrals is to 
employ prolate-spheroidal expansions of the three 
operators. This allows the integrals to be reduced from 
six to two dimensions. The remaining integrations 
can then be performed either numerically or analyti
cally by means of suitable recursion formulas. The 

expansions required for this purpose are derived in 
the present paper. 

It is useful to note that one- and two-center expan
sions in terms of spherical polar coordinates have 
been reported previously. In particular, Fontana 
and Meath3 have derived such expansions for the 
Breit-Pauli Hamiltonian. Closely related are the two
center expansions of (r12)-n of Sack.4 Additional 
expansions have been reported by Pitzer, Kern, and 
Lipscomb,5 by Chiu,6 by Nozawa,7 and by Kay, Todd, 
and Silverstone.8 

II. TWO-CENTER EXPANSIONS 

In successive subsections, we derive the two-center, 
prolate-spheroidal expansions of the spin-orbit, 
spin-spin, and orbit-orbit :lperators. The notation, 
conventions, and many of the mathematical tech
niques follow those given in previous papers! of this 
series on fine-structure and relativistic effects in 
diatomic molecules. 

Spin-Orbit Expansion 

The two-electron spin-(other)-orbit operator in the 
Pauli approximation to the Breit Hamiltonian9 has the 
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form 

Jeso = -t[(rI2M2) x PI] • (SI + 2s2)· 

In spherical-tensor notation10 this reduces toll 

In Eqs. (11) and (12), the lower limit on n is 1m - (JI, 
(1) where the parity restrictions given in the Appendix 

must be observed. 

Jeso = t I ( - )"Je~O(SI + 2s2)-", (2) Spin-Spin Expansion 

where The spin-spin operator has the form 

Je:o = [VD/rI2) x pd". (3) Jess = [r~2(sl • S2) - 3(r12 • sl)(rI2 • s2)]/r~2 (13) 

This can be further reduced to 

Je:o = (-)fl(J6) ~ (1 1 I~)Je:O({J, (J'), (4) 
PP' {J -(J r 

where 

Je:o({J, (J') = V;P(1/r12),\7f. (5) 

Each of the sums in Eqs. (2) and (4) ranges between 
+1 and -1. 

An expansion for Je:o({J, (J') is obtained in the 
following way. As a first step, the Neumann expan
sion12 of l/rl2 in prolate-spheroidal coordinates, 

..!... = 167T i i 1 
r12 R 1=om=-1(2/+1) 

X :r;,,( $ < )Q;-m( $ » Y;"( 'fJu CPl) y;-m( 'fJ2' CP2)' (6) 

is substituted into Eq. (5), giving 

X:o({J, (J') = (167T/R) I (21 + 1)-1 
!m 

X [V;p:r;,,(1) y;"('fJl' CPl)] 

X Q;-m($2)y;-m('fJ2' CP2Wf (7) 

for $1 < $2' For convenience in notation, we have 
defined13 

and 

or 

This reduces, in spherical-tensor notation, to 

Je - "" (- )~+~' w-~~'s~s-a.' ss - £,. tJ"'ss 1 2 , 
a.a.' 

where 

(14) 

(15) 

Je;s~~' = V;a.V2'(1/r12)· (16) 

The indices IX and IX' each take on the values 0 and ± 1. 
As a first step in obtaining an expansion of Je;~~', 

Eq. (6) is substituted into Eq. (16), yielding 

Je;s~~' = (16rr/R) I (21 + 1)-1 
1m 

X [V;~;"C;I) Y;"C'fJ1' CPl)] 

X [Vf Q;-m(2) y;-mC'fJ2' CP2)] (17) 

for $1 < $2' It is shown in the Appendix that 

Va.Q;"C$) Y;"('fJ, cp) 
a. (21 + 1) 

= -g i Q;:*($)Y;:*('fJ' cp). (18) 
n=I+l(2) R 

Using this result and Eq. (10), it is found, after a 
manipulation of the sums, that 

where 
Ql-m($) = [!(21 + 1)(1- m)!/(l + m)!]!Q;"($), (9) 

I-
l 
m+~'($, 'fJ, cp) = (21 + 1) ~ Qkm+~'($)Ykm+«'('fJ, cp). 

where Pre $) and Q7'( $) are, respectively, Legendre k=I+1(2) 
polynomials of the first and second kind. In the (20) 
Appendix it is shown that 

V~:r;"($)Y;"('fJ, cp) 

= g~ (21 + 1) ,12 :r;:*($) y~+a.('fJ, cp). (10) 
R n=lm+~1 (2) 

Substitution of this expansion into Eq. (7) yields 

Je~o({J, (J') = gP(16rr/R2) ~ :r~-P(gI)y~-P('fJl' CPl) 
lmn 

X Qim($2)y;-m(1J2,CP2Wf. (11) 

It is easily verified that, for the case $1 > $2, 

Je~o({J, (J') = -gP(16rr/R2) 2:f:-P($2)y:-P(1J2' CP2) 
lmn 

X Q;-m($I)y;-m(1Jl ' CPl)Vf. (12) 

The sum over I in Eq. (19) can be simplified by 
observing that 

00 00 

~ r;-m+«'($, 'fJ, cp) =! ~ (k - n)(k + n + 1) 
l=n+1(2) k=n+2(2) 

X Qkm+a.'(~)Ykm+a.'(1J, cp). 
(21) 

If Eq. (21) is substituted into Eq. (19) and n is re
placed by (1- 1) and k by (J. + 1), there results 

Je;:a.' = _ga.ga.'(8rr/R3) 

X 2 (J. - 1 + 2)(/. + 1 + 1):t~a.($1) 
lmA 

X Y~la.(1Jl' CPl)Q;::r'($2) y;::r'(1J2 ' CP2), 

(22) 
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where I ~ / ~ 00, -/ + oc + I ~ m ~ / + oc - I, 
and / ~ A ~ 00. The sum over it proceeds in steps of2. 
For the case ~1 > ~2' it is merely necessary to inter
change electrons 1 and 2 everywhere they appear on 
the rhs of Eq. (22). 

It is important to notice that the use of this expan
sion to calculate spin-spin integrals requires that a 
delta-function term14 be added to (JC;,aa) in order to 
account for the exclusion of an infinitesimal volume 
(in this case a prolate spheroid) about '12 = O. 

Orbit-Orbit Expansion 

The orbit-orbit operator has the form 

JCoo = -k{[(P1· P2)/'121 + r12 • [(rdr~2)· pd· P2} 
(23) 

and may be written in spherical-tensor notation as 

w _ 1 ~ ( )a w-"'t7-.,y' (24) 
,J\.;oo - 2" £., - tJ\..ooo VI 2' 

aa' 
where 

JC-;;-~a' = (I/r12)b(oc,oc') + (-y'+1r12V~'(t/r12)' (25) 

If Eqs. (6) and (\ 0) are now substituted into Eq. (25), 
we find (~1 < ;2) 

JC-;;-~a' = (167T/R) 

X (b( oc, oc') L (2/ + 1)-1:1';,,( ~1)Y;"( f)l' CPl) 
1m 

X Q;-m(~2)y;-m(f)2' CP2) + (_y'+1ga'(r12/R) 

X L d';:,+a'al) y~+a'(f)1' CP1) 
imn 

X Q;-m(;2)y/m(f)2, CP2»). (26) 

The results for ~1 > ~2 are obtained from Eq. (26) 
by simply interchanging electrons 1 and 2. The 
expansion 

r-a _ 87TR ~(_)D+a:f-ao(t )y-ao('Yl ..J.) 12 - 3 a .£., l-L '>1 1-L '/1' '1'1 
g L=O 

X 6'Lal(~2) Yl,a l(f)2' CP2), (27) 

where OCo = ocb(O, L) and OC1 = ocb(\, L), can now be 
used to obtain a final expression for JC;;-~a' in prolate
spheroidal coordinates. Since the substitution is a 
simple one and the resulting expression is rather 
cumbersome, we will not write out the final form. 

Equations (11), (22), and (26) are analogs of the 
Neumann expansion for 1/1'12' As a check on the 
results, it can be demonstrated15 that each expansion 
reduces to its proper one-center limit as R goes to 
zero. One application of these expansions is in the 
evaluation of two-center exchange integrals. The 
advantages and disadvantages of this approach 
relative to the method of Ref. 1 are being investigated. 
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APPENDIX: EXPANSIONS OF p~'ln Yi" 
AND ,aQtYI" 

In the following, we obtain, respectively, series 

expansions of \a~t Y!" and vaQ;" Y;n in terms of the 

product functions ~~ Y~ and Q~ n . We begin by con
sidering the former for the special case oc = O. In 
prOlate-spheroidal coordinates, 

W;" == VOp;"(~)p;n(f)e;m4> 

= 2 (f)W - t) ~ + W - f)2) ~) 
R(e - f)2) o~ O'f} 

X p;"mp~'(f)e;m"'. (AI) 

Introducing the relationship 

(I - f)2)!!... P{"(f) = -lrJP;"(f) + (l + m)P?~1(rJ) 
d'f} 

(A2) 

and a corresponding expression for P'(' into Eq. (AI) 
leads to 

wl
m = (2/R)[(l + m)/(e - f)2)] 

X eim4>[~p;"(~)P:~irJ) - f)Pt'~l(~)P{"(rJ)]. (A3) 

Rearrangement of W'(' then gives us 

w;n = [2(1 + m)/RW - f)2)]eim4>[(~ + f)U;" + V;"], 

(A4) 
where 

u{" = P{"(~)P~1(f) - P~M)P;"(rJ) (AS) 
and 

Vim = ~Pz'~1(~)P;"(f) - rJP;"(~)P~1(rJ)' (A6) 

To reduce U,(" we apply recursion formulas of the 
type 

(21 + l)f)P;"(f) 

= (l - m + l)P~1('f}) + (l + m)P~1(f), (A7) 

and obtain 

U;" = [(21 - 1)/(/ - m)](~ - f)Pz'~1(~)Pr'-/f) 

By induction, 
+ [(I + m - 0/(1 - m)]U:"-l' (A8) 

u;n = (l + m - 1)! a - f) 
.. (I - m)! 

X Ii (2n + l)(n - m)! P;:(;)P;:'('f}). A9) 
,'=Iml (n + m)! 
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Using Eq. (A4), we can rewrite V;n in the form 

V;" = -[(/ + m - 1)/(/- m)] 

X [~p~la)p7!-lr) -1]P~2(~)P~I(1])]. (AI0) 

Comparing Eqs. (AW) and (A3), substituting Eq. 
(A9) and (AW) into Eq. (A4) , and then using Wt'~I' 
we find 

w;" = .? (I + m) (21 - l)Pz'~i~)P;~i1]) 
R (I - m) 

+ (I + m)(l + m - 1) Wr~'2' (All) 
(l - m)(l - m - 1) 

By induction, it follows that 

yOp;,,(~)p;"(1])im4> 

2 (I + m)! l~ (2n + 1)(n - m)! 

R (I - m)! n~lml (2) (n + m)! 

X P;:(~)Pr;:(1])eim</>. (A 12) 

The sum over n proceeds in steps of two, so that the 
lower limit must have the same parity as (1- 1); 
if Iml is not of the same parity, then the sum begins at 
n = Iml + 1. 

We next consider the case oc = 1, for which 

VI p;,,( ~) P;"( 1] )eim</> 

2 1 i(m+1)</> = -- e 
J2 R(e - 1]2) 

X ([(~2 - 1)(1 - 1]2)]!(~ i. - 1] i.) 
o~ 01] 

m(~2 - 1]2) ) 

- [(e - 1)(1 - 1]2)]! 

X p;"(~)P;"(1]). (A 13) 

By a suitable manipulation of recurrence formulas, 
Eq. (A13) can be expressed in the form 

yl P;"( ~)P;"( 1] )eim </> 

= -(2IJ2)ei(m+l)</>IR(e - 1]2)(1 - m) 

X [~P;"+I(~)P:il(1]) -1]Pz'~.i\~)p;"+I(1])]. (A14) 

Comparing Eqs. (AI4), (A3), and (AI2), we find that 

yl P;"( ~)P;"( 1] )eim </> 

For the case oc = -1, we simply change the sign 
of m in Eq. (A1S) and take the complex conjugate 
of both sides, giving 

y-lP;"WP;"(1])eim </> 

2 (l + m)! i(m-l)</> - e 
J2 R(I - m)! 

X il (2n + 1)(n - m + 1)! 

n=lm-ll (2) (n + m - I)! 
X p;:-I(~)p;:-I(1]), (A16) 

where the same parity considerations for the lower 
limit of n hold. In general, then, 

ya p;,,( ~)P'('( 1])eim 4> 

( )a 2(1 + m)! 
= - 2IaI/2R(l_ m)! 

X il (2n + l)(n - m - oc)! 

"~Im+al (2) (n + m + oc)! 

X p;;'-Ia(npr;:+a(1])ei(m+a)</> (AI7) 
or 

Va:Tlm(~)Y;"(1], rP) 
a(21+1) 1-1 

I :T:+a(~)y:,+a(1], rP), (AIS) =g 
"~Im.al (2) R 

where ga = 2( - Y12 1al/2 = 2 when oc = 0 and -y'2 
when oc = ± 1. The lower limit of n must have the 
same parity as (I - 1). 

To determine the corresponding expansion of 
vaQ;" y;", we make use of the fact that 

(AI9) 

Substituting from Eg. (6) for l/rl2 and using Egs. 
(A1S) and (AI9), we find (~1 < ~2) 

y~(l/rI2) = -(167r/R) I (21 + 1)-1 
1m 

X [Y~ :1';,,( ~1) Y;"( 1]1' rPl) 1 
X Q~m(~2)y~m(1]2' rP2) 

= - ga(167r/R2) I :J>;:+a(~I) Y:;*(1]I ' rPl) 
lmn 

(A20) 

We now rearrange the summation indices in the 
following manner: 

00 l l-l 00 n-a 00 

= _ 2. (l + m)! ei(m+1)</> I I I ~ I I I 
J2 R(l - m)! 1~lm~-1 n~lm+a1 (2) n~O m~-n-a l~n+1(2) 

(A21) 

X 1 (2n + l)(n - m - I)! After setting m = m + oc, we find that 

n~lm+ll (2) (n + m + I)! yz(1...) __ a 167r ~ ~ :Tm(~) y'ft( .J. ) 

X Pr;:+I(~)pr;:+l(1]). (A1S) 2'12 - g R2 n7:o m=-n n 1 n 1]1' '1-'1 

As in Eg. (AI2), the lower limit of n must be increased 
by one when it is not of the same parity as I - 1. 

X f Q~rii+aa2) y!",iHa(1]2 ' rP2)' (A22) 
l~n+1(2) 
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If we compare Eq. (A22) with the intermediate result 

V~(l/r12) = (l61T/R)"l,(21 + l)-ld';"(~l)Y~('YJl' rpl) 
1m 

x [V~Q~m(~2)Y~m('YJ2' rp2)] , (A23) 

obtained in deriving Eq. (A20), it becomes apparent 
that 

V"'Q~(~)Y~'(Y), rp) 

= _g~ (21 + 1) f Q~+~(;)y:+a('YJ, rp). (A24) 
R n=/+1(2) 

This is the expansion we require. 
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It is shown that electromagnetic radiation induces a secular instability in a homogeneous rotating 
charged drop, held together by surface tension, at the point of bifurcation at which a triaxial sequence 
of equilibrium figures branches from the axially symmetric figures. 

1. INTRODUCTION 

In the theory of self-gravitating, rotating bodies, it 
has recently been shown by Chandrasekhar1 that 
axisymmetric figures of equilibrium, the Maclaurin 
spheroids, become unstable when energy and angular 
momenta are dissipated through gravitational radia
tion. The instability occurs at the point at which a 
triaxial sequence of equilibrium figures, the Jacobi 
ellipsoids, branches off from the Maclaurin sequence. 
A peculiarity is that the mode of oscillation which 
is made unstable by gravitational radiation is 
different from the one that is made secularly unstable 
by viscous dissipation. 

Rosenkilde2 has shown that there exists a point of 
bifurcation where a triaxial sequence of equilibrium 
figures branches off from a spheroidal sequence of 
homogeneous, rotating, charged drops held together 
by surface tension. The question arises as to whether 
or not electromagnetic radiation can engender 

secular instability in the manner of gravitational 
radiation. 

In order to answer this question, we will first 
determine in Sec. 2 the radiation reaction terms in the 
equation of motion and their contribution to the 
second-order virial equations. (For an explanation 
of vi rial methods in equilibrium and stability investiga
tions, see Chandrasekhar.3) In Sec. 3 we will evaluate 
the effect of the radiation on the modes that do 
become unstable. It wilI be shown that electromag
netic radiation induces secular instability in the 
charged, spheroidal drop in precisely the same way 
that gravitational radiation induces instability in the 
Maclaurin spheroids. 

2. RADIATION REACTION AND THE SECOND
ORDER VIRIAL EQUATION 

Our principal goal will be to show that the fre
quency of a specific second harmonic mode of oscilla
tion of the rotating drop becomes imaginary in a way 
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has recently been shown by Chandrasekhar1 that 
axisymmetric figures of equilibrium, the Maclaurin 
spheroids, become unstable when energy and angular 
momenta are dissipated through gravitational radia
tion. The instability occurs at the point at which a 
triaxial sequence of equilibrium figures, the Jacobi 
ellipsoids, branches off from the Maclaurin sequence. 
A peculiarity is that the mode of oscillation which 
is made unstable by gravitational radiation is 
different from the one that is made secularly unstable 
by viscous dissipation. 

Rosenkilde2 has shown that there exists a point of 
bifurcation where a triaxial sequence of equilibrium 
figures branches off from a spheroidal sequence of 
homogeneous, rotating, charged drops held together 
by surface tension. The question arises as to whether 
or not electromagnetic radiation can engender 

secular instability in the manner of gravitational 
radiation. 

In order to answer this question, we will first 
determine in Sec. 2 the radiation reaction terms in the 
equation of motion and their contribution to the 
second-order virial equations. (For an explanation 
of vi rial methods in equilibrium and stability investiga
tions, see Chandrasekhar.3) In Sec. 3 we will evaluate 
the effect of the radiation on the modes that do 
become unstable. It wilI be shown that electromag
netic radiation induces secular instability in the 
charged, spheroidal drop in precisely the same way 
that gravitational radiation induces instability in the 
Maclaurin spheroids. 

2. RADIATION REACTION AND THE SECOND
ORDER VIRIAL EQUATION 

Our principal goal will be to show that the fre
quency of a specific second harmonic mode of oscilla
tion of the rotating drop becomes imaginary in a way 
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that leads to instability when quadrupole radiation of 
the system is taken into account. To study the effect 
of radiation on the second harmonic modes of 
oscillation, it is necessary to know the contribution 
of the electromagnetic field to the second-order virial 
equations. This contribution is found by multiplying 
the (f. component (in this paper all indices take the 
values 1, 2, or 3) of the force caused by the electro
magnetic field Fa by the coordinate Xy and integrating 
the resulting expression over the volume of the fluid. 
The force, in terms of the potentials of the field, is 
given by the Lorentz law: 

where A and 4> are the vector and scalar potentials, 
respectively, a is the charge density, and vp is the fJ 
component of the fluid velocity; also the comma 
preceding the subscripts, such as IX and t in Eq. (1), 
denotes differentiation with respect to Xa or t. Accord
ingly, the contributions to the virial equations, L)'a, 
from the electromagnetic field are 

Lya = c-
1 I axy[vP(Ap.a - A""p) - Aa.t - c4>.a] d3x, 

(2) 

The Coulomb portion of the electromagnetic field 
is a necessary consideration in Rosenkilde's2 virial 
analysis of the homogeneous drop. Our purpose will 
be to consider effects of the radiation field as small 
corrections to a particular set of his equations. To this 
end, we suppose that an expansion of the retarded 
solutions of Maxwell's equations in powers of c-1 

correctly describes the electromagnetic field (see 
Jackson, Ref. 4, p. 586, for a description of the 
expansion). Furthermore, we assume that it is 
sufficient to consider only the lowest-order contribu
tions in c-1, to the virial equation from the radiation. 
Although it might appear that both an O(c-3) dipole
moment term and an O(e5) quadrupole-moment 
term are relevant, it is easy to see that the dipole 
term does not contribute to the virial equation 
analysis, by noting the coincidence of the center of 
charge with the center of mass; indeed, both the 
charge and mass densities are assumed uniform. 
Since the center of mass is taken as the origin of the 
coordinates and is not subject to variation, the con
clusion is manifest. 

In order to compute the O(c-5) contributions to the 
virial equation, it is sufficient to consider the partial 
derivatives of the O(c-4) term in the expansion of the 
vector potentia) and the O( c-5) term in the expansion 

of the scalar potential. These potential terms are 

(3) 

and 

4> = - - - - (fIx - x'1 4 d3x', 1 1 0
5 I 

c5 5! ot5 
(4) 

where in the preceding equations it is understood that 
All and 4> represent only specific terms in a series ex
pansion of the potentials Ap and 4>. To facilitate fur
ther calculations, the following definitions are useful: 

I,p = I aXaXpd3x (5) 

and 

ba;p =J avaxpd
3x. (6) 

Taking the derivatives of expressions (3) and (4) 
necessary for a subsequent substitution into Eq. (2) 
while including in that calculation the usual mathe
matical statement of charge conservation along with 
a zero value for the dipole moment, we obtain 

(7) 

We can further reduce Eq. (7) by expressing ba;/L in 
terms of Ja/L with the aid of the equation expressing 
the conservation of angular momentum to O(CO); 
this equation is 

dI d3 dI 3 - pVaXp X = - pvpxad x, 
dt dt 

(8) 

where p is the mass density. In view of Eq. (8), it is 
easily verified that 

dJ' d3 I 3 dt px"Xp x = 2 pv"xpd x. (9) 

Since both a and p are assumed to be constant 
throughout the fluid, we can suppress p in Eq. (9) 
while multiplying both sides by a. The expression then 
becomes 

d 
- Jap = 2ba·p · dt . 

(10) 

By virtue of Eq. (10) we may rewrite Eq. (7) as 

L = -- -J -I - I -I 1 1 (1 d
5 

d
5

) 

ya 10 c5 3 ya dt5 /L/L Yfl dt5 Yfl ' 
(11) 

which is the required contribution to the second-order 
virial equation from the electromagnetic radiation. 
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3. VARIATION OF THE VIRIAL EQUATIONS 
AND STABILITY CONSIDERATIONS 

Stability of our fluid system to second harmonic 
mode perturbations can be investigated by considering 
variations of the second-order virial equations when 
the perturbation is described by an infinitesimal 
Lagrangian displacement (in the rotating frame) of 
the form 

e)'I~(x). 

The parameter}. determines the characteristic values 
of the modes of vibration. In an analysis employing 
the virial equations, the characteristic value equations 
are most easily obtained by describing the variation 
in terms of the quantities 

Vap = J('aXp + 'pxa)p d3
x. 

If the axis of rotation of the spheroidal drop is oriented 
along the X3 direction, then for the particular modes 
we are interested in-the toroidal modes-the only 
nonvanishing contributions to VaP are (see Chandra
sekhar3) 

moreover, 
(12) 

To be in a position to add our radiational terms to 
Eqs. (57) and (58) of Rosenkilde,2 which describes the 
toroidal modes to O(CO), we must express the variation 
of Eq. (11), transformed to a frame of reference 
rotating with the drop, in terms of the foregoing 
VaP' A solution of the amended equations will then 
yield the effect of radiation on the characteristic values 
of these modes. The variation of Eq. (11) is 

(13) 

Because of the axial symmetry an inertial observer 
does not see changes in the unperturbed values of laP 

with time: thus the relation which must subsequently 
be transformed to the rotating frame of the drop is 

(14) 

To carry out the transformation of Eq. (14), time 
derivatives of the inertial frame moments laP must 
first be transformed to the rotating frame of the drop 
and then expressed in terms of moments in the rotating 
frame. Variation of these transformed, time-differ-

entiated, inertial frame moments is then expressible in 
terms of the Lagrangian displacements or VaP' An 
account of how one performs these computations 
accompanied with formulas applying specifically to 
the toroidal modes is given in Chandrasekhar1; Eq. 
(28) given therein is relevant to our purpose. If that 
equation is multiplied by the factor G/ P to convert it 
from a mass to an electric moment formula, we 
obtain 

[(j :t55 
lapJRl 

= ~ [).5Vap - 20).Q2(}.2 - 2Q2)(Vap + GayVnPJtP) 
P , 
+ Q(5).4 - 40).2Q2 + 16Q4)(VayGyp - GayV"p)], 

(15) 

when: Q is the angular velocity of the rotating drop 
and the superscript (R) over the bracket means that 
the inertial quantity inside is referred to the rotating 
system; Gap is a 2 x 2 matrix defined by 

Gyp = (_ ~ ~) . (16) 

With the aid of Eq. (15) it may be verified that the 
variation of Lya referred to the rotating frame is just 

[(jLy.](R) = _D[).5(VU V12) _ 20).Q2().2 _ 2Q2) 
V12 V22 

X (Vu - V22 2V12) 
2 V12 V22 - Vn 

+ Q(5}.4 - 40).2Q2 + 16Q4) 

(17) 

where D is defined as 

(18) 

Iu is the constant electric quadrupole moment 
(measured perpendicular to the axis of rotation) of 
the unperturbed body in the rotating frame. Finally, 
appending Eq. (17) onto Eqs. (57) and (58) given by 
Rosenkilde,2 we obtain the virial equations for the 
toroidal modes modified by radiation reaction: 

[).2 + 2(p - Q2)]V12 + ).Q(Vll - V22) 

= -2D{[).5 - 40).Q2().2 - 2Q2)]V12 

+ Q(5}.4 - 40).2Q2 + 16Q4)(Vll - V22)}; (19) 

[).2 + 2(p - Q2)](Vll - V22) - 4).QV12 
= -2D{[).5 - 40).Q2(A.2 - 2Q2)](Vll - V22) 

- 4Q(5).4 - 40).2Q2 + 16Q4)V12}. (20) 
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If we define the quantity (I) by 

}. == iw, (21) 

then the modified characteristic value equation, to 
the first order in D and in terms of w, is 

(1)2 - 2(p - W) - 2(1)0 - 2DA = 0, (22) 

where 
A = i( (1)5 + 40(.)302 + 80«)04 - 10no)J 

- 80(1)203 - 3205) 

= i{w - 20)5. (23) 

If 0)0 is a root of the unmodified characteristic value 
equation [Eq. (22) with D = 0], then it is convenient 
to express the corresponding root of Eq. (22) by the 
relation 

(0) = Wo + fJ, (24) 

where /) is a small quantity of the first order in D. 
By use of Eqs. (22) and (24), it may be verified that 

i/) = + D(20 - «)0)5/{ (0)0 - 0). (25) 

The two values (0)0 may take are 
1 2 ~. 

(1)0 = 0 - (2p - 0 ) (26) 
and 

OJ~ = 0 + (2p - n2)!. (27) 

The corresponding values of i(j are then 

W = -D[O + (2p - 02)!]5/(2p - 02)~, (28) 

and 

Instability ensues when i(j is greater than zero. 
Radiational damping of the w~ mode therefore 
results in the entire range of possible angular velocities 
[the upper limit on 0 is seen to be 0 = (2p)! from 
Eq. (26)]. On the other hand, the wg mode is damped 
prior to the point of bifurcation [again from Eq. (26) 
it is evident that a neutral point exists at p = 0 2

] and 
is amplified by the radiation in the range 2p > 0 2 > p. 

4. CONCLUDING REMARKS 

The principal result of this investigation is that 
electromagnetic radiation reaction begins to produce 
instabilities in a rotating, spheroidal, charged drop, 
by virtue of toroidal perturbations, beyond the point 
at which an ellipsoidal sequence of equilibrium figures 
branches off from the original spheroidal sequence. 

• The research reported in this paper has in part been supported 
by the National Science Foundation under Contract GP-15973 with 
the University of Chicago. This work will be presented as a part of a 
thesis to the Department of Physics, University of Chicago, in 
partial fulfillment of the requirements for the Ph.D. degree. 

1 S. Chandrasekhar, Astrophys. J. 161, 561 (1970). 
2 C. E. Rosenkilde, J. Math. Phys. 8, 98 (1967). 
3 S. Chandrasekhar, Ellipsoidal Figures of Equilibriulll (Yale V.P., 

New Haven, Conn., 1969). 
4 J. D. Jackson, Classical Electrodynamics (Wiley, New York, 

1962). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 7 JULY 1971 

T Matrix for the Exponential Potential 

MICHAEL G. FUDA 

Department of Physics and Astronomy, State University of New York, Buffalo, New York 14214 

(Received 30 October 1970) 

An analytic expression for the s-wave part of the exponential potential T matrix is obtained. The 
separability of the residue of the T matrix at bound state or virtual state poles is demonstrated explicitly. 

1. INTRODUCTION 

Recent interest in the two-particle T matrix has 
been stimulated mainly by the discovery of the Faddeev 
equations.1 In the Faddeev scheme a three-particle 
system is described by a set of coupled integral equa
tions, the kernels of which are simply related to the 
two-particle T matrix. In general, the T matrix is 
obtained as the solution of a singular integral equa
tion in momentum space. 2 Except for the case of 
separable potentials,3 it appears that analytic solu
tions to this equation cannot easily be obtained. An 
alternative to the integral equation approach to the 
Tmatrix has been given by Van Leeuwen and Reiner,4 
who have shown that the T matrix can be obtained 
from the solution of a differential equation. Their 
approach is a generalization of the well-known result 
that the half-off shell T matrix can be obtained from 
the solution of the Schrodinger equation.5 Their 
differential equation is closely related to the Bethe
Goldstone equation. 6 They give explicit solutions for 
the square well potential and for the hard-core square 
well potential. The differential equation approach has 
been applied to a potential consisting of an exponen
tial function outside of a hard core by Laughlin and 
Scott.7 They solved the differential equation numeri
cally. 

In this paper we show that it is possible to obtain 
an analytic expression for the s-wave part of the 
exponential potential T matrix by using the differ
ential equation approach of Van Leeuwen and 
Reiner. 4 In particular, we show that the differential 
equation which arises in the case of the exponential 
potential can be transformed into an inhomogeneous 
Bessel differential equation, whose particular integral 
is a Lommel function. The transformation used is the 
one introduced by Bethe and Bacher.s Half-off the 
energy shell, the solution of the differential equation 
becomes the well-known solution of the s-wave 
Schrodinger equation with the exponential potential. 9 

The final formula for the T matrix involves Bessel 
functions, Lommel functions, and generalized hyper
geometric functions. The infinite series representa
tions for these functions converge for all values of the 

argument. We demonstrate explicitly the separability 
of the residue of the exponential potential T matrix 
at bound state or virtual state poles. 

2. THE T MATRIX FOR THE EXPONENTIAL 
POTENTIAL 

The two-particle T matrix is the solution of either 
of the equations 

T(s) = V + VGo(s)T(s), (2.1) 

T(s) = V + T(s)Go(s) V, (2.2) 

where V is the two-particle potential, s is a complex 
parameter, and Go(s) , the free particle resolvent, is 
defined formally in terms of the kinetic energy 
operator Ho by 

(2.3) 

Unless stated otherwise, we will assume that s has a 
small positive imaginary part, thereby guaranteeing 
the correct outgoing wave boundary condition; i.e., 

s = E + iE, 0 < E « 1. (2.4) 

Following Van Leeuwen and Reiner,4 we define 

O(s) = I + Go(s)T(s). (2.5) 

Using (2.1) and (2.3), we obtain 

T(s) = VO(s) , (2.6) 
and 

(s - Ho - V)O(s) = s - Ho, (2.7) 

which we write out in a mixed representation; i.e., 

[s + V'2 - VCr)] (rl O(s) Iqlm) = (s - q2)(r I qlm), 

(2.8) 
where 

}I(qr) is the usual spherical Bessel function and Y1m(f) 
is a spherical harmonic. We are working in units in 
which ;'2/21-' is one. Since the potential is central, we 
can write 

(rl O(s)lqlm) = ul (r,q;s)Y1m(f)/qr(27T2)1, (2.10) 

1163 
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which upon substitution into (2.8) gives us 

( 
d2 1(1 + 1) ) 

s + -2 - 2 - VCr) u,(r, q; s) 
dr r 

= (s - q2)qrj,(qr). (2.11) 

From now on we consider only I = 0, since even the 
ordinary SchrOdinger equation for the exponential 
potential cannot be solved for I -ji: O. We write the 
exponential potential in the form 

VCr) = -(z~/4a2) exp (-rIa). (2.12) 

If we substitute (2.12) into (2.11) with I = 0 and make 
the transformation 

we obtain, dropping the subscript on u, 

( z!!""z!!"" + (Z2 + 4k2a2»)u 
dz dz 

(2.13) 

This is an inhomogeneous Bessel differential equation, 
the solution of which is simply related to the solution 
of the equation 

( z !!.... z .E... + (Z2 - V2») w = ZIl+1. (2.15) 
dz dz 

A particular integral of (2.15) is the Lommel function 
SIl,'(Z),1O which is given by 

SIl,'(Z) = [zll+1/(f-t - v + l)(f-t + v + 1)] 

The function given by (2.19) vanishes at r = 0, and 
one can show by using (2.13) and the power series for 
the Lommel function and the Bessel function that 
for large r we have 

(2j zO)2ika 
u(r, q; s) t'oJ - --...;....:.--=.;..---

r---.<Xl r(1 - 2ika)J -2ika(ZO) 

X 1m (Sl+2iqa2'~ika(ZO») eikr + sin (qr), 
zo·qa 

k2 = s. (2.20) 

The exponential eikr in (2.20) is consistent with 
approaching the positive k axis from above. We are 
assuming that the upper half of the k plane corre
sponds to the physical energy sheet. It follows from 
(2.11) that when s = k2 = q2, u(r, q; s) should be
come the ordinary Schrodinger wavefunction. It is 
easy to show that u(r, q; s) does this by using (2.19) 
with q = k and the relation 

s1+ •. .(z) = z· - 2'r(1 + v)J.(z), (2.21) 

which follows directly from (2.16), (2.17), and the 
power series for J.(z). The s-wave S matrix for the 
exponential potential can be obtained directly from 
(2.20) with q = k, and is given by the relations 

e2i6
(k) = f( -k)lf(k), (2.22) 

f(k) = (zo/2tikar(1 - 2ika)J_2ika(ZO)' (2.23) 

x IF2(1;!f-t - !v + t; !f-t + !v + 'J; -1z2
). In order to find the T matrix in momentum space, 

(2.16) we combine (2.6), (2.9), and (2.10) to obtain 

The generalized hypergeometric function in (2.16) is 
a special case of 

= ~ (oc1Moc2h' .. (ocmh Zk 

k~O (PIMP2h ... (P nh k! 

Using the relation10 

(2. I 7) 

SIl~2.vCZ) = ZIl+1 - [(f-t + 1)2 - v2]sp.v(z), (2.18) 

we can easily show that the well-behaved solution of 
(2.14) is 

I [ (S1+2iQa.2ika( ZO») 
u(r, q; s) = () -J_2ik,,(Z) 1m 2iqa 

~2ih~ ~ 

+ J . ( ) I 1+2iqa.2ikn _-
(
s (z) ( Z )2iqa) ] 

-2,ka Zo m 2' • zo,qa Zo 

(2.19) 

(plml T(s) Iqlm) 

= (21T2q)-1 fllMpr) V(r)u,(r, q; s)r dr. (2.24) 

For 1= 0, with VCr) given by (2.12), this becomes 
via (2.13) 

T(p, q; s) == (pOOl T(s) IqOO) 

= 2zo. rZO[(~)1+2ipn_ (~)1-2iPaJ 
81T pqta Jo Zo Zo 

X u(r, q; s) dz. (2.25) 

Fortunately, the integrals that arise when (2.19) is 
inserted in (2.25) can be related to tabulated integrals. 
Using Eq. 6.862.1 of Ref. 11 or Eq. 92 on p. 199 of 
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Ref. 12, we can easily show with the help of (2.18) that 

X(p, q, k) ==i"O(-=-)l+'<[(-=-)/l _ Sl+/l,,(Z)JdZ 
o Zo Zo z~ Zo 

1 

(A + fJ. + 2) 

( 
A+fJ.+2 fJ.- v + 2 

x 2F3 1, ; , 
2 2 

fJ.+v+2 A+fJ.+4._~) 
2 ' 2 ' 4' 

(2.26) 
where 

A = 2ipa, fJ. = 2iqa, v = 2ika. (2.27) 

From (2.21) and (2.26), it follows that 

yep, k) == rZO (.E.-)lHJ_.(Z) dz 
Jo Zo zo 

= __ ~(2..:..../z....::.:0):..-' __ 

r(1 - V)(A - v + 2) 

(
it - v + 2 

X 1F2 2 ; 1 - v, 

A - v + 4 . _~) (2.28) 
2 ' 4' 

where A and v are given by (2.27). Another form of 
yep, k) can be obtained by using Eq. 6.561.13 of 
Ref. 11 or Eq. (8) on p. 22 of Ref. 12. The result is 

yep, k) = zo.<-2(A - v)zoJ_vCzO)S.<._l_..(ZO) 

- z01 _l_.(ZO)S .<+1.-.(zo) 

+ 2.<+1 rnA - iv + 1»). 
r( -iA - iv) 

(2.29) 

The Lommel function SI' .• (z) differs from the Lommel 
function given by (2.16) and (2.17) by a linear combina
tion of Bessel functions. Explicit formulas and general 
properties are given in Ref. 10. The relation between 
Lommel functions, Bessel functions, and the general
ized hypergeometric function 1F2 implied by (2.28) 
and (2.29) does not appear to have been noted before. 

Inserting (2.19) into (2.25) and using (2.26) and 
(2.28) or (2.29), we obtain the expression for the 
s-wave part of the exponential potential T matrix: 

T(p, q; s) = [( - )z~/87T2pqiaJ_2ika(Zo)] 

x {1m [z;2iQaS1+2iQa.2il,,,(ZO)] 

x [Yep, k) - Y( - p, k)] 

+ [J -2ika(Zo)/2i] 
X [X(p, q, k) - X(-p, q, k) 

- X(p, -q, -k) + X(-p, -q, -k)]}. 

(2.30) 

A useful check on (2.30) is to see if it has the right on
shell limit; i.e., when p = q = k, we should have 

T(k, k; s) = _(27T
2kr1ei6

(k) sin !5(k), (2.31) 

where !5(k), the phase shift, is given by (2.22) and 
(2.23). Taking the on-shell limit of Yep, k) - Y( -p, k) 
is most easily done by using (2.29) and the fact that10 

(2.32) 
We find 

Y(k, k) - Y( -k, k) 

4ika ( (2/ zo)2ika ) 
= --;f J-2ika(ZO) - r(1 _ 2ika) . (2.33) 

From (2.17), (2.26), and (2.28) it follows that 

X(k, k, k) - X( -k, k, k) 

= r(1 + 2ika)(2/zo)2ika[Y(k, -k) - Y( -k, -k)]. 

(2.34) 

Combining (2.21), (2.33), and (2.34) with (2.30), one 
easily checks that T(p, q; s) has the correct on-shell 
limit. 

It is by now well known13 that the residu,e of the 
T matrix is separable at bound state or resonance 
energies. The poles of (2.30) occur when 

J-2ikoizo) = 0, (2.35) 

where we have distinguished the solutions of (2.35) 
by the symbol k o. It is immediately obvious from 
(2.35) that the residue of (2.30) is separable in p and 
q; however, it is not clear that the residue is the 
product of a function of p times the same function of q. 
That this is so follows from the relation10 

s/l . .(z) = .71' (J.(Z) r"zp. J_.(z) dz 
2 sm V7T Jo 

- J_.(z) 1"ZI'J.(z) dZ). (2.36) 

Combining (2.28), (2.30), (2.35), and (2.36), we find 

T(p, q; S)J-2ika(ZO) 

~ {Z~J2ikoaCZo)/[32rrpqa sin (2ikoa71')]} 

X [Yep, ko) - Y( - p, ko)] 

X [Y(q, ko) - Y( -q, ko)]. (2.37) 

We conclude by noting that the infinite series 
representations for all of the functions that appear in 
(2.30) have infinite radii of convergence; thus one 
should be able to evaluate (2.30) numerically and use 
it as a check on programs which attempt to solve (2.1) 
and (2.2) directly. It should be possible to sum the 
series on a computer, since very fast programs for 
computing gamma functions now exist. Furthermore, 
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for all of the series that arise, the nth term for large n 
becomes (-!z~)n/(n!)2; thus the series converge 
rapidly for tz~ of order 1. 
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I. INTRODUCTION 
In 1962 Newton l developed a method for deter

mining a nonrelativistic potential at fixed energy. He 
was able to reconstruct a potential which produces a 
certain set of asymptotic phase shifts from the knowl
edge of these phase shifts at one fixed energy. The 
resulting potential was expressed by an expansion 
whose coefficients (the coefficients of interpolation2

) 

were the unknown quantities of the problem. They 
were obtained by solving an infinite system of linear 
equations. Newton showed that the solution of the 
problem was not unique and, in particular, that there 
exists a nontrivial central potential which leads to 
zero phase shift at all energies; for this reason it was 
called "transparent potential." In a recent paper3 we 

generalized Newton's method to complex and Coulomb 
phase shifts and naturally met again the transparent 
potentials. In the course of the paper we show that a 
powerful mathematical tool was used in the construc
tion of the potential, namely the theory of the 
generalized translation operator (GTO),3 When a 
GTO does exist between two equations (more exactly 
between two operators), one unknown and the second 
known, one can write explicitly an integral representa
tion of the solution of the unknown equation in terms 
of the solution of the known one. Newton's equation 
results by some appropriate manipulation from this 
representation without any explicit recourse to an 
underlying GeJ'fand-Levitan equation. 4 To fix the 
notations, we recall that in any inverse problem one 
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starts from some known potential, which is called 
hereafter the reference potential, and one tries to 
determine the functional dependence of some un
known potential. 

The question which comes to mind is whether the 
same method of GTO exists in relativistic situations 
so that Newton's method has an extension for 
solving relativistic inverse problems at fixed energy. 
In a recent paper3 we answered affirmatively, limiting 
ourselves to sketching the method. This paper is 
devoted to the full treatment of the problem. 

When relativistic particles are considered, it must 
be specified whether they are spinless or not. Here we 
will be concerned with spin less particles and spin-J-

• 2 

particles. The former are dependent on the Klein-
Gordon equation while the latter depend on the Dirac 
equation. Both instances are considered, and the 
method for determining a potential is developed in 
both cases. 

In Sec. I r, we examine spin less particles and the 
Klein-Gordon equation. The first problem we are 
concerned with is the existence of a GTO. Two Klein
Gord?~ equations are considered simultaneously, one 
containing some potential Vo, the second a potential 
V. We show that a GTO exists which transforms the 
operator c~ntaining Vo into the operator containing V. 
The. only dIfference between the SchrOdinger case and 
Klein-Gordon (KG) case lies in the statement of the 
Cauchy problem which specifies the GTO. This arises 
naturally from the introduction of the potentials 
throug.h a quadratic form in the KG equation. Taking 
potentIal Vo as the reference potential, we move on 
to the pro.blem of finding V through the integral 
representatIOn of the solutions relative to the potential 
V. The asymptotic method of Newton applies, and an 
equ~tion iden~ical to the one obtained in Ref. I gives 
the interpolatIOn coefficients. Most of the results that 
Newton obtained in the nonrelativistic case remain 
valid. Since the same equation is obtained for the 
interpolation coefficients, the same singular matrix 
has to be inverted. As in the nonrelativistic case, from 
th~ reference P?tential Vo and the asymptotic phase 
s~lfts one obtains ~ one-parameter family of poten. 
tIals V. The only dIfference between the cases is the 
way the potentials Vo and V are introduced in the wave 
equation; thus Newton's result on the first moment 
of th.e difference between Vo and V has to be slightly 
modIfied: For relativistic spinless particles it is found 
that if the interpolation coefficients decrease fast 
enough when I goes to infinity, and this is the case 
when finite expansions are considered, one has 

100 

reV - Vo)(V + Vo + 2£) d,. = 0 (1) 

instead of 

(2) 

obtained for the Schr6dinger case. 
The Dirac equation is studied in Sec. III. The same 

order is followed. Does a GTO exist between two 
different Dirac equations? If so, can one derive an 
extensi?n of Newton's method for the inverse problem? 
The DIrac equation is somewhat different from both 
~he Schrodinger and the Klein-Gordon equation. This 
IS due to the fact that it is a system of coupled first
order equations and therefore must be handled as a 
~atrix equation. The method for finding a GTO 
Introduces then some specific algebra and leads to 
somewhat different consequences. Two cases are 
~istinguis~ed according to whether the Dirac equa
tIOn contaInS one or two central potentials. When two 
potentials ar.e present in two different Dirac equations, 
a GTO eXIsts, and a kind of GeI'fand-Levitan 
equation, which we will call the Gel'fand-Levitan
Regge-Newton5 equation can be derived for the 
matrix integral kernel which represents the solution 
of the unknown equation in terms of the solution of 
the equation chosen as reference. Newton's method 
is a~plied by. inserting the asymptotic phase shifts; 
the mterpolatIOn coefficients, which are numbers and 
not matrices, are obtained by solving a set of linear 
algebraic equations. They are different from the one 
obtained. previously by Newton. Although different, 
the matrIX to be inverted is singular. We are able to 
gi:e an e.xplicit form for a left and right inverse of 
thIS matrIX and for a vector annihilated by it. Trans
parent potentials will still occur in the solution of this 
inverse problem. Two main differences are found 
between the SchrOdinger and the Dirac case with two 
po~entials: One, there is no result analogous to that 
whIch concerns the first moment of the difference 
between the potentials and, two, the singularities of 
the Jost fu~ctions in the Dirac case are due exclusively 
to the chOIce of the reference potentials. The Dirac 
equation with one potential creates an additional 
special problem: Although a GTO may exist since 
the equations for the GTO are almost the same at 
fixed energy as at fixed angular momentum a com
patibility condition limits the solution of th~ inverse 
problem. When Newton's method is used for the 
interpol.a~i?n coe~c~ents, it is necessary to verify the 
compatIbIlIty condItIOn before obtaining the unknown 
potential. 

II. THE KLEIN-GORDON EQUATION 

We consider here spinless particles, for instance, 
mesons. The wave equation follows readily from the 
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equality 
E = p2 + p2. 

It is a scalar equation which reads 

a21p 2 
- - = -tJ.1p + P 1p at2 

(3) 

(4) 

with Ii = c = 1. In Eqs. (3) and (4) p is the rest mass 
of the particle. 

In the presence of an external electromagnetic field, 
p and E must be replaced respectively by p - eA and 
E - e1> in Eq. (3), where A and 1> are, respectively, 
the vector and the scalar potential, while e is the 
charge of the particle. Therefore, Eq. (4) becomes 

If now we make the assumption that A = 0 and that 
a central static VCr) describes the motion of the 
Klein-Gordon particle, Eq. (5) reduces to 

(i :t - V(r)J1p = (p2 - tJ.)1p. (6) 

We will limit our interest in this paper to Eq. (6). 
Looking for a stationary solution, we set 

1p(r, t) = 1>(r)e-iEt
. 

The equation for 1>(r) is 

[£ - V(r»)21>(r) = (p2 - tJ.]1>(r). (7) 

As for the Schr6dinger equation, we use a partial 
wave expansion in Eq. (7), 

1>(r) = I [1>I(r)/r]Yzo(8, rp), 
I 

to obtain the radial equation 

At fixed energy E, a set of differential equations is 
obtained in this way for each value of the angular 
momentum I. 

Existence of GTO and Newton's Method 

To study the existence of a GT03.6 at fixed energy, 
two equations of the form (8) are considered, one 
containing a potential Vand the second a potential Vo: 

2 ( 2 2 a2 
1 (1 + 1 ») 

Al == r [E - VCr)] - p + ar2 - r2 ' 
(9) 

2( 2 2 a2 1(1+1)) BI == r [E - VoCr)] - P + -2 - 2 . or r 

These operators Al and B z being defined, the method 
for a GTO applies in a straightforward manner (see 
Ref. 3). 

One can notice that Eq. (8) is identical with the 
nonrelativistic Schr6dinger equation once V in the 
latter is replaced by V(2E - V). Since E is fixed here, 
everything done in Refs. I and 2 carries over, and one 
may make the same substitution in the results. 

We limit ourselves to some particular aspects and 
define 

VNR _ V~R = _ ~ ~ K(r, r) , 
r dr r 

where NR stands for nonrelativistic. VNR is a one
parameter family of potentials which will be obtained 
in the nonrelativistic case by the same set of phase 
shifts. It is real if the phase shifts are themselves real. 
More precisely, we have 

V2 - V~ - 2E(V - Yo) = VNR - VtfR. (10) 

We assume that VNR - V5'R is a negative quantity; 
then 

V = -EVo ± [V~(E2 + 1) + V.j"R - VNR]l 

is a real potential. 
The result of Newton in Ref. 2 on the first moment 

of the potential has to be modified to take into 
consideration Eq. (10). 

What one obtains here is simply that the first 
moment of the difference VNR - vglR has to vanish 
when the interpolation coefficients vanish rapidly as 
1->- w. 

Therefore, the first moment which must vanish in 
the relativistic case is the first moment of the quantity 
(V - Vo)(V + Vo - 2£). 

Another result needs some change: It is that of 
Sabatier2 concerning the asymptotic behavior of the 
potential, since it is related to the asymptotic be
havior of VNR - Vg'R. Applying Sabatier's result, we 
can determine the unique parameter which specifies 
the family of potentials so that the solution of the 
problem becomes unique. 

If the parameter is selected in order that 

VNR _ V.j"R = O(r-ft), 
then 

it 

(V - Vo)(V + Vo + 2E) = 0(r- 2
). 

It results that V ->- Vo when r ->- 00 as r-i ->- O. 
Equations being the same for spinless particles in 

both the relativistic and the nonrelativistic case, the 
singularities of the Jost functions will depend on both 
cases on the choice of the contour C as well as that of 
the reference potential. 
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According to all that precedes, the problems are 
substantially identical for the Klein-Gordon and the 
Schrodinger equations; the situation will change when 
the Dirac equation is considered. This is the topic of 
the following section. 

III. DIRAC EQUATION 

When a Dirac field interacts with some other fields, 
the Dirac equation reads7- 9 

io 
- <D(r, t) = [a. (p - eA) + VCr) at 

+ (J(m + g81>S) + P2gp1>p]<D(r, t). (11) 

In Eq. (II) p = -iV and m are, respectively, the 
three-component momentum and the reduced mass 
of the particle. The 4 x 4 matrices OCk' {J, and pare 
given by 

OCk = (~k d)' {J = (~ ~l)' P2 = ie ~l), 
with 0 and I being the 2 x 2 matrices zero and unity 
and with the Pauli matrices being 

al = (~ ~), ia2 = OJ = (_ ~ ~), 

a3 = (~ _~). (12) 

In addition, A = (A, iV) is a quadrivector potential 
and the subscripts p and s stand for pseudoscalar and 
scalar. 

A special case of interest is that of a spin-t particle 
subjected to a diagonal matrix central potential VCr) 
such that 

so that the Dirac equation reduces to 

io 
[a. p + (Jm + V(r)]<D(r, t) = it <D(r, t). (13) 

Defining 

VI(r) = VCr) + W(r), V2(r) = VCr) - W(r), (14) 

we find that Eq. (13) becomes 

io 
{IX. P + (J[m + W(r)] + V(r)}<D(r, t) = - <D(r, t). ot 

(15) 

When Eq. (14) is compared to the general equation 
(II), it is seen that the case where VCr) is a diagonal 
matrix corresponds to 

A = (0, iV), gs1>s = W(r) , gr1>r = O. 

From the definition of IXk and (J, the following 
identities hold: 

IXklXl + OCZOCk = 2bk1 , ockf3 + f30ck = 0, 

ocZ = f32 = 1. 

The solution <D(r, t) of Eq. (15) is therefore a four
component vector. We look for a stationary solution 
and write 

<D(r, t) = 1J!(r)e-iEt
; (16) 

via the definition (16), Eq. (I5) becomes 

{a· p + f3[m + W(r)] + V(r)}1J!(r) = E1J!(r). (17) 

When VCr) and W(r) are central potentials, the angular 
momentum 1 = r x p does not commute with the 
Hamiltonian H (it is not a good quantum number). 
To obtain operators which do commute with H, 
the total angular momentum 

J=l+s 
is introduced. Now spherical harmonics are used for 
a partial wave expansion: 

y:;z(e, 1» 

= L (liM - msms I J M) ytli-ms(e, 1»X~s' (18) 
ms=±l 

In the definition (18) the xt are the normalized spin 
functions, the yfI-ms the spherical harmonics, and 
the (ItM - msms I JM) the coupling coefficients. 

Another operator K which commutes with H is 
defined by 

K={J(o·l+l). 

One can prove the equality K2 = J2 + V Therefore, 
the eigenfunctions of J are eigenfunctions of K with 
eigenvalue ± (J + t). The eigenfunctions of H can be 
specified with the help of the eigenfunctions of J and K. 
Their common eigenfunctions form a complete setIO •ll ; 

thus any solution 1J!(r) of Eq. (16) can be expanded as 

1J!(r) == 1J!(r, e, 1» = Lv;,(r)f;'M(e, 1», (19) 
;'.tf 

where A and the normalized spinors j;,M(e, 1» are 
defined by 

Kf;'lII(e, 1» = -'Af;'M(e, 1». 
From its definition, A is an integer different from zero 
(see Table I). 

To solve the Dirac equation it is sufficient to deter
mine the spinors vir). If one sets12 

p;,(r) = G;,(r)t(l + (3) + F;,(r)t(l - (3), (20) 

Eq. (17) separates into a set of coupled equations. 
The problem is then reduced to that of finding the 
scalar functions G;,(r), F;,(r). 
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TABLE I. 

A=J+! 

). = -(J +!) 

Inserting (19) and (20) into (16), one obtains the 
equations1a for G;.(r) and F;.(r): 

[E - V - (m + W)]G..{r) 

+ (:r + 1 ~ ),)F..{r) = 0, 

[E - V + (m + W)]F..{r) 
(21) 

_ (~+ 1 + A)G;.(r) = O. 
dr r 

Defining rG;.(r) = g;.(r) and rFir) = fir), one 
obtains the new set of equations 

[E - V - (m + W)]gir) + (~ - ~)f;.(r) = 0, 
dr r 

(22) 

[E - V + (m + W)]f;.(r) - (~ + ~) g..{r) = O. 
dr r 

If one defines 

cp..{r) = (f;.(r») , 
g;.(r) 

Eq. (22) takes a matrix form 

(.!!.. - ~ O"a + (E - V)w - (m + W)O"I) cp;.(r) = O. 
dr r 

(23) 
Another equivalent expression can be given: 

( w.!!.. - (m + W)O"a - ~ 0"1 
dr r 

+ [V(r) - E]) cp;.(r) = O. 

The equation satisfied by 

O"lCP;.(r) = (~:~:~) 
will be needed in the following and is easily derived 
from Eq. (22). 

A. Existence of a GTO 

We are concerned here with the inverse problem 
at fixed energy, but it can be recalled that the problem 
at fixed I has been solved by Gasimov and Levitan.1us 

As in Sec. II we study the problem of the existence 
of a GTO prior to its application to the inverse 
problem. 

Let us define the two families of operators 

- d A 
A;. = - - - O"a + (E - V)w - (m + W)O"l' 

dr r 

- d A 
B;. = - - - O"a + (E - Vo)w - (m + WO)O"I, 

dr r 

(24) 

where V, W, Vo, and Wo are four scalar potentials. 
Since A is the parameter specifying the members of 
each family and since we want a GTO valid for the 
family as such, it is preferablea to consider the two 
following families rather than A;. and B;.: 

Explicitly we have 

A;. = +r(O"a~ - ~ + (E - V)O"I - (m + W)w). 
dr r 

(25) 

In addition, we consider the set t; of twice-differenti
able vector functions cp, which satisfy the condition 

1· A..()- ;.([(2A-1)!W
1
) Im't';. r - r . 

T~O 0 

We ask for a translation operator X defined by 

(26) 

for any cp in the set t;. 
The explicit form which is required for X is 

IT K(r, s) 
X cp = M(r)cp - -- cp(s) ds. 

o s 
(27) 

In Eq. (27), M(r) and K(r, s) are two unknown 
matrices to be defined by Eq. (26). 

With the help of the two following identities, 

o iT cp(s) 
- K(r, s)- ds or 0 s 

K(r, r) iT 0 cp(s) = -- cp(r) + - K(r, s) - ds, r 0 or s 

i T 0 
K(r, S)O"a - cp(s) ds 

o os 

lTo 
= K(r, r)O"acp(r) - - K(r, S)O"aCP(S) ds, 

o os 
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one obtains A).Xq, and XB).q,: 
r(-0'3 ~ K(r, s) - [E - V(r)]O'lK(r, s) 

or 

A;..X q, = r( 0'3M'(r)q, + 0'3M(r)q,' - ~ M(r)q, + [m + W]wK(r, s») 

+ (E - V)O'lM(r)q, - (m + W)wM(r)q, 

K(r, r) ir 0 q,(s) 
- 0'3 -- q,(r) - 0'3 - K(r, s) - ds r 0 or s 

+ ~ t K(r, s) q,(s) ds 
r Jo s 

i
r K(r, s) 

- (E - V)O'I -- q,(s) ds 
o s 

[r K(r, s) ) + (m + W)w Jo -s- q,(s) ds , (28) 

= s(~ K(r, S)0'3 - K(r, s)[E - VO(S)]O'I 
os 

+ K(r, s)(m + Wo)w). (32) 

Equation (30) tells that M(r) is a diagonal matrix 

M(r) = (Mll 0). 
o M22 

Writing Eq. (31) explicitly, one obtains 

M~l = M;2 = 0, 
so that M is a constant matrix. With this in mind, Eq. 
(31) becomes 

XB;..q, ;; M(r)r0'3q,' - M(r)Aq,(r) 

+ M(r)r(E - VO)O'I q, 

[E - V(r)]M22 - [m + W(r)]M22 - [E - VO(r)]Mll 

+ [m + Wo(r)]Mn = +2K12(r,r)/r, 

(33) 

[E - V(r)]Mn + [m + W(r)]Mn - [E - VO(r)]M22 

- [m + WOJM22 = -2K21(r, r)/r, 
if K(r, s) is written 

- M(r)(m + Wo)rwq,(r) - K(r, r)0'3q,(r) 

+ [r ~ K(r, s)O'aq,(s) ds + A [r K(r, s) q,(s) ds 
Jo os Jo s 

- fK(r, s)[E - VO(S)]O'lq,(S) ds 
K(r, s) = (Kl1(r, s) K 12(r, S»). (34) 

K21(r, s) K22(r, s) 

+ fK(r, s)[m + Wo(s)]wq,(s) ds. (29) 

Since q,(r) is an arbitrary element of 8, Eq. (26) 
separates. One has 

If one asks that q, E 8 implies Xq, E 8 in order to get an 
integral representation of solutions with the same 
boundary conditions through the kernel K(r, s), then 
Mn must be equal to 1. The same value 1 will be the 
value of M22 if the behavior of the f3 component of 
Xq, has to be the same as that of q,. When Newton's 
method is used, it will be shown that Mn = M22 = 1; 
then Eqs. (33) reduce to 

r 

0'3M(r) - M(r)0'3 = 0, (30) 

r0'3M' + r(E - V)O'lM(r) 

- rem + W)wM(r) - 0'3K(r, r) 

= M(r)r(E - VO)O'I - rM(r)(m + Wo)w 

- K(r, r)0'3' (31) 

Vo(r) - VCr) - W(r) + Wo(r) = 2K12/r, 

Vo(r) - VCr) + W(r) - Wo(r) = -2K21lr. (35) 

In addition to Eqs. (33), we have the partial differential 
equation (32) to be satisfied. When it is rendered 
explicit, we have 

( 

oKu ] - - + [m + W + V - E K 21 , 
or 

OK21 ] - + [-m - W + V - E K ll , ar 

oK12 ) - - + [m + W + V - E]K22 or 
oK22 --a;: + [-m - W + V - E]K12 

{

OKll oK12 } - + [-m - Wo + Vo - E]K12' - - + [m + Wo + Vo - E]Kn os os 
=s 

OK21 OK22 . - + [-m - Wo + Vo - E]K22 , - - + [m + Wo + Vo - E]K21 
os os 

(36) 
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In Eq. (36) Vand W depend on r while Vo and Wo 
depend on s. 

The system (36) together with the boundary con
ditions (35) may not be sufficient to define a unique 
GTO. However, it shows that such an operator 
exists, and therefore an integral representation can be 
obtained for the regular solution of one Dirac equa
tion in terms of the regular solution of a second 
Dirac equation. 

Namely, if Ac/> = 0 and Bc/>° = 0 (c/> and c/>0, 
regular solutions), there exists a kernel such that 

C/>ir) = Mc/>~(r) - fK(r, s)c/>~(S)S-l ds. (37) 

Investigation of Eq. (36) shows that one must set 

Kap(r, s) = Ldh(A)[C/>ir)1a[(J"lc/>~(S)]p, 
where [c/>;.Jp means the fJ component of the column 
vector C/>. 

The contour C and the measure h(A) must be chosen 
so that the conditions (35) are satisfied. 

B. The Inverse Problem 

Following the example of Newton, we reduce the 
contour C to the sets of integer numbers and write 

Kap(r, s) = I c,,[<P;.(r)1a[alflO(s)]p. (38) 

" 
When the Dirac equation is concerned, there is no 

reason to restrict the summation to the positive values 
of A. In fact, the change A into - A does not give the 
same solution. Precisely, one has 

<P( -A, E, V, W) = (J"l<P(A, -E, - V, W). 

So the development will contain positive and negative 
values of A. 

A Gel'fand-Levitan-Regge-Newton equation can 
be obtained to define the kernel K. 

For this purpose we introduce the matrix 

Paper, s) = I c,,[<p°Cr)Ual<P°(s)]p (39) 

" 
and use the integral representation (37) for <P,,: 

[<P,,]aCr) = Maa[<P~(r)]a - r'I Ka/r, t)[<P~(t)L dt . Jo y t 
(40) 

Equation (40) is multiplied by c,,[a1<P;.(s)]p from the 
left and the summation over A is performed, so that 
one obtains 

IT dt 
Kap(r, s) = MaaPap(r, s) - I Kail', t)PypCt, s)-

° y t 
(41) 

or in matrix notation 

i
r dt 

K(r, s) = MP(r, s) - K(r, t)P(t, s) -. (42) 
° t 

The set .of constants C;. has to be calculated to solve 
the inverse problem. For this purpose r is allowed to 
go to infinity in Eq. (40), and the asymptotic behavior 
of each solution is incorporated into the equation. 

As was done previously, we write 

[<Pir)]a = Maa[c/>~(r)]a - I c"LA,,(r)[c/>,,(r)]a (43) 

" 
and the similar equation for [<Pir)]p. In Eq. (43) one 
has 

LAir) = rr I ds [al<P~(s)]P[c/>~(s)]p. (44) Jo p s 
This last equation can be rewritten as 

with the symbol T standing for 

[<pO(s)f = (fZ(s), g~(s». 

(45) 

(46) 

Therefore, LA,,(r) is a scalar which can be evaluated 
by considering the equations for <P" and [al<p~]T. 

We have 

( -a3 .!! + (m + Wo)w + ~ 
dr l' 

+ a1[Vo(r) - E])<p~(r) = 0, (47) 

[al<p~(r)rr(a3 d + (m + Wo)w 
dr 

+ ~ + a1[Vo - E]) = O. (48) 

Left multiplication of Eq. (38) by [al<P~(rW and 
right multiplication of Eq. (37) by <P~(r) yields, after 
subtractions, 

Therefore, integration from zero to r gives 

L"ir) = (A - ,u)-1[al<P~(r)]Ta3<P~(r). (50) 

If A goes to ,u, Eq. (49) is still valid, so that one has 

L;.ir) = lim L",,(r). 
w··;' 

When r goes to infinity, Eqs. (33) become 

<P;.(oo) = MIll1(oo) - LC"L"ioo)<Pioo). (51) 

" 
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We adopt the following normalizations: 

({>;.(OO)=A;.( cos(kr-!A1T+1])) ) 
k" [kl(E - m)] sin (kr - !h + 1];.) 

= ~~(~:), (52) 

((>~(oo) = B;.( cos(kr -lh + 1]1) ) 
k" [kl(E - M)] sin (kr - th + 1]~) 

= ~~(~D. (53) 

Since the dependence on k in the real quantities A;., 
B;., 1];., and 'i)~ is evident, it has been omitted in Eqs. 
(52) and (53). 

We get 
1 kl - Il-;' 

L;.ioo) = --B;.BI-'--
A-ft E-m 

x sin [(A - ftH1T + 'i)~ - 1]~), (54) 

L (00) = +B2 __ - - _;. . k
l
-

2
;' (1T dr/) 

;.;. ;. E - m 2 dA 
(55) 

Inserting (52) and (53) into (51) gives 

A;.(C;.) = B;.( C~ 0) - 2cIlL;'Il(OO)AIl(CIl)k;'-Il. 
S;. M 22S;. II Sil 

(56) 

The linear independence of eikr and e-ikr separates 
Eq. (56) into two sets of equations, one set being the 
complex conjugate of the other, and shows that 
necessarily M22 = 1. Since the matrix M reduces to 
unity, Eqs. (37) and (42) become now 

iT K(r s)({>O(s) 
({> ;.(r) = ((>~(r) - ,;. ds, 

° s 

iT K(r, t)P(t, s) 
K(r, s) = per, s) - dt, 

o t 
and one has 

A,1.exp(i1];.) 1 + c;.B~--- - --;. [ 
e-2;' (1T d1]O)] 

E - m 2 dA 

( 

C B A kl - 21l 

= B;. exp (i1]f) - 2 i;'-Il-LL.!!-
HI-' A-ftE-m 

(37') 

(42') 

x sin [HA. - ft)1T + 17~ - 17~] exp (i17/l)) (57) 

and its complex conjugate. 
The two sets of equations (57) are nonlinear in the 

unknown quantities A;. and C,1.; they can be linearized 
by defining 

D;. = c;.A;.B;.kl
-

2\E - mri (58) 

to obtain 

A;. . 0 )] (1T d1]~) - = exp [1(1];. - 1];. - D,1. - - -
B;. 2 dA 

D - 2 _1-'_ (i);'-Il sin [teA - ft)1T + 1]~ - 1]~] 
HI' ). - ft 

x exp [i(1]11 - 1];.)]. (59) 

Since j is an integer, the parity of A - ft may be 
considered; this has an effect of separating the sum 
over (59) into two terms: 

2 [DI'/CA - ft)] sin C1]~ - 1]n exp (i(1]1l - 1];.)] 
Il'F;' 

(Il-;')cycn 

+ i-I 2 [DIlI(). - ft)] cos (1]~ - 1]~) 
(Il-;') odd 

X exp [i(1]11 -1];.)]. 

Finally, we can separate the real and the imaginary 
part ofEq. (59) and obtain the linear equation for D;.: 

o = sin (1]~ - 1];.) 

2 [DIlI(}. - ft)] cos (1]Z -1]1) cos (1]11 -1];.) 
(;'-p)odd 

- 2: [DIlI(). - ft)] sin (1]~ - 1]1) sin (1]11 - 'i};.). 
(;'-Il)cycn 

(60) 
The equation for A;. will be 

- = cos 1] - 1];. - D;. - - -A;. (0 0) (1T d1]~) 
B;. I' 2 dA 

Dil 0 0 2 -- sin (1]1-' - 1];.) cos (1]11 - 1];.) 
H" A - ft 

(;'-Il)cycn 

+ 2 ~COS(1]~-1]~)sin(1]p-1];.). 
(;'-Il)odd). - ft 

(61) 

When D;. and A;. are obtained, using (60), one gets 
C;.. Going back to Eq. (60) and using the scalar 
function L).Il(r), we can construct for each value of r 
the vector 9;.(r) and the matrix K.p(r, s). Therefore, 
VCr) and W(r) are obtained. All the calculations will 
require an electronic computer. 

C. Discussion of the Method 

To simplify the discussion, only the case where the 
reference potential is chosen equal to zero is con
sidered. Then, setting all the 1]~ equal to zero in Eq. 
(50), one gets 

0= sin 1];. + 2 [D"/(A - ft)] cos ('i}p -1];.). (62) 
(J.-Il) odd 

There is no restriction in considering such a case. 
The general case where the reference potentials are 
not equal to zero can be constructed in two steps. 
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The first step will be to construct from the given 
reference potentials a transparent potential. For tpis, 
rJ;. is set equal to zero in Eq. (50). An equation identi
cal to (52) is obtained with the rJ;. replaced by 1)~. 
This transparent potential obtained, the final poten
tial is constructed through solving (52). It results that 
(52) is used twice and that its discussion is sufficient 
to understand the singularity of the problem. 

Restricting the attention to Eq. (52), we consider 
the possibility of transparent potentials, that is, 
potentials which produce zero phase shifts. So we 
set all the rJ;. equal to zero in Eq. (52) and get 

o = ~ DJlI(). - fl). (63) 
().-Jl) odd 

Transparent potentials will exist, if there is a set of 
constants Dp. not equal to zero, such that the rhs 
of Eq. (53) vanishes. In other words, the possibility 
of transparent potentials depends on the matrix 

{
(). - fl)-l, ). - fl odd 

M;. = , 
p. 0, A. - fl even 

(64) 

where). and fl are integers different from zero, being 
singular. If a matrix M-l exists, it will be an anti
symmetric matrix; it is then easy to show that 

M;'; = 0 if ). - fl is even. 

In fact, we have for a right inverse 

I M2r,2P+lM"2;+l,n = r52r,n' (65) 
p 

I M 2P+l,2nM "2;,r = r52P+l,r' (66) 
n 

So only the terms M2i+l,2Q and M~l,2q+l contribute to 

For this purpose we consider the integral 

r 71' cot 1TZ dz = r fez) dz, 
Jc [2n - (2z + 1)J(2z + 1 - 2r)(2z + 1) J. 
where c is the large circle centered at the origin. When 
the radius of the circle c goes to infinity, the integrand 
vanishes; therefore the integral is equal to zero. 

Inside the circle c, fez) is analytic everywhere 
except perhaps at the poles of cot 1TZ and at the zeros 
of the denominator. The poles of cot 1TZ happen for 
z = p,p any integer, and the zeros of the denominator 
for z = -t, z = r - t, and z = n - t. But for 
these zeros cot 1TZ vanishes; if r ~ n, they are not 
true poles of the function f(z); therefore, we get 

+00 1 
~ =0 

p=-oo [2n - (2p + 1)](2p + 1)(2p + 1 - 2r) 

if r ~ n. 

Equation (67) is therefore proved if r ~ n. 
When, = n, the situation is different due to the 

fact that the denominator has a zero of order 2. So 
an additional term occurs: 

+00 1 71'2 

p=~oo [2n - (2p + 1)]2[2p + 1J = 4(2n) ; 

therefore, Eq. (67) holds. 
We prove now that the sum analogous to Eq. (65) 

is verified, 

4 +00 2n 
"2 ~ = r5rp , 
71' n=-oo (2r + 1)(2p + 1 - 2n)(2r + 1 - 2n) 

(68) 
the summation (64), (65), and we may choose and write the lhs as 

M2/;,2Q = M"2;+l.2Q+l = o. 
We show now that the antisymmetric matrix N 

{ 

4 2n } 
N2n ,2r+l = 71'2 [(2n - (2r + 1)](2r + 1) 

o otherwise 

= -N2r+1 ,2n 

is a right inverse of M. In other words, MN = I. 
Equation (66) in an explicit form is composed of two 
relations analogous to (64) and (65). The first one 
may be written 

4 +00 2n 

- 1T2 p~oo (2n - 2p - 1)(2p + 1)(2p + 1 - 2,) 

The infinite sum to be computed is 
= r52r.2". (67) 

+00 1 

p=~oo [2n - (2p + 1)](2p + 1 - 2r)(2p + 1) 

4 (I 2n 
1T2(2r + 1) n>O (2p + 1 - 2n)(2, + 1 - 2n) 

2n ) 
(2p + 1 + 2n)(2, + 1 + 2n) 

4(p + , + 1) 

71'2(2r + 1) 

16n2 xl . 
n>O [(2p + 1)2 - 4n2][(2r + 1)2 - 4n2] , 

this last sum has already been calculated by Red
mond,16 who found 

+00 (2n)2 

n~l [(2n)2 - (2p + 1)2][(2n)2 - (2r + 1)2] 

_ '!!.. (2r + 1) cot H2r + 1)71' 

- 4 (2p + 1)2 - (2r + 1)2 . 

Since , is integer, cot H2r + 1)1T vanishes. So, if 
p ~ r, the sum is zero. Now, if p = r, we have a form 
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010 to be specified. Computing 

I. cot tX1T -i1T I 
1m 2 2 = 

"'-+2P+l (2p + 1) - x -2x sin iX1T ",=21'+1 

1T = , 
4(2p + 1) 

we obtain 
+ <Xl (2n)2 1T2 

~l (2n)2 - (2p + 1)2 = 16 ' 

so that Eq. (68) holds. 
Having found that N is a right inverse, we prove 

that it is a left inverse too. The equations to be verified 
are 

-(411T2) 12rl(2p + 1 - 2r) 

x (2r - 2n - 1)(2p + 1) = bpn , (69) 

(411T2) ~ 2rl(2n - 2p + 1) 
I' 

x [2r - (2p + 1)](2p + 1) = brn , (70) 

which reduce, respectively, to (68) and (69). (More 
generally, it can be proved that if an antisymmetric 
matrix N is right inverse of an antisymmetric matrix 
M, it is also a right inverse and conversely.) 

The inverse N is not unique, since we can introduce 
a vector ~ which is annihilated from the right and the 
left by M: 

(71) 
It is 

~2n+l = (4/1T2)(2n + 1)-\ ~2n = O. 

The first Eq. (71) is 

1 M2r.2n+1~2n+1 = 1 {[2r - (2n + 1)](2n + 1)}-1. 
n n 

Introducing the function g(z) defined by 

g(z) = 1T cot (1Tz)/[2r - (2z + 1)](2z + 1) 

and its integral along a circle of infinite radius, one 
finds by a calculation of residues that 

~ {[2r - (2n + 1)](2n + 1)}-1 = 0; 
n . 

the second equality follows: 

1~2n+lM2n+1.2r = 1 [(2n + 1)(2n + 1 - 2r)r1 = O. 
n n 

So a vector exists which is annihilated by M and the 
two-side inverse N is not unique. This leads to the 
possibility of transparent potentials for the Dirac 
equation with two potentials. 

When the Dirac equation with one potential is 
considered, the system of equations defining the 

GTO reduces to 

r( -r:13 :r K(r, s) - [E - V(r)]r:11K(r, s) + mWK(r,S») 

= s(:s K(r,s)r:1a - [E - Vo(s)]K(r, s)r:11 + mK(r, S)W) , 

(72) 

[Vo(r) - VCr)] + m(l - M 22) = 2Kdr, r)lr, 
(73) 

[Vo(r) - V(r)]M22 + m(l - M 22) = -2K21(r, r)/r. 

So, in general, a GTO will exist. However, when one 
wants to apply the method to the inverse problem, 
troubles occur. The asymptotic behavior of <I> implies 
that M22 = 1 so that the last system reduces to 

VCr) - Vo(r) = -2K12(r, r)lr = 2K21(r, r)/r. 

Even if the system seems to have a solution of the 
form 

KIlP(r, s) - i dh(}') [<I> ir)1a[r:11 ¢~(s)]p (74) 

since expansion (74) contains two unknown data, 
the contour C and the measure h(}'), the fact remains 
that if C is fixed a priori, as it is in Newton's method, 
a strong compatibility requirement is introduced. 
For the method to be valid, when the matrix KafJ(r, s) 
is constructed, one needs to verify that 

K12(r, r) + K21(r, r) = O. 

As an end to this paper, it seems worthwhile to 
point out the two main differences between the 
Schrodinger-Klein-Gordon and the Dirac cases, two 
potentials or one potential when a solution exists. 

The deduction of the potential from the kernel K 
is obtained without any derivative, and there is no 
result concerning the first moment of the difference 
between the potentials. 

In addition, the singular matrices are, respectively, 

Ms = M KG = 1/(1- m)(I + m + 1), 

I -:F m, I, m > 0, 

M D = 1/(1 - m), I -:F m, I, m ~ O. 

In the first case a pole is obtained when I = -m - 1. 
Therefore, the Jost function1 b may have poles due to 
the reference potential and to the choice of the 
contour C. Specifically, there will be a pole for I = 
-(C' + I), where C' is the part of C which does not 
contain the set N of integers. In the second case, the 
poles of the J ost function are uniquely due to the 
choice of the reference potential. In addition to these 
two main differences, a third one is also apparent. 
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As a function of m, we have 

Ms = M KG 1'0/ 11m2. 

So when the matrix is iterated, the order of summa
tion can be permuted,16 and the uniqueness of the 
vector annihilated by M results. 

Iterating M D and making the assumption that the 
order of summation can be permuted, we prove the 
uniqueness of d. But 

M D ,,-, 11m, 

and no general theorem on the uniform convergence 
of a double series can be used, so that the assumption 
has no support. Therefore, the uniqueness of d 
remains to be proved. 

APPENDIX A 

Since it has been proved15 that an integral represen
tation exists for the regular solution of the Dirac 
equation with one potential, it is interesting to com
pare the set of equations (72), (73) to that obtained 
by applying the GTO method between two Dirac 
equations at A constant. 

Then the two families of operators to be compared 
are 

d A 
AE = W - - mas - - 171 + VCr) - E, 

. dr r 

d A 
BE = w- - mas - -171 + Vo(r) - E. 

dr r 

The equation AEX~ = XBE~' where 

X~ = M(r)~ - LTX(r, s)~(s) ds, 

gives 

wM - Mw = 0, 

wM' - ma3M - Ar-1a1M 

+ (V - E)M(r) - wK(r, r) 

= -mMa3 - Ar-1Ma1 

(Al) 

+ (VO - E)M - K(r, r)w, (A2) 

-w oK + ma3K + Ar-lal K - V(r)K 
or 

= oK w + mKaa + As-1Ka1 - KVo(s). (A3) as 
Equation (AI) states that 

M(r) = ( MIl M 12). 
-M12 MIl 

Without loss of generality M(r) can be chosen to be 
an orthogonal matrix; using this result in (A2) , one 

obtains 

_ (K21 + K12 
K22 - Xu 

The non diagonal terms yield 

M~l - 2mM12 + (V - VO)M12 

- (K22 - Ku) = 0, 

-M~I - 2mM12 - (V - Vo)M12 

- (K22 - Ku) = O. 
Therefore, one obtains 

(A4) 

. M~1 = (Vo - V)M12 and 2M12m = K22 - Xu' 

On the other hand, the diagonal terms give 
(AS) 

-M~2 + 2Ar-1M12 + (V - VO)Mll 

- (K12 + X 21) = 0, 

-M~2 - 2Ar-1M 12 + (V - VO)Mll 

+ (Kl2 + K 21) = 0, 
that is, 

2AM12 = (K21 + K I2)r, Mf2 = Mu(V - Yo)· 

Thus a compatibility condition enters the picture, 
namely, 

K22 - Kll = mrA-1(K12 + K21)' (A6) 

This last relation has been obtained by Prats and 
Tolp5 in a slightly different form. See their Eq. (48). 
They first set 

K(r, t) = M(r)F(r, t) 

with the orthogonal matrix 

M(r) = ( co~ dfl, sin dfl). 
-smdfl, cosdfl 

They have defined 

IIp = fl(r) - flo(r), 

fl(r) = f yes) ds, flo(r) f Vo(r) dr. 

These definitions are clearly compatible with our Eqs. 
(AS). Next they obtain the condition for the kernel 

wK(r, r) - K(r, r) - (MT 
- M)(a1Ar-1 

- aam) = O. 

(A7) 

Equations (A7) and (A4) are identical. When (A7) is 
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made explicit, one obtains their Eq. (48) or, equiva
lently, the following: 

K21 + K12 + 2).,-1 sin .1. = 0, 

K22 - Kll + 2m sin.1. = 0, 

which shows that condition (A6) remains valid. 

(A8) 

In their paper Prats and Toll have shown that, 
given two potentials whose moments satisfy the usual 
conditions, there exists an integral representation of 
the solutions of one Dirac equation, in terms of 
another Dirac equation. They have shown, in addition, 
that when the scattering data of these two potentials 
are known, it is possible to reconstruct one of these 
potentials, the second being chosen as reference. 
However, they have not completely solved the 
inverse problem. Specifically they have not answered 
the following question: Given two sets of scattering 
data satisfying the usual conditions, is condition (A6) 
automatically verified? And if the answer is no, as it 
seems, for what class of scattering data is the answer 
yes? 

APPENDIX 8 

We study here the uniqueness of the vector Dm , 

0= (Bl) 

and follow a method developed by Redmond in Ref. 
16. This method consists of studying the secular 
equation for the eigenvalues of the matrix M zm , 

summation can be permuted to get 

A2D2n = L D2r L [(2n - 2k - 1)(2k + 1 - 2r)r\ 
k (B6) 

A
2
D 2P+I = L D2k+l .. 

x L [(2p + 1 - 2n)(2n - 2k - 1)r1
• 

n (B7) 

A simple evaluation by the method of residues 
yields the following: 

(A2 + 17T2)D2n = 0, (88) 

A2 D2P+I = +(2p + 1)-1 L (2k + 1)-1 D2k+l 
k*1' 

- [l7T2 - (2p + 1)-2JD2P+l' (B9) 
We get 

x = L D2k+d(2k + 1) (810) .. 
and get, instead of (B7), 

(2p + 1)(A2 + 17T2)D2p+l = +x. 
Thus 

When we set A = 0, 

D2P+1(0) = +4Xj(2p + 1)7T2
• 

Substituting (B9) into (B8) yields 

X = L 4Xj(2p + 1)27T2 

P 

(Bll) 

MD=AD, (B2) or 

where D is the eigenvector with the eigenvalue A. 
Let us assume the absolute convergence of the 

series (Bl). 
Since M zm vanishes when 1- m is even, Eq. (Bl) 

separates into two coupled equations 

AD2n = I (2n - 2k - 1)-1 D2k+l' n r= 0 
k 

AD2P+l = I (2p + 1 - 2r)-1 D 2r , 
(B3) 

r r= 0. 

We can therefore eliminate D2k+l in the first and D 2r 
in the second of these last equations and obtain 

A2
D 2n = L I [(2n - 2k - 1)(2k + 1 - 2r)r1D2r. 

k r (B4) 

).2D2P+1 = L I [(2p + 1 - 2n)(2n - 2k - 1)r1D2k+l' 

n k (85) 

Because of the assumption on the convergence of (Bl), 
these two series converge uniformly, and the order of 

17T2 = L (2p + lr2
, 

which is exact. 
p 

Therefore, the eigenvalue A = ° is a possible 
eigenvalue, and a vector D exists defined by 

which annihilates M. 
Since the assumption on the absolute convergence 

of (Bl) is gratuitous, there is no guarantee that the 
order of summations can be permuted in (B4) and 
(B5), and a solution may exist which is annihilated by 
M such that the series (Bl) does not converge 
absolutely. 
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The main objective of this article is the relativistic generalization of the ordinary SO(3)-irreducible 
spin tensor operators for particles with positive mass. Two classes of relativistic one-particle tensor 
operators are constructed. The tensor operators of the first class transform according to those repre
sentations of the Poincare group that are induced by the one-valued unitary irreducible representations 
of the pseudo-unitary group SU(1, I) which belong to the continuous principal and the discrete principal 
series. These tensors are operator-valued functions of a spacelike 4-momentum transfer. The tensor 
operators of the second class correspond to vanishing 4-momentum transfer. They transform accord
ing to those representations of the Poincare group that are induced by the unitary irreducible representa
tions of the pseudo-orthogonal group S0(3, I) or its universal covering group SL(2C) which belong to 
the principal series. Both classes of Poincare-irreducible tensor operators are constructed in a spin 
helicity basis for timelike 4-momentum by means of projection operators which are continuous linear 
superpositions of unitary operator realizations for the groups SU(1, 1) and SL(2C). The Clebsch-Gordan 
coefficients associated with the reduction into the two classes of Poincare-irreducible tensor operators 
of a dyadic product of spin-helicity basis vectors are calculated. 

I. MOTIVATION AND INTRODUCTION 
The usual multipole parametrization of a spin 

density matrix describing the polarization state of a 
positive~mass particle constitutes an expansion in 
terms of tensor operators that transform according to 
unitary irreducible representations of the three
dimensional rotation group. A covariant multipole 
parametrization can be carried out in terms of 
irreducible representations either of the homogeneous 
or of the inhomogeneous Lorentz group. Since 
relativistic invariance is equivalent to invariance 
under the inhomogeneous Lorentz group (Poincare 
group), the correct relativistic generalization of the 
ordinary spin tensor operators are tensor operators 
transforming according to irreducible unitary repre
sentations of the (restricted) Poincare group ISO (3 , 1). 
For the relativistic multipole expansion of a spin 
density matrix describing the polarization state of a 
positive-mass particle with sharp momentum, the 
relativistic multipole parametrization involves the 

tensor operators transforming according to those 
unitary irreducible representations of the Poincare 
group that are induced by the homogeneous (3 + 1)
dimensional (restricted) Lorentz group SO(3, I). We 
refer to this class of tensor operators as ISO(3, I) i 
SO(3, I)-irreducible. An expansion into Poincare
irreducible components of a spin density matrix 
corresponding to a momentum distribution, however, 
necessitates the construction of the tensor operators 
transforming according to the unitary irreducible 
representations of the Poincare group that are induced 
by the (2 + I)-dimensional (restricted) homogeneous 
Lorentz transformation SO(2, I). This class of tensor 
operators is referred to as ISO(3, I) i SO(2, 1)
irreducible. 

The problem of decomposing the one-particle spin
momentum projection operators (dyadics) 

Ip1)(p':-I, p = (pO, p), s = spin, A. = helicity, 

(1.1) 
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parametrization can be carried out in terms of 
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relativistic invariance is equivalent to invariance 
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group), the correct relativistic generalization of the 
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transforming according to irreducible unitary repre
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For the relativistic multipole expansion of a spin 
density matrix describing the polarization state of a 
positive-mass particle with sharp momentum, the 
relativistic multipole parametrization involves the 

tensor operators transforming according to those 
unitary irreducible representations of the Poincare 
group that are induced by the homogeneous (3 + 1)
dimensional (restricted) Lorentz group SO(3, I). We 
refer to this class of tensor operators as ISO(3, I) i 
SO(3, I)-irreducible. An expansion into Poincare
irreducible components of a spin density matrix 
corresponding to a momentum distribution, however, 
necessitates the construction of the tensor operators 
transforming according to the unitary irreducible 
representations of the Poincare group that are induced 
by the (2 + I)-dimensional (restricted) homogeneous 
Lorentz transformation SO(2, I). This class of tensor 
operators is referred to as ISO(3, I) i SO(2, 1)
irreducible. 

The problem of decomposing the one-particle spin
momentum projection operators (dyadics) 

Ip1)(p':-I, p = (pO, p), s = spin, A. = helicity, 
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with [(p)2 = (P0)2 - (p)2] 

p2 = p'2 > 0, sgnpo = sgnp'O = ±1, 

s=O,t,I,"', (1.2) 

into components that transform by unitary irreducible 
representations of the proper orthochronous Poincare 
group, [SO(3, 1), calls into existence two main classes 
of tensor operators. The two classes correspond to 

p=/:p',Q2<O,Q=p-p' (1.3) 
and 

p = p', Q2 = 0, Q = p - p' = (0,0). (1.4) 

The construction of the Poincare-irreducible tensor 
operators for Q2 < ° and Q2 = ° is based on certain 
unitary irreducible representations of the Lorentz 
groups in three and four dimensions, which are the 
pseudo-orthogonal groups SO(2, 1) and SO(3, I). 
SO(2, 1) is the isotropy group associated with the 
spacelike 4-vector Q (Q2 < 0), whereas SO(3, 1) is 
the largest subgroup of [SO(3, 1) that leaves the zero 
4-vector (Q = 0) invariant. Tensor operators of the 
class Q2 < ° have been introduced by JOOS1 for zero 
spin (s = 0). 

In this particular case only the irreducible SO(2, 1) 
representations belonging to the continuous principal 
series in the classification derived by Bargmann2 are 
needed to calculate the Clebsch-Gordan coefficients 
associated with the decomposition into Poincare-irre
ducible components of the dyadics (1.1). For s =/: 0, also 
the irreducible representations of SO(2, 1) that belong 
to the discrete principal series have to be taken into 
account. More precisely, the one-valued unitary 
irreducible representations of the pseudo-unitary 
group SU(I, 1) are relevant [the homomorphism from 
SU(I, 1) to SO(2, 1) is two to one]. 

The Poincare-irreducible components of a dyadic 
belonging to the class (1.4), namely the [SO(3, I) i 
SO(3, I)-irreducible tensor operators, transform ac
cording to those representations of [SO(3, 1) that 
are induced by the unitary irreducible representations 
of SO(3, 1) [or its universal covering group SL(2C)] 
which belong to the principal series. 

The entirely different problem of decomposing the 
projection operator (l.l) into components trans
forming according to irreducible representations of 
the homogeneous Lorentz group has been solved by 
Popov3 by means of an integral transformation 
introduced by Shapir04 and generalized by Chou 
Kuang-Chao and Zastavenko.:; 

In Sec. 2 we introduce two types of spin-helicity 
basis vectors for a positive-mass particle. They are 
eigenvectors of the Pauli-Lubanski operators WO or 
W3. 

Section 3 constitutes an outline of the idempotent 
operator method upon which hinges the construction 
of the two classes of Poincare-irreducible tensor 
operators. 

The explicit constructions according to this method 
of the [SO(3, 1) i SO(2, 1)- and the [SO(3, 1) i 
SO(3, I)-irreducible tensor operators are carried out 
in Secs. 4 and 5, respectively. Both sections contain 
expressions for the Poincare Clebsch-Gordan coeffi
cients associated with the reduction of a dyadic (1.1) 
into either one of the two classes of tensor operators. 

2. MOMENTUM-HELICITY STATE VECTORS 

An element of the restricted Poincare transformation 

(a, A): x -- Ax + a, x, a E Ea,l' (2.l) 

can be realized as 

(a, A) = exp (-iallpll) exp (-tiwIlVjllv)' (2.2) 

On the vector space H[m, s] that carries the unitary 
irreducible [SO(3, 1) representation corresponding to 
the orbit 

and to the spin 
(2.3) 

(2.4) s = 0, t, 1, ... , 

the group generators Pll andjllv shall be represented by 
the Hermitian linear operators P il and lilv' The set of 
eigenvalue equations 

pllPlllp1) = m 2 Ipf), 

WIlW/I Ipi) = -m2s(s + 1) Ipl), (2.5a) 

Wil ~F 1 IlvP"l P 
2

10 vP'" 

10 = 1 t e permutatIOn IS , Ill'"'' {+l}'f h . (1230). {even} 
-1 pvpa odd 

(2.5b) 

(2.5c) 

together with either one of the two eigenvalue equa
tionsG 

WO Ipi; 0) = }, sgn llpllp;; 0) (2.6) 
or 

W3 lpi; 3) = A sgn l[(po)2 - (l)2 - (p2)2]! IpL 3), 

(2.7) 
with 

o 
sgn pO = L 

Ipol' 
(2.8) 

defines a basis in H[m, s]. Corresponding to the two 
eigenvalue equations (2.6) and (2.7) for the helicity A, 
we use two types of momentum-helicity vectors for 
a particle with positive mass m and spin s in a state 



                                                                                                                                    

1180 ARNO D. STEIGER 

characterized by the 4-momentum p and the spin 
projection along the line of flight A. To the Poincare 
invariant orthogonality relation 

0±(pO)0(p2 - m2)(p':' 'p1) = 04(p' - p)o;";., (2.9) 

realizes on the (2s + I)-dimensional subspace H[s] c 
H[m, s] the unitary irreducible representation of 
SO(3) that is characterized by the group invariant 

J2 = (J23)2 + (J31)2 + (Jd2 = s(s + 1). (2.16) 

where 

0±(pO) = tel ± pO/lp°l), 

corresponds the completeness relation 

SO(3) is the isotropy group for the timelike standard 
(2.10) vector 0p. For the set of the basis vectors 

;.x. J d4p0±(l)0(p2 - m2) IpD<p~1 = n, (2.11) 

where n is the unit operator on H[m, s]. 
By virtue of the Dirac normalization (2.9), the 

momentum-helicity vectors form an improper basis 
in the Hilbert space H[m, s).7 As generalized eigen
vectors (or eigendistributions) they are elements of a 
rigged Hilbert space. R 

In accordance with the relation (2.9) the partial and 
total trace operations 

tr (lp1) (p'!' I) = (p'~' , p1) = 2 Ipol 03(p' - p)o).';. 

(2.12) 
and 

Tr (Ipi) (P'~'I) 

= J d4p0±(po)O(p2 - m2) tr (lpD (P'~'I = 0;"). (2.13) 

can be defined for the dyadic (Ll). 
The momentum-helicity eigenvectors defined by 

Eqs. (2.5)-(2.7) transform under (a, A) E ISO (3 , 1) 
according to the irreducible unitary representations 
that are characterized by the set of group invariants9•1o 

[p2 = m2, w2 = -m2s(s + 1), sgnpO]. The matrix 
realization of the transformation (a, A) in a momen
tum-helicity basis can be written as 

D ([m, s, sgn pO = ±l](a, A» 

=;',~-S J d4
p0±(l)o(p2 - m

2
) IAp~.) 

X exp (-ia . Ap)DS(R(A, pW·;. (p~l, (2.14) 

where R(A, p) E SO(3) is called the Wigner rotation 
associated with the transformation A and the 4-
momentum p. This rotation is defined by 

R(A, p) = Q-\Ap)AQ(p), (Ap)" = N'vpv, (2.15a) 

with Q(p) denoting the three-parameter Lorentz 
transformation 

Q(p)llv 0pv = pll, 0p = Cpll) = ±(p2)!(1, 0, 0, 0), 

p2 = 0p2 = m 2
• (2.15b) 

Q(p) is called an orbiting transformation. DS(R) 

(2.17) 

of H[s], the orthogonality equation (2.9) is replaced 
by the orthonormality equation 

(Op;·' °pD = 2mo),·;.. (2.18) 

Restricted to H[s], the noninvariant eigenvalue 
equations (2.5c) and (2.6) become 

pll IOpD = ±ollom IOpi) (2.19) 
and 

(2.20) 

whereas the noninvariant equations (2.7) and (2.8) 
are equivalent to 

W31°pf) = ±mJ12 I°pD = ±mA IOpD. (2.21) 

Momentum-helicity eigenvectors satisfying the two 
sets of eigenvalue equations (2.5) and (2.6) or (2.5) 
and (2.7) can be constructed from the basis vectors 
(2.17) by means of the orbiting transformations6 

Qo( cP, (), y) = e-i4>h2e-i8i31e-iYio3 (2.22) 
or 

Q3( cP, ct, ~) = e-i4>iue-iaiole-i,io3, (2.23) 

with the parameter domains 

Os cP < 21T, 0 S () S 1T, 0 S Y < 00, 

Os ct < 00, -00 < ~ < 00. (2.24) 

From these orbiting transformations result the 
parametrizations (A6) and (A 7). The constructs 

Ipi; 0) Dg T(Qo) IOpD = e-i4>J12e-i8J3'e-iyJo31°pD, 

(2.25) 

Ipi; 3) D~ T(Q3) IOpi) = e-i4>J12e-iaJole-i(Jo31°pD 

(2.26) 

are representatives of the three types of momentum
helicity eigenvectors. This is an immediate consequence 
of the commutation relations [see Ref. 6, Eqs. (2.75)] 

WOT(Qo(c/>, e, y» = T(fJ.o(c/>, e, y» 
x (WO cosh Y - W3 sinh y), (2.27) 

W3T(Q3(CP, ct, m = T(Q3(cp, ct, m 
x (W3 cosh ~ - WO sinh O. (2.28) 

The momentum-helicity eigenvectors (2.25) and 
(2.26) are related through the transformation (AI8). 
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3. PRELIMINARIES ABOUT THE CONSTRUCTION 
OF POINCARE-IRREDUCIBLE TENSOR 

OPERATORS 

The dyadic (Ll) transforms under the ISO(3, 1) by 
the product representation 

[p2 = m2, s, sgnpo = ±1] 

@ [p'2 = m2, s, sgn p'o = ± 1]t. (3.1) 

The unitary irreducible representations D[ISO(3, 1)] 
into which the product (3.1) can be decomposed fall 
into two classes. These are the classes induced by 
the unitary irreducible representations of SO(2, 1) 
and SO(3, 1), which are respectively the isotropy 
groups associated with a spacelike and a zero 4-
momentum transfer Q = p - p'. The two classes will 
be denoted by 

D[ISO(3, 1)] i D[SO(2, 1)], Q2 < 0, (3.2) 

and 
D[ISO(3, 1)] i D[SO(3, 1)], Q = O. (3.3) 

The set of dyadics 

{lp1) <p'~'1 : l = p'2 = m2, sgn pO = sgn p'o; 

-s ~ A, A' ~ s} (3.4) 

is a basis of the tensor product 

group element g E SO(2, 1) or g E SO(3, 1) on the 
carrier space H[·r] of the irreducible representations 
D[SO(2, 1») or D[SO(3, 1»). Finally, T(g) denotes a 
unitary linear operator representingg on the particular, 
generally reducible, subspace of H[m, s] @ Ht [m, s] 
that is spanned by the subset of the basis (3.4) for 
which p - p' = (0,0,0, (_Q2)t) or p - p' = O. 
The matrix realizations of the unitary operators 
T([T)g) on the irreducible spaces H[T] fulfill the 
orthogonality and completeness relations6

: 

I d,u(g)D*([T']gt" n.,D([T ]gt' n2 

= _1_ 15(T', T)15 n,'n,15n2'n2' (3.8) 
p[T] 

L fd,u[r ]D([T ]gr' n2D*([T ]g'),,1 n. = _1_ 15(g - g'), 
n,n2 peg) 

d,u(g) = peg) dg, d,u[r] = p[r] dr. (3.9) 

.u[T] denotes the Plancherel measure on the Borel 
structure of the group invariant T. Depending on 
whether the set T is continuous or discrete, 15( T', T) 
symbolizes Dirac distributions or Kronecker deltas. 
Ifthe density function p [T] replaces the normalization 
factor N in the definition (3.7), 

H[m, s) @ Ht[m, s]. (3.5) the property 
N = p[T), (3.10) 

The complete set of irreducible tensor operators to be 
constructed consists of those linear combinations of 
the dyadics in the set (3.4) that span the irreducible 
vector spaces H[Q2, T] into which the tensor product 
(3.5) can be decomposed. Symbolically, 

H[m, s] @ Ht[m, s) = I:tJ d,u[Q2]I d.u[r]H[Q2, T]. 

(3.6) 

If the measure ,u[T] is finite, the direct integral in the 
decomposition (3.6) reduces to a direct sum. T denotes 
the set of group invariants for SO(2, 1) or SO(3, 1) 
that characterize the unitary irreducible representation 
D[SO(2, 1)] or D[SO(3,1)]. Together with the 
invariant Q2, T therefore characterizes the induced 
representations (3.2) or (3.3). 

An irreducible orthogonal basis in H[Q2, T] can be 
constructed by means of the projection operatorsll 

p[Tr'n = N I d,u(g)D\[T]g)n'nT(g). (3.7) 

,u(g) is the invariant Haar measure on SO(2, 1) or 
SO(3, 1). D([T]g)n'n is the matrix realization of 
the unitary linear operator T( Hg) that represents the 

p[Tl]n,' nl[r2r'2 n2 = 15( rl , T2)15 n1' n.P[T2]"2' "I (3.11) 

is a consequence of the orthogonality relation (3.8) 
and the invariance of the Haar measure .u(g). Equation 
(3.10) implies that the operators (3.7) are idempotent. 
From the invariance of ,u(g) it is immediate that 

T(g)P[Tr"n = 2: p[Tr'mD([T]g)mn' (3.12) 
m 

This property enables the operators (3.7) to project 
out of a given dyadic (1.1) those components that 
transform irreducibly under ISO(3, 1), and which 
therefore constitute an (improper) basis for H[Q2, T). 

4. [SO(3, 1) i SO(2, I)-IRREDUCIBLE TENSOR 
OPERATORS 

According to Bargmann,2 all the unitary irreducible 
representations of SO(2, 1) that are the one-valued 
unitary irreducible representations of SU(l, 1) can be 
realized by the matrices6.l2,13 

D([T], g)..!';. = DT(cp,~, 'IjI)"';. 

= (TA'l e-iq,JI2e-iaJole-iv'J12ITA), 

J 12 17A) = A ITA), 0 ~ cp, 'IjI < 27T, 0 ~ ~ < 00, 

D([T], g);";. = e-iq,;"dT(~);";.e-iv·A, (4.1) 
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where we have the following: 

(a)T=(E',l): l=-t+ia, -oo<a<oo; 

E' = 0: It = 0, ±1, ±2,'" ; 

E' = t: It = ±t, ±t, ... ; 
d-~-i<1(IX»).:A = d-!+;<1(IX);";., 

d- !+i<1( IX )A' J. = d- t+i<1( IX )-J._;., 

= (_l)"'-Ad-t+ i <1(IX»).i., ; 

(b) T = k±: k = t, 1, t ... ; (4,2) 

k+: It = k, k + 1, k + 2, ... ; 

k-: It = -k, -(k + 1), -(k + 2), ... ; 

dk-(IX)"'" = dk+(lXr)·_).,; 

dk+(lXi'" = (-l)"'-).dk+(IX/;.', 

(c) T = I: -1 < 1<0, It = 0, ± 1, ±2, ... ; 

(d) T = I = 0, J. = 0. 
The representation classes (a), (b), (c), and (d) are 

called the principal contino us series, the principal 
discrete series, the supplementary series, and the 
trivial or scalar representation, respectively. The 
functions dT (IX) I.' ). are real. Their symmetry properties 
(4.2a) and (4.2b) correspond to those given in Eqs. 
(4.32) and (4.33) of Ref. 6. 

For the matrix realizations (4.1), the orthogonality 
and completeness relations (3.8) and (3.9) ares 

1 52" 500 

- d4> sinh IX dlX 
87T2 

0 0 

X f"d1pD-l+ i <1'(c{>, IX, lp)*;:p.,D-!+i<1(c{>, IX, 1p»).p. 

= ;-la-l tan 7T( ja - t- - E')b( a' - a)o;: i·Op.'It' (4.3a) 

a) 

+ I I (2k - 1) 
~~~ ,- k~I+' 

x L I Dk.q(c{>, IX, lp)P.'p.Dk '''(4)', IX', lp')*II·p. 
p..Ji'~qn n~lc 

= 87T2(j(4> - 4>')o(cosh IX - cosh 0'.')0(11' - 11"). (4.4) 

The matrix realizations corresponding to the 
representation classes (c), (d) and to the representation 
k = i of class (b) do not appear in the above relations 
since the associated Plancherel measures vanish. 2 

The idempotent operators (3.7), (3.10) for the classes 
(a) and (b) are therefore 

and 

, 2k - 1i2
" i oo 

P[k±]"l. " = --2- d4> sinh IX dlX 
87T 0 0 

X f"dlpDk\4>, IX, lp)t).').T(4), IX, 11'), (4.6) 

with 
T(4), IX, 11') = e-it/>J12e-iaJole-i'PJu. (4.7) 

The transformation relations corresponding to (3.12), 
namely 

T(4), IX, lp)P[E', a]A'). = P[€, atI'D-!+i<1(4), IX, lp)I'A 

(repeated indices which are eigen
val ues of the angular momentum 
operator J12 are summed over) 

(4.8) 
and 

T(4), IX, lp)P[k±])"). = P[k±Y'JiDk±(4), IX, lpYA' (4.9) 

ensure that the operators (which act on H[m, s]) 

(QQ, a/"I( = P [€ = 0, af'.c 'q:)(q';', (4.10) 
and 

where 

q = (qO, 0, 0, q3), q' = (qO, 0, 0, _q3), 

0Q = (0, 0, 0, (_Q2)!), (4.12) 

transform under IS0(3, 1) by the unitary irreducible 
representations (3, 2). Since 

T( 4>, IX, 11') /q;:) (q':'/ = T( 4>, IX, O)e-i¥,(v-v') /q:) (q';'/, 

(4.13) 

the integrations with respect to the angular parameter 
11' in the projections (4.10) and (4.11) imply that 

- , 
K=V-V; (4.14) 

K is obviously an integer, which justifies the restriction 
to the case E' = ° in (4.10). The first of the eigenvalue 
equations 

(pI' WO){ (QQ, a>"~} = (_Q2)!(01' K){ CQ, a)~} 
, CQ, k±)KI( 3' (QQ, k±f" 

(4.15) 
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follows from the commutation relations 

[JI'V, po'] = i(g""PIl _ gll"P',), 

and the second results from the restriction of the 
isotropy group generators 

to the standard spacelike 4-momentum 0Q = 
(0,0,0, (Q2»!: 

and (4.11) 

and 

(Q, 0'; w)"" ~F T(O",(Q)WQ, a)"", W = 0, 3, 

(4.23) 

(Q, k±; wY'" ~F T(O",(Q)WQ, k±)"", w = 0,3, 

(4.24) 

satisfy as vectors of the invariant subspaces (4.21) and 
(4.22) the eigenvalue equations 

WIl(OQ) = t€ol'vp"J"p 0Q" = (_Q2)i(J12, J 20 , J OI ' 0), (pI', PI'P){ (Q, 0'; W)K~} = (QIl, Q2){ (Q, 0'; W)"~}, 
(4.16) I' (Q, k±; w)\ (Q, k±; w)\ 

in conjunction with the transformation properties (4.25) 
(4.8) and (4.9). From the definition (2.12) of the 
partial trace and the orthogonality relations (4.3a), 
(4.3b) follows: 

tr [(oQ, O')""COQ', O',)k",] 

2 (Q 2 )t = - 0' tanh TTO' -:- • 
TT 4m - Q-
x 64(oQ - °Q')o( 0' - O")I\",OiiK', (4.17) 

tr [(oQ, k±)\(oQ', k'±/K'",] 

2 (Q2 )! = ~ (2k - 1) -4m-2 -=_-Q-2 

x 64("Q - °Q')o(O' - 0")OKK,6KK '. (4.18) 

The derivation of (4.17) and (4.18) hinges on the 
easily established relation 

2 Ip~1 2 Ip~1 6\p~ - PI)O\P; - P2) 

( 
_Q2 )~. 

= 8 4m2 _ Q2 

X 04(Q' - Q)o(cosh ex' - cosh Cl)O(1)' - 1», 
(4.19) 

with the parametrization (A7) for PI and P2 and 
with Q = PI - P2,pi = p~ = m2. 

Let O(Q) denote an orbiting transformation such 
that 

0(Q)1l3 = [_Q2r!QIl, (4.20) 

and let T(O(Q» denote its operator representative on 
the invariant subspaces 

WIlW {(Q, 0'; wY'" } = Q2{(0'2 + t) (Q, 0'; wY'" } 
I' (Q, k±; WY'K k(1 - k) {Q, k±; w)\ ' 

(4.26) 

wo{ (Q, 0'; O)"~ } = K IQI {(Q, 0'; 0)"" } 
(Q, k±; 0)\ (Q, k±; 0)\ ' 

(4.27) 

W3{ (Q, 0'; 3yi~ } = K[(QO)2 _ (QI)2 _ (Q2)2]! 
(Q, k±; 3)\, 

x {(Q, 0'; 3)"~}. (4.28) 
(Q, k±; 3)\ 

Let D(a, A[Q2, 0', €o]) and D(a, A[Q2, k±]) denote the 
unitary linear operators that irreducibly represent the 
Poincare transformation (a, A) on the spaces (4.21) 
and (4.22). The relations (4.8) and (4.9), together with 
the 4-momentum eigenvalue equation in (4.25) then 
entail the transformation relations 

D(a, A [Q2, 0', €o = O])(Q, 0'; wY'" 
= exp (-ia . AQ)(AQ, 0'; w)"",D-hi"(L",(A, Q)t'" 

and 
(4.29) 

D(a, A[Q2, k±])(Q, k±, W)"K 

= exp (-ia . AQ)(AQ, k±; w)"KnDk±(L",(A, Q)Y"", 

where 
(4.30) 

H [Q2, 0', €o = 0] c H[m, s] @ Ht[m, s] (4.21) According to (4.2), the summations on K' and K" 

and extend over the domains 
(4.22) 

Let 00 and 0 3 denote the specific orbiting transfor
mations defined by the identities (2.22), and (2.23). 
Their representatives T(Oo(Q» and T(OaCQ» then 
satisfy respectively the commutation relations (2.27) 
and (2.28) and the transforms of the operators (4.10) 

[0', €o = 0]: K' = 0, ±1, ±2,"', (4.32) 

[k+]: K" = k, k + 1, k + 2,"', if K> 0, 

(4.33) 
[k-]: K" = -k, -(k + 1), -(k + 2), ... , 

if K < O. (4.34) 
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With the two orbiting transformations Q"" Eqs. 
(4.20) define the parametrizations (AIO) and (Al·l) 
(Appendix). The transformation relations (A22) and 
(A23) state the connections between the two types 
(w = 0) and (w = 3) of the tensor operators defined 
by Eqs. (4.23) or (4.24). For the standard irreducible 
tensor operators (4.10) and (4.11), the relations (4.29), 
(4.30), and (4.31) are replaced by 

D(a, A[Q2, O'])CQ, 0')"" 

= exp( - ia . A °Q)(A 0Q, 0'; w)"",D-t+i"(L",(A, °Q)t'", 

(4.29') 
DCa, A[Q2, k±]WQ, k±)\ 

= exp (-ia· A °Q)(A 0Q, k±; w)"""Dk±(Lw(A, °Q)Y"", 

(4.30') 
and 

L",(A,°Q) = Q;;;I(A °Q)A, (A 0Q)I' = N'3( _Q2)t, 
(4.31') 

where w is now determined by the parametrization of 
the Lorentz transformation A. 

By virtue of the relations (2.26), (4.7), (4.13), 
(4.14), the definitions (4.10) and (4.11) are equivalent 
to 

(oQ, O')"-v'" = ~ tanh 7Ta {21f dcp roo sinh 0( dO( 
47T Jo Jo 
X D-!+i"( cp, 0(, 0) tv-v'" I p!; 3) (p;'; 31, 

CQ, k±Y-v'" = 2k - 1 {21f dcp roo sinh 0( dO( 
47T Jo Jo 

where 

X Dk±(cp, 0(, O)t v
-

v
'" Ip~; 3)(p;'; 31, 

(4.35) 

pO = pO, pI = pI, jj2 = p2, p3 = _p3. (4.36) 

The definitions (4.23) and (4.24) of the general 
[SO(3, 1) i SO(2, I)-irreducible tensor operators can 
therefore be replaced by the expressions 

(Q, 0'; wy-v'" = ~ tanh TTO' {21f dcp roo sinh 0( dO( 
47T Jo Jo 
X D-!+;"( cp, 0(, O)tv-v'" Ipi; 3) 

X DS[R(p, Q",(Q»]\ 

X DS[R(p', Q",(Q)]tv'i.' (p'~'; 31, 

(4.37) 

, 2k - 11211' 100

• (Q, k±; wY-V
" = -- dcp Slllh 0( dO( 

47T ° ° 
X Dk\cp, 0(, O)tv

-
v
'" Ip;; 3) 

X DS[R(p, Q",(Q»)" v 

X DS[R(p', QOJ(Q»]tv·).' (p':'; 31. 
(4.38) 

The Euler angles determining the Wigner rotation 
R(p, Qw(Q» can be obtained from the matrix equation 
[see Eq. (2.15a), Ref. 14] 

R(p, Q",(Q» = Q31(P)QwCQ)Q3(Q;;;I(Q)p). (4.39) 

The Hermitian conjugates of the tensor operators 
(4.23) and (4.24) can be expressed as 

and 

These relations are immediate consequences of the 
index symmetries for the functions dT(O()i.')., which are 
given in (4.2). 

From Eqs. (4.3a), (4.3b), and (4.4) it follows that 
the renormalized tensor operators 

(Q, 0'; w; ;()" = (47T/a tanh 7Ta)t(Q, a; w)"" (4.42) 

and 

satisfy the completeness and orthogonality relations 

,,=o.ft±2 .... L:da(Q', a; w; ie'MQ, a; w; ;()t" 

1"1 

+2 ("Q' k'YI' W' -') (Q k . W' -)t", , "I' ,K Kl ' 1J, ,K 
k=l ",=~k.~(k+l).· .. 

= 8[_Q2/(4m2 - Q2)]to4(Q' - Q)o",", 

;( = v - v', fj = sgn ie, (4.44) 
and 

tr [(Q, 0'; w; ;()iQ', 0"; w; ;(')t",] 

= 8[_Q2/(4m2 - Q2)]!O\Q - Q')o(a - O")b,tb/, 

(4.45) 
tr [(Q, kfj; w; ;(MQ', k'fj'; ;(')\'] 

= 8[_Q2j(4m2 - Q2)]!b4(Q - Q')bkk,b~~,b/'b/'. 

(4.46) 

By virtue of the relations (4.44)-(4.46), the decom
position of the spin-momentum operator 

s 

p([ms]p, p'; w) = 2 Ip1; w) a(p, P')\' (p:'; wi 
)..).'=-., 

p2 = p'2 = m2 > 0, sgnpO = sgnp'O = ±1, 

(p - p') < ° (4.47) 

[which is identical with the dyadic (1.1) if a).).' = 0";,,], 
into its Poincare-irreducible components can be 
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written as 

1 (4m2 - Q2)! iiS:2s f (leo - - t 
p([ms]p, p'; w) = 8 _Q2 ii'2~2$ d

4
Q _eoda"=O.~.±2 ... ~Q, a; w'; K)" tr [(Q, a; w'; K) KP([ms]p, p'; w)] 

1"1 00 t) 
+ (1 - O"o\~ ~=~nii "I~n n~k(Q, k1]; w'; K)"I tr [(Q, k1]; w'; K)"IP([msJp, p'; w)]. (4.48) 

The evaluation of the traces is based on the definition (2.12), the helicity rearrangement transformations 
discussed in the Appendix, the relations (4.8), (4.9), (4.37), (4.38),and the invariance of the volume element 
in the space of the SO(2, 1) group parameters (1), (x, 'IjJ) (invariance of the Haar measure): 

tr [(Q, a; w'; K = 'II - 'JI,)t"p([ms]p, p'; w)] 

2 12( _Q2 )t(Q K. w" - _ 'I pS p,;,:. w)a A (4.49) = v 2 2 'a' ,K-'JI-'J1 A'- s' A', 
4m - Q 

tr [(Q, k1]; WI; K = 'II - 'JI,)t"p([ms]p, p'; W)] 

_ 2 i2( _Q2 )t<Q K. '. - _ 'I $ 'A'.) A (450) 
-" 2 2 ' k~' W , K - 'II - 'II PA' - P S , w a A" • 

4m -Q 

The parameters 1> and (X are determined by the 
relations 

tan 1> = n:XQ)2vpV[n;)(Q)\pV]-1 

and 

cosh (X = 11;;XQ)OvpV[p2 + (.Q;;;1(Q)\pV)2r!. (4.53) 

The completeness relation 

x (Q ". - I p , 'A2') , a' K 2 ;'2' - P2 s , OJ 

iiil 

+ ~ ~ (p Al p'S. I Q k1/.-) 
£., ..::;., Is'-IAl"W'''I,K 
k=l Kl=~k.'1(k+1)" .. 

x (Q ",. - Ips ')'2. >} , k.1' K 2).2' - P2 s , W 

= 2 IpiOI 2 Ip~1 03(P2 - p{)03(P2 - P1)OA·AI.OAIA2' 

1] = sgn K, (4.54) 

and the orthogonality relations 

S J d3
p J d3

p' 'K'. -, s. ,I.'. ? 21 °1 21,o,(Q,,,,K Ip;.,-ps,w) 
l.). =-8 P P 

X (pt·, -p"j.,; w I Q,~; K) 

= 04(Q' - Q)o(a' - a)O"'"o"~, (4.55) 

_P ___ P_ I K' • K S I).'. S J d3 f d3 
I '\.l~-S 21pol 2lp ,ol (Q, k'~" I Pl' -p S , w) 

X (p" p'S. I Q k'l. -) s' - At, W 'K , K 

= 04(Q' - Q)Ok'k0'l''10'''"Oii'" (4.56) 

follow from the corresponding Eqs. (4.4) and (4.3a), 
(4.3b) for the matrix representations. 

An important application of the relations (4.48)
(4.53) is the reduction into its Poincare-irreducible 
components of a product of field operators (i.e., 
current operators).l Such a reduction can be used to 
facilitate the evaluation of vertex functions, particu
larly if fields or particles with spins larger than tare 
involved. 

5. ISO(3, I) i SO(3, I)-IRREDUCIBLE 
TENSOR OPERATORS 

The irreducible representations of SO(3, 1) are 
characterized by the Casimir invariantslO.15.16 

V JlvJI'v=jo2+l-1, tEJlvpaJJlvJp,, = -ijoj. (5.1) 

The nontrivial irreducible representations D([joj]A) 
are unitary if: 

1. (a) jo = i, I,i, 2,··· and Rej = 0, 

-00 < Imj < 00; 

(b) jo = 0 and Rej = 0, 0 :::;; Imj < 00; 

II. jo = 0 and 0 < Rej < 1, Imj = O. (5.2) 
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The cases I and II are referred to as principal and 
supplementary series, respectively. Only the class I 
representations are used for the construction of the 
ISO(3, l)j SO(3, I)-irreducible tensor operators, since 
these representations form a complete orthogonal set 
by themselvesY The elements of D([joj]A) are 
labeled by the eigenvalues j and A of the angular 
momentum operators J2 and J12 , where J = (J23 , J31 , 
J12). For the principal series,j and A assume the values 

j = jo,jo + l,jo + 2,"', A = -j, -j + 1,'" ,j. 

(5.3) 
The parametrization 

A = R(rp, f), tp)B(y)R(O, e, 1f;), B(y) = exp (-iyj03)' 

R(rp, e, tp) = exp (-irph2) exp (-ieja1) exp (-itpi12)' 

and as 

min(j'j) l ioo 1 
L -:- djpi'Ajoj]d,(Uo,j]B)i'jd.(Uoj]B')i'i 

jo=-rnin(j'i) ° I 

= _1_ 6(B - B') 
p(B) , 

pCB) = t sinh2 1', J(B - B') = 15(1' - 1"). (5.10) 

The change of the domains for jo andj 

from jo = 0, i, 1, t· .. and - 00 < {l/i)j < 00 

to jo = 0, ±t, ±1, ±t,··· and 0::;; (l/i)j < 00 

is justified by the fact that the boost functions satisfy 
the (weak equivalence) relation6 

° ::;; rp, tp, 1jJ < 217, 0::;; e, 0::;; 17, 0::;; I' < 00, (5.4) dl'([-jo, -j]B)j'i 

implies the matrix decomposition _ r(j' + j + 1) d ([. ']Bi' ru - j + 1) 

D(Uoj]AtJl'iJl - rer - j + 1) • lo} i ru + j + 1)' 
(5.11) 

min(j' .j) 

= L D(U']R)Jl'.d,.([joj]B)i';D([nRyJl · (5.5) 
.=-mjn(j'.j) 

For the rotation functions D([j]R)"-Jl the orthogonality 
and completeness relations are 

fdp.(R)D([j'1R)*):Jl' D([j]R)\ = ~ Jj'jb).').bJl'Jl' 
prj] 

p[j] = 2j + 1, dp.(R) = (drp/217)(sin e de/2)(dtp/217), 

(5.6) 
and 

i 

L p[j] L D([j]R)\D([j]R')*\ 
;=0.1.2'" or )..Jl=-; 
i=U.· .. 

= [1/ p(R)]b(R - R'), 

peR) = (1/8172
) sin e, b(R - R') = b(rp - rp/) 

X 6(f) - f)')6(tp - tp/). (5.7) 

For the boost functions18- 2o 

d ([. ']B( »i'. = I j'vl e-i7Joaljoj\ 
• lo) I' J \.. • I' 

Jo} JV 

d'([joj1B(0»i'i = 6j~, (5.8) 

orthogonality and completeness can be stated as 

min(n) f 
.=-n~(j'j) dp.(B)d.([joj]B)*i'id.([j~j']Bt j 

1 ~ ~(" "/) . • vioio'v I} - I} 
P;'i[]O}] 

(if io = 0, ± I, ±2, ... , or io = ±i, ±t, ... , and 

° ::;; (I/i)j < (0), 
.. 4 (j~ - p) 

Pn[]o}] = -:;;. (2j' + 1)(2j + 1)' 

dp.(B) = ! sinh2 I' dy (5.9) 

and the relation (which follows from unitarity) 

d.([joj]B)*i'; = d.([jo, -j]B)j'j. (5.12) 

The orthogonality and completeness relations for the 
matrix realizations (5.5) are therefore 

f dp.(A)D([joj]A)iI' ).l'iI).l D(U~j']A)*j" ).2·i.).2 

__ 1_ .!l .!l(" ··').!li!'j2'.!l).l').2'.!l .!l - .. Vjojo'V I} - I} v V Vjl;2V).2).2' 
p[]o}] 

d A _ drp sin f) df) dtp sinh2 y dy sin 0 dO d1jJ 
p.( ) - 217 2 217 2 2 217 ' 

pUoj] = ~ (jg -/) (5.13) 
17 

and 

00 l' j min(ji') 

L L L Z 
j.1'=O or ).'=-1' ).=-j jo=-min(jj') 

U'=! 

For 

X fioo ~ dj pUoj]D(Uoj1A)j').' ;;,DCUoj1N )*n' j). 
Jo I 

= _1_ b(A _ N) (5.14) 
peA) , 

peA) = ~ sin e sinh2 I' sin 0, 
(417) 

b(A - N) = b( rp - r/>')b(e - ()I)b( tp - tp/) 

X bey - y')b( 0 - B/)b( 1jJ - 1jJ/). 

A = R(c/>, e, 1jJ)B(y) (5.15) 
and for 
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the orthogonality and completeness relations are 

= _1_ b .. ,b(j' _ j")bit'i'bJl'),' 
[ . '] '0'0 '] 'J , 

Pi J01 
A de/> sin 0 dO d1p sinh2 y dy 

dll(A) - - ---
r - 27T. 2 27T 2 ' 

(5.17) 

4.2 ,2 

[ . '] 10 - 1 
Pi J01 = -; 2i + 1 ' 

00 i' min(j,i') 

L L L 
i'=I)'1 Jl'=-i' io=-min(j.n 

X too ~ di PiUoi]D(Uoi]AlJl' iJlD(Uoi]k)*i'Jl' i), Jo I 

1 A A 

= -A b(A - N)bJl)" 
(pA) 

peA) = ~ sin 0 sinh2 y, 
(47T) 

b(A - k) = b( e/> - e/>')b(O - 0') 

X b( tp - tp')b(y - y'). 

(5.18) 

In order to construct by the idempotent operator 
method outlined in Sec. 3, the tensor operators that 
transform according to the SO(3, I)-induced unitary 
irreducible representations of the Poincare group 
[which are also the unitary irreducible representations 
of the (3 + I)-dimensional homogeneous Lorentz 
group], we define the set of (projection) operators 

PUoi]i'Jl'iJl ~F p[ioi] f dft(A)D(Uoi]A)ti'Jl'iJlT(A), 

(5.19) 
with 

T(A)t = T(Arl = T(A-1
), A E SO(3, 1), 

T(A) = e-iq,J 12e- i8J 3Ie-iY'h2e-iyJ 03e - iOJale-iO'J 12. (5.20) 

The operators (5.19) transform under SO(3, 1) 
according to the unitary irreducible representation 
characterized by [joi]: 

(A) [ . ']i'Jl' "" P[' ']i'Jl' D([' '])i"Jl" T P J01 iJl = k, J01 i"I'" J01 iJl' 
1"Jl" (5.21) 

This relation folIows from the invariance of the Haar 
measure dft(A) and the unitarity of the representation 
[joj], namely 

D([joj]A)t = D([joj]A-l). 

The orthogonality (2.13), together with the in variance 
of dft(A), entails the property 

P[j oj]il' JlI' iIJlIP[j ~j'] i. Jl2' i2Jl' 
_ -" -"(oO _ "')-"h' -"Jll' P[" ·,];2Jl' 
- vioio'v '1 '1 v i. v Jl2 J01 iIJlI' (5.22) 

This relation implies that the operators (5.19) are 
idempotent. 

We then apply these projection operators to the 
ordinary spin tensor operators in the rest frame of a 
positive-mass (p2 > 0) particle with spin s, namely to 
the SO(3)-irreducible tensor operators21- 23 

(5.23) 

where 

0p = ±(l)i(1, 0, 0, 0), p2 = pJlPJl > 0 (5.24) 

and where 

lA's 14-\ = (-1)'-;./)." -AI4-\ (5.25) 
\s A ftl \s s ftl 

are the SO(3) Clebsch-Gordan coefficients for the 
reduction 

D([s]R)!l ),D([s]R)t)"Jl' 

= 1 1ft s I s\D([s]R)'"/X I SA'\, (5.26) 
"=0 \s ft' pi \s A s I 

The basis vectors 

Wpi): -s ~ A ~ s} 

are defined by the eigenvalue equations (2.19), (2.20), 
and (2.21) and by the orthonormality relation (2.18): 

(Op;' I 0pi) = ±2(p2)ib),'),. 

In the expression 

(5.27) 

the integration over the group parameter space can 
partialIy be carried out by means of the transfor
mation property [which is a consequence ofEq. (5.26)] 

T(AWps)O'K' = T(A)(OpS)O'K"D([4-']Rt"K" (5.28) 

T(A) = T(A)T(R) (5.29) 

and by virtue of the matrix decomposition (5.5) and 
the orthogonality relation (5.6) for the rotation 
functions; after the integration on R the expression 
(5.27) is 

P[jOi]OKiJl(OpS)o'''' = bOo,b\,(joi[ms]t;Jl' (5.30) 

where 

(joj[ms])O iJl 

= PoUoj]v~I:(~'i) f dft(A)D(Uoi]A)to
v 
iJlT(A)COps)ov' 

(5.31) 

The integration with respect to the angular parameter 
1p can be carried out immediately [see parametrization 
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(5.4) and Eq. (5.15)], since 

T(AWps)"v = e-iVIfT(Oo(e/>, e, y»)eps)"v 

= e-iV'I'([p2s]e/>, e, y)ov, (5.32) 
where 

T(Oo(e/>, e, y» = e-i,pJ12e-i8J31e-iyJo3 

is the unitary operator realization of the orbiting 
transformation introduced in Eq. (2.22) and where 

([ms]p; O)"v = ([p2s]e/>, e, "P)av 

= Ipi,; 0)(:' ~ I ~)<p:; 01 

Ipi; 0) D~ T(Oo( e/>, e, y» IOpD. (5.33) 

Equation (5.31) can now be written as 

Uoj[msDdjll 
min(o,;) 

= PsUoj] ~ 
v=-min(a,i) 

x fd,u(e/>, e, y)D(UojJc/>, e, y)tavill([ls]e/>eY)av, 

d (..I,. e ) = de/> sin e de sinh
2 

y dy (5.34) 
,u '1" ,y 21T 2 2' 

where in accordance with the relation (5.16) we define 

D(Uoi]e/>, e, y)i'Il'ill 

= D(U']R( e/>, e, O)Y'A,(Uoj]B(y)( i' (5.35) 

From the relations (5.21), (5.30), (5.34), and (5.36) 
it is immediate that the operators defined by Eq. 
(5.31) transform according to the unitary irreducible 
representations of the Poincare group that are 
induced by the (3 + I)-dimensional Lorentz group, 
namely according to 

D(a, AUoiDUoi[msDajll 

= ~ Uoi[msD°j'Il,D(Uoi]A)i'Il' ill' (5.36) 
i'll' 

and are therefore the ISO(3, I) i SO(3, I)-irreducible 
tensor operators in an angular momentum basis 
which are associated with a particle characterized by 
[p2 > 0, s]. In contrast, the tensor operators (5.33) 
transform under the Poincare group according to 
reducible, nonfaithful, unitary representations. If 
U(a, A) denotes the unitary operator realization (on 
H[m, s] <29 Ht[msD of the Poincare transformation 
(a, A), then 

U(a, A)([ms]p; 0)00 = ([ms]Ap; O)av,D([.a-]R(A, p»),,'v· 
(5.37) 

The notation Ap and the Wigner rotation R(A,p) 
are defined by (2.15a). The transformation (5.37) is 
a consequence of the relations (2.14) and (5.26). 

With the trace operation (2.13) the orthogonality of 
the tensor operators (5.33) can be expressed as 

Tr [([p2s ]e/>eY)a.([p2s ]e/>'e' y') t a'v'] 

= ~ -. _12- -. 1_ bey - y')b( e/> - c/>')b(e - e')boo,bvv" 
p smh y sm e 

(5.38) 

Together with (5.34) and (5.17) this implies that the 
Poincare-irreducible tensor operators defined by 
(5.31) satisfy the orthogonality relation 

Tr [Uoi[msDdiij~j'[msDto'j'Il'] 

1 [. ']~ ~(" "')~ ~ ~oo' (539) = 41Tm2 Po JoJ Uioio'U IJ - IJ uii'ullll,u, . 

The inverse of the relation (5.34), namely 

is an immediate consequence of the completeness 
relation (5.18) provided that the substitutions 

peA) -+ p(e/>ey) = 21Tp(A), 

b(A - A') -+ b[(e/>ey) - (e/>'e'y')] = b(e/> - c/>') 
X b(e - e')b(y - y') (5.41) 

are made. By means of the partial trace (2.12), the 
completeness of the tensor operators (5.33) can be 
expressed as 

Jo v~a f d,u( e/>ey) 

2 t 1 
X tr [([p~sle/>eY)a.([P S]e/>ey) ov] = 41Tm2 ' (5.42) 

By virtue of the relations (5.17) and (5.42), it follows 
from (5.40) that the tensor operators (5.31) satisfy the 
relation 

~o ii-a iio' J'~j foo 1 dj (PaUoiD-
1 

X tr [Uoi[msDaiijoi[msDtoill] = 4~' (5.43) 
1Tm 

The connections between the tensor operators (5.31) 
and their Hermitian adjoints are 
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This follows from (5.34) in conjunction with the 
easily established relation 

([p2, s]<fo0y) t4V = (_lY([p2, s]<foOy)~._v (5.45) 

and the property 

D([' ']A)i/l - (_1)/l-V D([-' - ·]A)*i.-/l 101 dV - 1o, J d.-V 

(5.46) 

for the matrix realization (5.16). Equation (5.46) is 
derived from (5.12) together with the index symmetry6 

(5.47) 

and the well-known relation 

At this juncture, we return to the orbiting transfor
mations (2.22) and (2.23) in order to generalize the 
definition (5.33) to 

([ms]p; W)dV = Ipi·; w) <:'; I:) (p1; wi, 

Ipl; w) = T(O.,(p» IOpi), w = 0,3. (5.49) 

The helicity rearrangement transformations (AI8) 
together with the reduction (5.26) yield the con
nections 

([ms]p; w').v = ([ms]p; w)d"D([-6]R""",)\, (5.50) 

where the rotation R."., is determined by Eq. (A21). 
The expansion (5.40) can now be generalized to 

where 

min(d,j) 

L D([joj]<fo8y)i/l.vD([-6]R",0)\· (5.51) 
v=-min(d,j) 

This last equation corresponds to the decomposition 
(5.5), since in accordance with (5.4) and (5.15) 

0o(p)R",o = A(<fo, 8,0, y)R(O, fJ",o, 0) 

= A(<fo, 0, 0, y, 0"0,0) (5.52) 
and therefore 

D([joj]Qo(p)R",o)i/ldK 
= D([joj]A(<fo, e, 0, y, 0",0' O»i/ldK . (5.53) 

The Poincare-irreducible tensor operators (5.31) can 

then be realized by 

min(d,j) J 
Uoj[msD·j/l = PdUoj]K=_l(d,j) dp,(Oo(p» 

x D([jojjQo(p)R",o)td\i[ms]p; W)dK' 

dp,(Oo(p» = dp,(<fo, 8, y). (5.54) 

The (ordinary) multipole decomposition in terms of 
the operators (5.49) of the spin density matrix 

is 

8 

p([ms]p; w) = L Ip~:; w) a(p»)"), <p~; wi (5.55) 
),,),=-8 

28 d t 
p([ms]p; w) = L L «[ms]p; W)dV)([ms)p; W)dV' 

11=0 v=-o 

«([ms]p; W )!v) 

D~F Tr (J d3p~ ([ms]p; w)([ms]p; W)!v) 
21P' I 

= ),'''~_8a(p»),'A(: I ~,~). (5.56) 

where the operation Tr is defined by Eq. (2.13). This 
result is an immediate consequence of the orthog
onality relation (5.38). The corresponding relativistic 
multipole decomposition in terms of the Poincare
irreducible tensor operators (5.31) is obtained by 
substituting the expansion (5.51) into the multipole 
decomposition (5.56). The result may be expressed as 

28 d 00 i fioo 1 
p([ms]p; w) =d~O jO~d j~ol /l~j Jo i djUoj[ms])Jj!t 

x ~ a(p);: I j p, I p8,. -p)" w \ 
£., ,,\. • " , 8' I' ",;:=-8 101, -6 

(5.57) 

with the 180(3, I) t 80(3, I) Clebsch-Gordan co
efficient 

I j p, I p8 . -p'" w \ 
\ . . ,,', .' I 10J; -6 

D(C' 'JrI ()R )i/l lA' - A Is A\ = 10J I..!:o P .,0 d,,,'-"\ -6 A'sl' (5.58) 

The derivation of the orthogonality and completeness 
relations 

S f d3
p Ij' /I.' I \ '" __ r p" pA. W 

~ 21 °1\"'" ;", - s' I A.A =-s P JoJ , -6 

x /pA" _ps. w I joj; -6\ 
\ S , A' j p, I 

= 47Tp2 a . . . a(i· _ i")bi' .b/l· (5.59) 
[

• .] )0)0 'J J ) /l 
pj loJ 
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and 

(5.60) 

hinges on the orthogonality and completeness of the 
matrix realizations (5.25), on the well-known orthog
onality and completeness relations for the SO(3) 
Clebsch-Gordan coefficients, and on the unitarity of 
the helicity rearrangement transformation (0 -+ (0). 

6. FUTURE EFFORT 

Two classes of Poincare-irreducible tensor operators 
have been introduced here. In a future paper the con
nections will be established between these two classes 

and the Lorentz-irreducible tensor operators which 
transform by unitary irreducible representations of the 
pseudo-orthogonal groups SO(3, 1) and SO(2, 1). In 
that paper we also intend to discuss the decomposition 
into its Poincare-irreducible components of a spin 
density matrix describing a statistical ensemble of 
wavepackets. 

APPENDIX 

The relations 

exp (=Fi'lpjik) = 11. - (jik)2[1 - cos y] =F ijik sin y, 

exp (=FifJjo;) = 11. - (jo;)2[cosh p - 1] =F ijo; sinh P, 
i, k = 1,2,3, (AI) 

establish the connections between the expressions 
(2.22) and (2.23) for the orbiting transformations 
0o(cp, e, y) and 03(cp, IX, 0 and their matrix realiza
tions: 

0, 0, 

-cos cp sin e sinh y, 

[

cosh Y, 

[Oo( cp, e, y)l'v] = '.J..' e . h 
cos cp cos e, -sin cp, cos cp sin e cosh y -sinh r 1 

(A2) 
-SIll 'f'SIll SIll y, sin cp cos e, cos cp, sin cp sin e cosh y , 

-cos e sinh y, -sin e, 0, cos e cosh y 

-sinh IX, 0, 

[

cosh rx cosh " 

-cos cp sinh rx cosh " 
[03(cp,IX"Y'v]= '.J..' h hY 

cos cp cosh IX, -sin cp, cos cp sinh IX sinh, . 
-cosh" sinh ( 1 

(A3) 
- SIll 'f' SIll IX cos ':" sin cp cosh IX, cos cp, sin cp sinh IX sinh , 

-sinh " 0, 0, cosh, 

The relations they also introduce the parametrizations 

pi' = ±(p2)!O",(p)l'o, w = 0, 3, p2 > 0, (A4) (Q~=o) = (_Q2)!( -sinh y, cos cp sin e cosh y, 

and 

QI' = (_Q2)tO",(QY'3' W = 0, 3, Q2 < 0, (AS) 

then introduce the parametrizations 

(P:'=o) = ±(p2)t(cosh y, -cos cp sin e sinh y, 

and 

-sin cp sin () sinh y, -cos e sinh y), 

° S y < 00, ° s e S 7T,O S cp < 27T, (A6) 

and 

sin cp sin e cosh y, cos () cosh y), 

- 00 < y < 00, 0 s e S 7T, ° S cp < 27T (AlO) 

(Q~=3) = (_Q2)t( -cosh IX sinh " cos cp sinh IX sinh " 

sin cp sinh IX sinh ,. cosh ,>, 
° S IX < 00, - 00 < , < 00, ° S cp < 27T, (All) 

with the relations between the parameters 

sinh y = cosh Ot sinh " tan e = sinh Ot tanh" (AI2) 

-sin cp sinh Ot cosh', -sinh '), tanh Ot = sin () coth y, cosh, = cos () cosh y. (Al3) 
OS Ot < 00, - 00 < , < 00,0 S cp < 27T, (A7) 

with the relations between the parameters 

cosh y = cosh Ot cosh" tan () = sinh Ot/tanh" (AS) 

tanh Ot = sin () tanh y, sinh, = cos () sinh y; (A9) 

From these relations it is immediate that the param
etrization (All) covers only the region of the orbit 
Q2 < 0 for which cos () ~ I/cosh y. 

The relations 
(A14) 
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and 

Q",(Q)"a = Q",·(QY'a, w = 0,3, w' = 0,3 (A15) 

imply that 

R",.",(p) D~ Q~l(p)Q",.(p) E SO(3) (A16) 
and 

L",.",(Q) D~F Q~\Q)Q",.(Q) E SO(2, 1). (A17) 

The transformation relations that connect the three 
types of momentum-helicity eigenvectors are then of 
the general form 

Ipi; w') = T(R",.",(p» Ipi; w) = Ip;; w) D 8(R",·",Y";.· 

(A18) 

D8(R",.",) denotes the (2s + I)-dimensional matrix 
realization of the transformation group (AI6) on 
the subspace H[s] c H[ms]. Since the two orbiting 
transformations associated with a given 4-vector p 
contain the same 4> rotation about the 3 axis, it is 
obvious that 

where 

dS«(J • )" = / Il\ e-iO",.",J31 \s \ 0 < (J • < 7T. (A20) 
'" w A. \s AI' - '" 0) -

The angular variable (J""", is determined by the relation 

e-i6""",i31 = Q~l(p)Q",,(p). (A21) 

In accordance with the relation (AI7), the following 
transformations hold for each of the two sets of 
irreducible tensor operators (4.10) and (4.11): 

(Q, 0'; w'Y'" = (Q, a; wY'"·D-hi"(L""",)"',, 
and 

(A22) 

(Q, k±; w')\ = (Q, k±; w)i<".Dk±(L",.",)"',,. (A23) 

The transformation matrices n-!+i"(L""",) and 
nk±(L",.",) belong to the continuous principal and dis
crete principal series (4.2a) and (4.2b) of the one
valued unitary irreducible representations of SU(l, I). 
From (4.1), (2.22), (2.23), and (A17) it follows that 

D-hi"(L )", = / K'\ e-i~0).",J01 \0'\ 
",'",,, \0' K/ 

= d-i+i,,( I: )", 
'-'co'ro K' (A24) 

Dk\L ) = / K I e-isw'wJ01 lk±\ ",'", \k± K / 

= dk±(~",.",)"·". (A25) 

The reduced matrix elements d-!+i"(~)"'" and 

dk± (~)"'" can be expressed in terms of hypergeometric 
functions: Eqs. (1O.27a), (10.27b), (10.28a), (1O.28b), 
(1O.29a), (10.29b) of Ref. 2; Eqs. (4.30), (4.31), (4.32) 
of Ref. 6; Eqs. (3.9)-(3.16) of Ref. 12. The boost 
parameter ~""'" is determined by the equation 

(A26) 

We refer to the relations (A18), (A22) , (A23) as 
helicity rearrangement transformations. 

* This work was performed under the auspices of the U.S. Atomic 
Energy Commission. 
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Exact physical solutions to the Schrodinger stationary state equation are reported for local, relativistic, 
real scalar theories featuring an interaction energy density of the form g 11>lox, where the coupling 
constant g is positive and the exponent N is a constant parameter (not necessarily an integer) greater 
than unity. No interaction or scattering between the field quanta is manifest in the rnultiparticle state 
solutions, implying that the real scalar theories are effectively linear in the absence of mass or coupling 
constant renormalization. 

Previous work has shown that exact physical 
solutions to the SchrOdinger stationary state equation 
can be obtained for local relativistic theories featuring 
n real scalar fields and an interaction energy density 
that converges rapidly for large field magnitudes to 
the form representative of a linear theory.1 In this 
work quantization is effected in the Schrodinger 
picture [with rp = rp(x) and its conjugate momentum 
density 7T = 7T(X) independent of time] and use is 
made of the "coordinate-diagonal" representation 
[with rp(x) diagonalized for all x and 7T(X) = -iliOJ 
orp(x), a functional differential operator]. Solutions 
to the Schrodinger stationary state eigenfunctional 
equation 

HU,,[rp] = E"U,,[rp], (1) 

H == H rp(x), - - , [ ino ] 
orp(x) 

(2) 

for the rp-dependent part of the wave functional 
U,,[rp] are obtained as 

U,,[rp] = lim U;,<l[rp], 
• ...,0+ 

in which the positive real parameter 

E == [0(<)(0)]-1 (3) 

is associated with a limit representation of the spatial 
o function2: 

lim o(.)(x) = o(x). 
£-+0+ 

Equation (1) is solved for U~<)[rp] in place of U,,[rp], 
in conjunction with 0(<) (x) in place of o(x). The E -- 0+ 
limit operation is understood to be taken as the final 
step in all practical computations (scattering cross 
sections, etc.) involving U" [rp]. 

The work reported in the present paper applies this 
method of solution to real scalar model field theories 
with Lagrangian densities of the form 

!.: = i1>2 - i IVrpl2 - im 2 rp2 - ig IrpI2N, (4) 

where the mass constant m2 is nonnegative, the 
coupling constant g is positive, and the exponent N 
is a constant parameter (not necessarily an integer) 
greater than unity. Here, both m2 (~ 0) and g (> 0) 
are regarded as fixed, finite constants with no mass or 
coupling constant renormalization to be prescribed. 
From (4) we obtain the quantum Hamiltonian (2) as 
the second-order functional differential operator 

H =f !(_n2 ~ + IVrp(x)1 2 

2 brp(X)2 

+ m2rp(x)2 + g Irp(xWN)d3x. (5) 

The positive (nodeless) vacuum-state eigenfunctional 
U 0 [rp], associated with the energy 

Eo == min {Ell}' 
Il 

follows from the ansatz 

U~<)[rp] = A(<)exp (-n-I J[irp(x)(-V2 + m2)!rp(x) 

+ (N + l)-lg! Irp(X)I N +1]d3x), (6) 

where the real positive functional Ak
) = A(') [rp] is 

given by a formal infinite product 

A(') == II F(~(<)(x», (7) 
x 

IX(')(X) == €on-I(N + 1)-1g! Irp(x)IN+1. (8) 

In (7), F(IX) is a real function to be determined by the 
requirement that the E -- 0+ limit of (6) satisfy 
the Schrodinger equation (1) with the enumerator 
index fl = 0; F(IX) must be positive for all IX ~ 0 [to 
foster positivity of the vacuum-state functional (6) 
for all rp(x)] such that F(O) = 1 [to admit existence of 
the €o -- 0+ limit of (7) for uniformly bounded rp(x)]. 
The functional derivatives of (7) are computed directly 

1192 
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as 

bA (E) 

-- = 1i-lg!~(X) I ~(X)IN-I F'(et(<)(X» II F(et(<)(y» 
b~(x) Y*x 

= Ii-I t~(X) 1~(x)IN-I F'(et(d(X» A(E) (9) 
g F(et(E)(X» ' 

b2A(d -- = [E-Ili-Wg! 1~(x)IN-I F'(et(E)(X» 
b~(X)2 

+ 1i-2g 1~(x)12N F"(et(<)(x))] II F(et(<)(y» 
y*x 

= E-2-1.(xr2 (N2 + N)et(d(x) ----0._---'-= 
( 

F'(Il(E)(X» 

'f' F(et(E)(X» 

+ (N + 1)2et(d(x)2 F"(et(E)(X»)A(d, (10) 
F(et(d(x» 

where use is made of the functional differentiation 
chain-rule and condition (3) through the relation 
b~(x)/o~(x) = O(d(O) = E-I_ By employing the latter 
formulas (9) and (10), we obtain the functional 
derivatives of (6) as 

where 

R(et) == [F'(et)/F(et)] - 1 (12) 
and 

02U~d[~] = {E-I/C\N + 1) ll~(x)IN-l S(et(d(x» 
o~(x? g 

where 

_ 21i-2g! 1~(x)IN I( _V2 + m2)t~(x)1 
X R(et(d(X» + /i-2[(_V2 + m2)!~(x)]2 
+ 1i-2g 1~(x)12N 

- Ii-I[( _V2 + m2)!0(d(X)]x=0}U~d[~], 
(13) 

S(et) == et[F"(et)/F(et)] + [(N + I)-IN - 2et] 

X [F'(et)/F(et)] - (N + I)-IN. (14) 

Therefore, it follows from (5) and (6) that 

HU~E)[~] = f {-iE-IIi(N + l)g! 1~(x)IN-I S(et(E)(X» 

+ g! 1~(x)IN I( _V2 + m2)!~(x)1 R(oc(d(x» 

+ !Ii[( _V2 + m2)!O(E)(X)]x=0}d3x U~d[~]. 
(15) 

Hence, in order for Uo[~] = lim U~E)[~] as E --+ 0+ to 
satisfy the vacuum-state Schrodinger equation, we 
must have 

Eo = lim !Ii[( - V2 + m2)io(E)(X)]x=oId3x, (16) 
£-+0+ 

the quantity (14) must vanish identically for all 
CI. ~ 0, or equivalently F(oc) must satisfy the ordinary 
differential equation 

rxF"(et) + [(N + I)-IN - 2et]F'(et) - (N + 1)-1 

X NF(et) = 0, (17) 

and finally the quantity (12) must satisfy conditions of 
the form 

I R(CI.) I ~ 1, for all CI. ~ 0, (18) 

lim R(rx) = O. (19) 

Condition (18) guarantees that the second term in the 
integrand on the right side of (15) is dominated by the 
final three terms in the Hamiltonian integrand (5) for 
all ~(x) by virtue of the inequality 

g! 1~(x)IN I( _V2 + m2)!~(x)1 
~ [ie _V2 + m2)t~(xW + g 1~(x)12N]/max {2, r, r-I

}, 

where 

r == I( _V2 + m2)!~(x)l/g! 1~(x)IN, 
while condition (19) is required for the second term 
in the integrand of (15) to vanish in the limit E --+ 0+ 
for uniformly bounded 1~(x)l. If a real positive F(Il() 
exists as a solution to (17) and satisfies conditions 
(18), (19), and F(O) = 1, then the ansatz (6) provides 
the vacuum-state eigenfunctional solution to the 
Schrodinger equation. Such an F(et) is indeed found 
by solving (17), and we obtain 

F(et) = r(1 - v)ea(et/2)"LvCll(), (20) 

in which the parameter 

v == [2(N + 1)]-1 (21) 

is positive and less than !, r(1 - v) is standard 
notation for the gamma function of (1 - v), and 
Lv(et) == ein/2'_v(iet) is the hyperbolic Bessel function 
with the infinite series representation3 

Lv(et) = i 1 (?:.Yk-V (22) 
k=O k! r(k + 1 - v) 2) 

and the asymptotic expansion for large positive oc 
1 

LvCet) = [ea/(27Tet)1f][1 + (! - v2)(2et)-1 + O(et-2)]. 

(23) 
By putting expression (20) into (12), we find that 

R(et) = vet-1 + [Cv(oc)/LvCrx)] 

= {[2(1 - V)]-lrx + O(et3
) for 0 ~ et « 1 

1 - (t - v)rx-l + O(et-2
) for et» 1 

° :::;; R(et) ~ 1 for all rx ~ 0, 

(24) 

(25) 
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and thus conditions (18) and (19) are satisfied. Hence, 
the e ~ 0+ limit of (6) with (20) in (7) is the vacuum
state eigenfunctional solution to the SchrOdinger 
equation (1). 

Excited-state eigenfunctional solutions to (1) are 
conveniently expressed asl 

(26) 

where 

0,,[4>] = lim 0~()[4>] 
(-+0+ 

is obtained by solving the functional differential 
equation 

li2.f (- ~ ~ - b(ln U~£)[ 4>]) 15 ) d3x 0(£)[4>] 
2 b4>(x)2 b4>(x) b4>(x) " 

= (H" - Eo)O~£)[4>], (27) 

which, in view of (11), becomes 

f ( 1i2 b2Q(£)[.!] 1 

_ _ " 't' + 1i[4>(x)(-v2 + m\'I 
2 b4>(x)2 

- g!4>(x) I 4>(x) IN-l R(OC<£)(x))]Ml~£)[4>])d3X 
b4>(x) 

= (E" - Eo)01£)[4>]. (28) 

For fields which are uniformly bounded in absolute 
magnitude by an arbitrarily large positive constant 
M, the quantity (8) is small compared to unity for all 
x if we take e to be sufficiently small, i.e., e« 
Ii(N + l)g-!M-<N+I). Then it follows from (24) that 

R(oc(£)(x» = eli-1(2N + l)-lg! I c/>(x)IN+1 + O(oc(£)(X)3), 

(29) 

and the solutions to (28) with (29) are obtained as 

0~£)[4>] = D,,[¢] + O(e3
), (30) 

in which the "dressed" field 

¢ == [1 - e21i-2(N + 1)-I(2N + 1)-1 

X (2N + 3)-lg 14>12NH]4> (31) 

appears as the argument of a ,.lih-order polynomial 
functional !l,,[$l. The latter functional !l,,[$1 describes 
a ,u-particle state without interaction or scattering 
between the field quanta, as exemplified by the 
familiar one-particle form 

!ll[$] = f ~(x)$(x)d3x, 
[Ii( _V2 + m2)* - (E1 - Eo)]~(X) = 0, (32) 

where ~(x) is a one-particle (spin-O) relativistic scalar 
wavefunction, and the two-particle form 

!l2[¢] = if ¢(xg(x, y)¢(y)d3x d3y 

- i1i2(E2 - Eorl f '(x, x)d3x, 

[( -v; + m2)! + (-V; + m2)! 

- 1i-1(E2 - Eo)]'(x, y) = 0, (33) 

where '(x, y) == ,(y, x) is a two-particle (spin-O boson) 
relativistic scalar wavefunction. To verify that the ex
pressions (30) satisfy (28) with (29), we compute the 
functional derivatives4 

(34) 

(35) 

and make use of the free-field functional differential 
equation satisfied by Op{¢], 

f ( 1i2 15
2 

1i2( (V2 2! 15 ) d3 !l "-"2 b$(x)2 + 't' x) - + m) b¢(x) x ,,[<I>] 

= (E" - Eo)D,,[¢]. (36) 

Hence, the e ~ 0+ limit of (30) yields the prefactor 
QI'[4>] on the right side of (26). Since there is no 
interaction or scattering between the field quanta 
manifest in the multiparticle state solutions (30), the 
real scalar field theories with Lagrangian densities of 
the form (4) are effectively linear in the absence of 
mass or coupling constant renormalization.5 

• Work supported by a National Science Foundation grant. 
1 G. Rosen, J. Math. Phys. 11, 536 (1970). 
• For example, we have the wavenumber cutoff representation 

t5(dx) == J (exp ik· x)d3k/(27T)" with K == (67r2/€)l. 
IklSK 

3 I. S. Gradshteyn and 1. M. Ryzik, Tables of Integrals, Series and 
Products (Academic, New York, 1965), p. 961. 

• In passing from (34) to (35), the second functional differentiation 
at x is expected to modify the 0(€3) term in (34) by a factor €-1. 

• To perform renormalization within the theoretical framework 
employed here, the mass and coupling constants are prescribed as 
appropriate functions of e, and the latter parameter is related to a 
wavenumber cutoff. 2 Approximate solutions to such renormalized 
model scalar theories have been obtained by G. Rosen, Phys. Rev. 
173, 1680 (1968), and J. A. Okolowski, Ph.D. thesis, Drexel Uni
versity, 1969. 
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Some new approaches to the problem of transmission of electromagnetic waves through a finite 
conducting plasma slab, as formulated by Baraff, are presented. The two-point boundary value problem 
for the integro-differential equation of non local wave interaction is reduced to a Cauchy system. It is 
pointed out that under circumstances where computational difficulties may be expected to occur with 
this Cauchy system a transformation to rotating coordinates will be beneficial. Consequently, a Cauchy 
system is derived for rotationally transformed equations also. Some alternative approaches are discussed, 
and an approximate perturbation formula is derived. 

1. INTRODUCTION 

In a recent series of papers, Baraffl - 3 has formu
lated and solved, by means of a Wiener-Hopf 
technique, the two~point boundary value problem 
for the transmission of electromagnetic waves through 
a conducting plasma slab of finite thickness subject to 
diffuse reflections at the boundaries. More recently, 
Kalaba4 has shown how such a problem may be 
transformed into a Cauchy system, i.e., an initial 
value problem. However, the boundary conditions 
assumed by Kalaba were chosen for their mathe~ 
matical simplicity rather than their physical realiza
bility. It is the purpose of this paper to extend Kalaba's 
treatment to apply to the physical situation considered 
by Baraff, and also to explore some other feasible 
methods of treating this problem. 

In Sec. 2 a mathematical statement of the two-point 
boundary value problem is given and transformed 
to a coupled pair of integro-differential equations. 
In Sec. 3 the equivalent Cauchy system is stated, a 
derivation of which follows in Sec. 4. In Sec. 5 it is 
pointed out that under some circumstances (such as 
a very dilute plasma, or very short wavelength 
radiation) computational difficulties with this Cauchy 
system may be expected to occur. To overcome this 
drawback, a transformation to rotating coordinates 
is made. In Sec. 6 the Cauchy system for the rota
tionally transformed problem is stated, and the 
derivation is given in Sec. 7. In Sec. 8, some iterative 
techniques are described as alternative methods for 
solving the rotationally transformed equation, and 
a useful approximate perturbation formula is derived. 

In Appendices A and B, the Cauchy systems of 
Secs. 3 and 6, respectively, are validated. That is, it is 
shown that a solution to the Cauchy system must 
satisfy the original two-point boundary value problem. 

2. STATEMENT OF BOUNDARY VALUE 
PROBLEM 

Following Baraffl - 3 and Kalaba,4 we imagine an 
infinite slab of plasma media of thickness x within 

which the electric field e(t) is assumed to satisfy the 
following nonlocal reduced wave equation: 

e(t) + k 2e(t) = f'K('t - YI)e(y) dy, 0 ~ t ~ x. (1) 

Here the independent variable t, 0 ~ t ~ x, specifies 
a position within the slab, while k is a constant such 
that 27T/ k is the wavelength in the absence of the 
non local interaction. With no essential foss in gener
ality, we assume that the nonlocal-interaction kernel 
K(r) may be represented as a linear superposition of 
exponentials4 : 

K(r) = fe-rlzw(z) dz, r ~ O. (2) 

We suppose that a plane wave of unit amplitude 
propagating toward the left is normally incident on 
the right face of the slab at t = x. The appropriate 
boundary conditions are then5 

e(O) - ie(O)jk = 0, 

e(x) + ie(x)jk = 2. 

(3a) 

(3b) 

Equations (1), (2), and (3) then completely determine 
e(t) within the slab. 

It is advantageous to express these equations as an 
equivalent set of coupled first-order differential 
equations for quantities u(t) and v(t) defined by 

u(t) == e(t) - ie(t)jk, 

v(t) == e(t) + ie(t)/k. 

Thus (I) and (3) become 

(4a) 

(4b) 

u(t) = iku(t) - if' R(lt - yl)[u(y) + v(y)] dy, (Sa) 

v(t) = -ikv(t) + if'ROt - yl)[u(y) + v(y)] dy, 

(Sb) 
and 

u(O) = 0, 

v(O) = 2, 

(6a) 

(6b) 

1195 
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where ROt - yl) is defined by 

R(lt - yl) = (2k)-lK(lt - yl). 

That is, by (2), R(r) is represented by 

R(r) = fe-rlzp(z) dz, r ~ 0, 

where 

(7) 

(8) 

H.,(x, z, z') = _[Z-l + (z')-l]H(x, z, z') 

+ lex, Z)( 1 - i Lb p(z)H(x, Z, z') dZ) 

+ !E(x, z') 

X (1 - i i b 

p(z')H(x, Z, z') dZ') , (18) 

p(z) == (2k)-lW(Z). (9) H(O, z, z') = 0, (19) 

Of particular interest are the transmitted wave at 
t = 0 and the reflected wave at t = x, 

v(O) = e(O) + ie(O)jk 
and 

u(x) = e(x) - ie(x)/k, 
respectively. 

3, STATEMENT OF EQUIVALENT 
CAUCHY SYSTEM 

(lOa) 

(lOb) 

l.,(x, z) = (ik - z-l)l(x, z) 

- iI(x, z) Lb p(z')l(x, z') dz' 

+ !g(x) (1 - if p(z')H(x, z, z') dZ') , 

(20) 

1(0, z) = O. (21) 

Here, as well as in what follows, the subscript x 
In Eqs. (5) and (6) we replace u(t) and vet) by denotes differentiation with respect to x. The quantity 

u(t, x) and vet, x), respectively, in order to explicitly g(x) appearing in Eqs. (14)-(21) is defined by 
exhibit their dependence upon the thickness of the 
slab x: 

u(t, x) = iku(t, x) 

- if'R(lt - YI)[u(y, x) + v(y, x)] dy, (lla) 

v(t, x) = -ikv(t, x) 

+ i.C'R(lt - yl)[u(y, x) + v(y, x)] dy, (lIb) 

u(O, x) = 0, (12a) 

vex, x) = 2. (12b) 

Then, with R(lt - t'l) given by (7) or (8), it will be 
shown in Sec. 4 that the reflected component 

u(x) == u(x, x) (13) 

is determined by the following Cauchy system for the 
quantities u(x), E(x, z'), H(x, z, z'), and lex, z): 

u.,(x) = 2iku(x) 

- ig(x) f p(z)[t£(x, z) + lex, z)] dz, 

(14) 

u(O) = 0, (15) 

E.,(x, z') = [ik - (z,)-l]E(x, z') + g(x) 

- iiE(x, z') r p(z)E(x, z) dz 

g(x) == u(x) + 2. (22) 

With the solution to these equations known, the 
quantities u(t, x) and vet, x) are then obtained as the 
solution to the following Cauchy system in x for 
fixed t, 0 ::;; t ::;; x, in the variables u(t, x), v(t, x), 
J(t, x, z), andJ(t, x, z): 

u.,(t, x) = iku(t, x) - !iu(t, x) f p(z)E(x, z) dz 

- ig(x) f p(z)I(t, x, z) dz, (23) 

u(t, t) = u(t), (24) 

v",(t, x) = ikv(t, x) - tiv(t, x) f p(z)E(x, z) dz 

- ig(x) f p(z)J(t, x, z) dz, (25) 

vet, t) = 2, (26) 

I ",(t, x, z) = !u(t, x) (1 - if p(z')H(x, z, z') dz') 

- z-ll(t, x, z) 

- iI(x, z) f p(z')l(t, x, z') dz', (27) 

I(t, t, z) = let, z), (28) 

J.,(t, x, z) = !v(t, X)(l - ifp(Z')H(X, z, z') dZ') 

- z-lJ(t, X, z) 

- ig(x) f p(z)H(x, z, z') dz, (16) - iI(x, z) f p(z')J(t, x, z') dz', (29) 

E(O, z') = 0, (17) J(t, t, z) = O. (30) 
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These equations have much the same structure as 
those of Ref. 4, and the discussion of the computa
tional aspects given there will apply here as well. 
Observe that the transmitted component v(O, x) may 
be obtained by solving (25), (26), (29), and (30) with 
t set equal to zero. 

4. DERIVATION OF CAUCHY SYSTEM 

The derivation makes much use of the principle of 
superposition for linear systems. 

Differentiating the basic equations (9) and (10) 
with respect to x, one obtains 

uit, x) = iku,lt, x) - iR(x - t)g(x) 

- if' R(lt - yl)[u.,(y, x) + viy, x)] dy, 

(31a) 
I;",(t, x) = -ikvit, x) + iR(x - t)g(x) 

+ ii"'R(lt - yl)[uiy, x) + viy, x)] dy, 

(31b) 

U.,(O, x) = 0, 

v.,(x, x) = -vex, x). 

(32a) 

(32b) 

In obtaining (3Ja) and (3Ib), we have used (12b) and 
definition (22) for g(x). In (32b) and similar expres
sions which follow, vix, x) denotes differentiation 
with respect to the second argument in x, while vex, x) 
denotes differentiation with respect to the first 
argument in x. 

Now let I(t, x, z) and J(t, x, z) be solutions to the 
nonhomogeneous differential equations 

let, x, z) = ikl(t, x, z) + e-c.,-t)/z 

- i i'" R(I t - yl)[J(y, x, z) + J(y, x, z)] d y, 

(33a) 
J(t, x, z) = - ikJ(t, x, z) - e-c",-t)/z 

+ ii"'R(lt - yl)[J(y,x,Z) + J(y,x,z)]dy, 

(33b) 

subject to the homogeneous boundary conditions 

1(0, x, z) = 0, 

J(x, x, z) = 0. 

(34a) 

(34b) 

Regarding (31) as an inhomogeneous set of linear 
differential equations in t for u.,(t, x) and V.,(t, x) 
su bject to the inhomogeneous boundary condition (32), 
we see that it follows from the principle of super-

position [and Eqs. (8), (11), (12), (33), and (34)] that 

U.,(t, x) = -iiJ(x, x)u(t, x) - ig(x) fp(Z)I(t, x, z) dz, 

(35a) 

v",(t, x) = -!V(x, x)v(t, x) - ig(x) f p(z)J(t, x, z) dz. 

(35b) 

Next, differentiating (33) and (34) with respect to x, 
we obtain 

/.,(t, x, z) = ikllt, x, z) 
- Z-le-(",-t)/z - iR(x - t)/(x, z) 

- ;i"'R('t - yl) 

x [IiY, x, z) + J iy, x, z)] dy, (36a) 

l.,(t, x, z) = -ikJ.,(t, x, z) 

+ Z-le-C.,-II/z + iR(x - t)l(x, z) 

+ ii"'R(lt - yl) 

x [/iy, x, z) + J.,(y, x, z)] dy, (36b) 

1.,(0, x, z) = 0, (37a) 

Jix, x, z) = -lex, x, z), (37b) 

where lex, z) is defined by 

I(x, z) == I(x, x, z) (38) 

and we have used (34b). 
Again employing the principle of superposition in 

the same way as above, one finds that I.,(t, x, z) and 
J",(t, x, z) must satisfy 

lit, x, z) = -Vex, x, z)u(t, x) - z-1/(1, x, z) 

- il(x, z) f p(z')I(t, x, z') dz', (39a) 

J.,(t, x, z) = -Vex, x, z)v(t, x) - z-lJ(t, x, z) 

- il(x, z) f p(z')J(t, x, z') dz'. (39b) 

To proceed further, we define quantities E(x, z') 
and H(x, z, z') by 

E(x, z') == f e-("-Y)/z'[u(y, x) + v(y, x)] dy (40) 

and 

H(x, z, z') == L'" e-C",-v)/z'[J(y, x, z) + J(y, x, z)] dy. 

(41) 

Then setting t = x in Eqs. (lla), (lIb), (33a), and 
(33b), and making use of (7) and (34b), we obtain 
the following equations for u(x, x), vex, x), I(x, x, z), 
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and lex, x, z), respectively: 

u(x, x) = iku(x) - ifp(Z')E(X, z') dz', (42a) 

vex, x) = -2ik + ifp(Z')E(X, z') dz', (42b) 

lex, x, z) = ikl(x, z) + 1 - if p(z')H(x, z, z') dz', 

(43a) 

lex, x, z) = -1 + ifp(Z')H(X, z, z') dz'. (43b) 

We are now ready to derive the Cauchy system 
expressed by Eqs. (14)-(21) for the quantities u(x), 
E(x, z'), H(x, z, z'), and lex, z). 

Differentiating (13) with respect to x, 

u,,(x) = u(x, x) + u,,(x, x), (44) 

and using Eqs. (42), (35a), and (22), one obtains Eq. 
(14). The initial condition (15) for u(x) follows from 
(l2a). 

Differentiating (40) with respect to x and using (22), 
one obtains 

E,,(x, z') = (-z,)-lE(x, z') + g(x) 

+ L"e-("-Y)(Z'[u,,(y, x) + v.,(y, x)] dy. 

(45) 

Substituting Eqs. (35) for u,,(y, x) and viy, x) into 
the integrand of (45) and using (40), (41), and (42b), 
one obtains Eq. (16). The initial condition (17) for 
E(x, z') follows from (40). 

Differentiating (41) with respect to x and using Eqs. 
(38), one obtains 

H "ex, z, z') 

= (-z,)-lH(x, z, z') + lex, z) 

+ L"e-(Z-fl)(Z'[I,,(Y, x, z) + J,,(y, x, z)] dy. (46) 

Substituting Eqs. (39) for l,,(y, x, z) and J,,(y, x, z) 
into the integrand of (46) and using (40), (41), and 
(43b), one obtains Eq. (18). The initial condition (19) 
for H(x, z, z') follows from the definition (41). 

Differentiating (38a) with respect to x, 

lix, z) = lex, x, z) + lix, x, z), (47) 

and using Eqs. (43) and (39), one obtains Eq. (20). 
The initial condition (21) follows from (34a). This 
completes the derivation of the Cauchy system (14)
(21). 

We now derive the Cauchy system (23)-(30) for 
the quantities u(t, x), vet, x). let, x, z), and J(t, x, z). 

Equations (23) and (25) follow immediately from (35) 
and (42b). The initial conditions (24) and (26) follow 
from (13) and (12b), respectively. Equations (27) 
and (29) follow immediately from (39) and (43b). 
The initial conditions (28) and (30) follow from Eqs. 
(38) and (34b). This completes the derivation of the 
Cauchy system. 

5. TRANSFORMATION TO ROTATING 
COORDINATES 

Under certain circumstances, it may well happen 
that the second term in Eq. (lla) or (Ub) will be 
much smaller than the first. This will be the case, for 
example, if the plasma is very dilute or if the wave
length (= 27rjk) is very small. [See also Eq. (17).] 
Under such circumstances, attempts at practical 
calculations using the Cauchy system we have just 
derived may fail owing to the small nonlocal-interaction 
terms being masked by computational inaccuracies 
in the ordinary wave terms. To cope with this situation, 
we make a rotating-coordinate transformation in 
order to effectively factor out the part of the solution 
not due to the nonlocal interaction. 

We thus transform from the variables u(t, x) and 
vet, x) to new variables pet, x) and q(t, x) defined by 

pet, x) == e-ik("'+t)U(t, x), (48a) 

q(t, x) == e-ik(X-tlv(t, x). (48b) 

Our basic, equations (11) and (12) then become 

_eiktjJ(t, x) = e-iktq(t, x) 

= i L" R(I t - yl) 

X [eikflp(y, x) + e-ikllq(y, x)] dy, (49) 

p(O, x) = 0, (50a) 

q(x, x) = 2. (SOb) 

6. STATEMENT OF EQUIVALENT 
CAUCHY SYSTEM 

The reflected component in the transformed system, 

p(x) == p(x, x) = e-2ik",U(X), (51) 

is determined by the following Cauchy system for the 
quantities p(x), L(x, z'), K(x, z, z'), and lex, z) (here, 
and in succeeding sections, definitions given for various 
quantities in Secs. 3 and 4 no longer apply): 

pix) = -if(x) f p(z')[L(x, z') + 2I(x, z')] dz', 

(52) 

p(O) = 0, (53) 
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L,,(x, z') = -(1/z')L(x, z') + 2f(x) 

- 2if(x) f p(z)K(x, z, z') dz 

- tieikXL(x, Z') f p(z)L(x, z) dz, 

L(O, z) = 0, 

K,,(x, z, z') = lL(x, z') 

(54) 

(55) 

X eikX (1 - ifP(z')K(X, z, z') dz') 

+ lex, z)eikX ( 1 - if p(z)K(x, z, z') dZ) 

J,,(t, x, z) = -z-IJ(t, x, z) 

- ieikil:/(x, z) f p(z')J(t, x, z') dz' 

+ lq(t, x) 

X eikX ( 1 - if p(z')K(x, z, z') dZ} 

(67) 

J(t, t, z) = o. (68) 

The transmitted component in the transformed 
system, 

q(O, x) = e-ikXV(O, x), (69) 

- [Z-1 + (z')-I]K(x, z, z'), 

K(O, z, z') = 0, 

(56) may be obtained by solving Eqs. (63), (64), (67), and 
(57) (68) with t set equal to zero. 

/,,(x, z) = -Z-I/(X, z) 

- ieikX/(x, z) f p(z')/(x, z') dz' 

+ f(x) - if(x) f p(z')K(x, z, z') dz', 

(58) 

/(0, z) = O. (59) 

Here the quantity f(x) is defined by 

f(x) == teikXp(x) + e-ikx. (60) 

With the solution to these equations known, the 
quantities pet, x) and q(t, x) are then obtained as the 
solution to the following Cauchy system in x for 
fixed t, 0 ~ t ~ x, in the variables p(t, x), q(t, x), 
l(t, x, z), and J(t, x, z): 

p,,(t, x) = -2if(x) f p(z')/(t, x, z') dz' 

- lip(t, x)eikX f p(z')L(x, z') dz', (61) 

pet, t) = pet), (62) 

q,,(t, x) = -2if(x) f p(z')J(t, x, z') dz' 

- liq(t, x)eikX f p(z')L(x, z') dz', (63) 

q(t, t) = 2, (64) 

l,,(t, x, z) = -Z-I/(t, x, z) 

- ieikX/(x, z) Lb p(z')I(t, x, z') dz' 

+ lP(t, x) 

x eikX (1 - i Lb p(z')K(x, Z, z') dZ} 

(65) 

let, t, z) = I(t, z), (66) 

7. DERIVATION OF CAUCHY SYSTEM 

The derivation is similar to that given in Sec. 4 for 
the untransformed case. Differentiating Eqs. (49) 
and (50) with respect to x and using Eqs. (50b) , 
(51), and (60), one obtains 

_eikp,,(t, x) = e-iktqxCt, x) 

= 2if(x)R(x - t) + LX R(lt - yl) 

x [eikllpxCy, x) + e-ikllqxCy, x)] dy, 

(70) 

pxCO, x) = 0, (71a) 

qx(x, x) = -q(x, x). (7tb) 

Now let l(t, x, z) and J(t, x, z) be solutions to 

_eikt/(t, x, z) 

= e-iktJ(t, x, z) 

= i f:R(IY - t/) 

X [eik1l/(y, x, z) + e-ikllJ(y, x, z)] dy _ e-(x-t)/z, 

(72) 

/(0, x, z) = 0, 

J(x, x, z) = o. 
(73a) 

(73b) 

Hence from the principle of superposition and Eqs. 
(49), (50), and (70)-(73), we obtain 

pxCt, x) = -H(x, x)p(t, x) 

- 2if(x) f p(z')/(t, x, z') dz', (74a) 

qxCt, x) = -H(x, x)q(t, x) 

- 2if(x) f p(z')J(t, x, z') dz'. (74b) 
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Differentiating Eqs. (72) and (73) with respect to x, 
one obtains 

_eiktJ.,(t, x, z) 

= e-iktl.,(t, x, z) 

= i f'R('Y - tl) 

X [eikYl.,(y, x, z) + e-ik'YJ.,(y, x, z)] dy 

+ iR(x - t)eikiJ'I(x, z) + Z-1e-(",-tJ/z, (75) 

1.,(0, x, z) = 0, (76a) 

J.,(x, x, z) = -lex, x, z), (76b) 

where lex, z) is defined by 

lex, z) = lex, x, z) (77a) 
and 

J(x, x, z) = 0. (77b) 

Hence, from the principle of superposition and 
Eqs. (49), (50), (72), (73), (75), and (76), we obtain 

l.,(t, x, z) = -tl(x, x, z)p(t, x) - z-11(t, x, z) 

- ieik"'l(x, z) f p(z')I(t, x, z') dz', (7Sa) 

J",(t, x, z) = -Vex, x, z)q(t, x) - z-lJ(t, x, z) 

- ieik,'I(x, z) f p(z')J(t, x, z') dz'. (78 b) 

Now define quantities L(x, z) and K(x, z, z') by 

L(x, z') = LX e-(X-Y)/Z' 

X [eikYp(y, x) + e-ik1lq(y, x)] dy, (79) 

K(x, z, z') = L'" e-("'-Y)/z' 

X [eikyl(y, x, z) + e-ikyJ(y, x, z)] dy. 

(SO) 

Then setting t = x in Eqs. (49) and (72), we obtain 

_eik",p{x, x) = e-ik"'q(x, x) 

= if p(z')L(x, z') dz', (SI) 

_eik"'J(x, x, z) = e-ik"'J(x, x, z) 

= if p(z')K(x, z, z') - 1. (S2) 

We are now ready to derive the Cauchy system 
(52)-(59) for the quantities p(x), L(x, z'), K(x, z, z'), 
and lex, z). Differentiating (51) with respect to x, 

p",(x) = p(x, x) + p",(x, x), (S3) 

and using Eqs. (SI), (74a), (77a), (51), and (60), one 
obtains (52). The initial condition (53) follows from 
(50a). Differentiating (79) with respect to x, and using 
Eqs. (74), (79), (SO), and (SI), one obtains (54). The 

initial condition (55) follows from (79). Differentiating 
(SO) with respect to x and using Eqs. (78), (79), (SO), 
and (S2), one obtains (56). The initial condition (57) 
follows from (SO). Differentiating Eq. (77a) with 
respect to x, 

lix, z) = J(x, x, z) + I",(x, x, z), (S4) 

and using Eqs. (7Sa), (S2), (51), and (SOb), one obtains 
Eq. (5S). The initial conditions (59) follows from 
(73a). 

With these quantities known, we now derive the 
Cauchy system (61)-(6S) for the quantities pet, x), 
q(t, x), I(t, x, z), and J(t, x, z). Equations (61) and 
(63) readily follow from (74) and (SI). The initial 
conditions (62) and (64) follow from (51) and (50b), 
respectively. Equations (65) and (67) readily follow 
from (7S) and (S2). The initial conditions (66) and (6S) 
follow from (77a) and (77b), respectively. This 
completes the derivation of the Cauchy system. 

8. ITERATIVE METHODS 

Instead of reducing the problem to a Cauchy 
system, one may prefer to employ an iterative method. 
We discuss here briefly several possible approaches 
based upon the transformed equations (49) and (50), 
or rather their integral form, 

pet, x) = -ifdT l"'dye-ikTR(lT - yl) 

X [eikYp(y, x) + e-ikYq(y, x)], (S5a) 

q(t, x) = 2 - il"'dT i"'dyeikTR(IT - yl) 

X [eik'Yp(y, x) + e-ik1lq(y, x)]. (S5b) 

A perturbation expansion for Eqs. (S5) can be 
obtained by replacing R(IT - yl) by AR(IT - yl) and 
assuming that pet, x) and q(t, x) can be expanded in 
powers of A: 

00 

pet, x) = ~)npnCt, x), (S6a) 
h=O 

00 

q(t, x) = 2;.nqn(t, x). (S6b) 
h=O 

Equating powers of A then leads to 

poet, x) = 0, 

qo(t, x) = 2, 

Pn+1(t, x) = -ifdT l"'dye-ikTR(IT - yl) 

(S7a) 

(S7b) 

X [eik'YPn(Y, x) + e-ikYqn(y, x)], (SSa) 

qn+1(t, x) = -i1'" dT !"'dyeikTR(IT - yl) 

X [e ikIlPn(y, x) + e- ik1lqnCy, x)]. (SSb) 
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Substituting (87) into (88) and using Eq. (8), one 
obtains 

P1(t, x) = -2i f dzp(z)(k2 + Z-2)-1 

X [(_ikz)-1(e-2ikt _ 1) + e-Uk+z-1, t - 1 

+ e-Uk+z-ll"'(e-Cik-z-llt _ 1)], (89a) 

Q1(t, x) = -2i fdzp(Z) 

x [2(x - t)z-1(k2 + Z-2)-t 

+ (Z-1 _ ik)-2(eCik-Z-l,,,, _ eCik-z-llt) 

_ (Z-1 + ik)-2(1 - e-Uk+z-1)("'-tl)]. (89b) 

Higher-order calculations can, in principle, be 
similarly made, but, for cases where Eqs. (89) are 
inadequate, a numerical approach will most likely 
be more suitable. Note that any of the following 
circumstances will ensure that Eqs. (89) give a good 
approximation: plasma sufficiently dilute, wave
length (27T/k) sufficiently small, slab thickness x 
sufficiently small, maximum nonlocal-interaction decay 
length b sufficiently small. 

Equations (85) can also be used as the basis of a 
successive-approximation calculation. Starting with 
assumed approximate functions pet, x) and q(t, x), 
these may be inserted into the right side of (85), and 
the integrations carried out to obtain new approximate 
expressions for pet, x) and q(t, x). The process is 
repeated as many times as is necessary to (hopefully!) 
achieve convergence to the desired accuracy. If the 
starting approximation is sufficiently close to the 
solution of (85), it may be shown that, under reason
able conditions, convergence is always attained. If 
one uses as a starting approximation pet, x) = 0, 
q(t, x) = 2, then one readily sees that, owing to the 
linearity of Eqs. (91), this procedure leads to the same 
result (in principle) as the perturbation calculation 
(86)-(88). [A possible improvement on the calculation 
in practice stems from the fact that numerical approxi
mations for pet, x) and q(t, x) are not normally 
calculated simultaneously, but are calculated alter
nately using the latest previous approximations.] 

For cases such that convergence does not occur 
with this starting approximation, a better starting 
approximation will be needed. This may be obtained 
by continuously imbedding (85) into a larger class of 
problems such that convergence is assured for some 
members of the class. One way of doing this is to 
introduce a "strength parameter" A. to multiply the 
right-hand sides of Egs. (85). For small enough A, we 
will be assured of convergence. If for some value of 
A we have a sufficiently accurate solution, it wiIl be 
close enough to the solution for some larger value of A 

to serve as a suitable starting approximation for it. 
We thus work up stepwise to the desired case A = 1. 
Alternatively, and in a similar manner, we may use 
the slab dimension X as our parameter and, by 
increasing x, work up stepwise from thin to thicker 
slabs. 

A better understanding of the feasibility and 
relative merits of the various methods discussed in 
this paper will be obtained from numerical experi
ments. 
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APPENDIX A 

Theorem: Assume that U(x) , E(x, z'), H(x, z, z'), 
and lex, z) are a solution to Eqs. (14)-(21) and 
u(t, x), vet, x), I(t, x, z), and J(t, x, z) are a solution 
to Eqs. (23)-(30), a S z, z' S b, where p(z) is given 
and g(x) is defined by (22). Assume also that the 
following quantities exist: 

E*(x, z') == L'" e-C"'-lIl/ z'[u(y, x) + v(y, x)] dy, (AI) 

H*(x, z, z') == L"'e-c"'-III/Z'[I(y, x, z) + J(y, x, z)] dy, 

(A2) 

u*(x) == -ii"'dr i"'dyeikC"'-TIR(lr - yl) 

x [u(y, x) + v(y, x)], (A3) 

l*(x, z) = -i i"'dr i"'dyeikC"'-rlR(lr - yl) 

x [I(y, x, z) + J(y, x, z)] 

+ L"'dr exp [(ik - l/z)(x - r)], (A4) 

u*(t, x) = -ifdr L"'dyeikCt-rlR(,r - yl) 

x [u(y, x) + v(y, x)], (A5) 

v*(t, x) = -i l"'dr i"'dye-ikCt-TIR(lr - yl) 

x [u(y, x) + v(y, x)] + 2ikC"'-tl, (A6) 

l*(t, x, z) = -i fdr i"'dyeikCt-TIR(lr - yl) 

x [ley, x, z) + J(y, x, z)] 

+ LtdreikCt-Tle-C",-rl/Z, 

J*(t, x, z) = -il'" dr l"'dye-ikCt-rlR(lr - yl) 

x [ley, x, z) + J(y, x, z)] 

+ L'" dre-iklt-rle-C",-rl/z. 

(A7) 

(A8) 
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In these equations ROT - yl) is defined in terms of 
p(z) by Eq. (8). Then u(t, x) and vet, x) satisfy the 
two-point boundary value problem defined by (11) 
and (12). 

Proof: Define the following quantities: 

Et(x, z) == E*(x, z) - E(x, z), (A9) 

Ht(x, z, z') =- H*(x, z, z') - H(x, z, z'), (AIO) 

Ut(x) == u*(x) - u(x), (All) 

It(x, z) == l*(x, z) - lex, z), (AI2) 

ut(t, x) == u*(t, x) - u(t, x), (Al3) 

vt(t, x) == v*(t, x) - l'(/, x), (AI4) 

It(t, x, z) == I*(!, x, z) - l(t, x, z), (AIS) 

Jt(/, x, z) == J*(I, x, z) - J(t, x, z). (AI6) 

The proof consists in obtaining differential equations 
for the daggered quantities which imply that they all 
vanish; hence the starred quantities equal the corre
sponding unstarred quantities. In particular, 

U*(/, x) = u(t, x), 

v*(/, x) = L'(I, x). 

(AI7) 

(AI8) 

From (AS), (A6), (A 17), and (A 18), it then easily 
follows that u(t, x) and v(t, x) satisfy Eqs. (11) and 
(12). 

We work first with the four quantities Et(x, z), 
Ht(x, z, z'), ut(x), and /t(x, z). 

Differentiating (AI) with respect to x and using (72), 
we obtain 

E!(x, z') = (-z,)-lE*(x, z') + g(x) 

+ f'e-("'-U)!Z'[U.,(y, x) + v.,(y, x)] dy. 

(AI9) 

(28) and (30), we obtain 

H:(x, z, z') 

== lex, z) - (z')-lH*(x, z, z') 

+ r'" -(",-u)!z'[l ( ) Jo e ", y, x, z + J,,(y, x, z)] dy. (A22) 

Substituting (27) and (29) into the integrand of (A22) 
and using (AI), (A2), (A9), (A 10), and (18), we 
obtain 

H~(x, z, z') = _[Z-1 + (z')-l]H\x, z, z') + iEt(x, z') 

X (1 - if p(z')H(x, z, z') dZ') 

- il(x, z) fp(Z)H\X, z, z') dz. (A23) 

From (AIO), (A2), and (19), we obtain the initial 
condition 

Ht(x, z, z') = O. (A24) 

Differentiating (A3) with respect to x and using 
(72), we obtain 

u:(x) = iku*(x) - i i"'dYR(X - y) 

x luCy, x) + v(y, x)] 

- i So'" dT So" d yeik(",-II)R(1 T - yl) 

X [u.,(y, x) + v.,{y, x)] 

- iSo"'dTeik(,,-r>R(X - T)g(X). (A2S) 

Substituting Eqs. (23) and (24) into the second inte
grand of (A2S) and using (A3), (A4) , (AI!), (AI2), 
(A9), (14), and (8), we obtain 

t rb 
t u",(x) = -ig(x) Ja p(z)l (x, z) dz 

- ifp(Z)E\X, z) dz + 2iku\x) 

- lut(x) fp(Z)E(X, z) dz. (A26) 

Substituting Eqs. (23) and (2S) into the integrand of From (All), 
(A19) and using (AI), (A2), (A9), (AIO), and (16), condition 

(A3), and (IS), we obtain the initial 

ut(X) = O. (A27) we obtain 

E~(x, z') = [ik - (z')-l]Et(x, z') 

- iiEt(x, z') f p(z)E(x, z) dz 

ib 
t 

- ig(x) a p(z)H'(x, z, z') dz. (A20) 

From (A9), (AI), and (17), we obtain the initial 
condition 

Et(O, z') = O. (A21) 

Differentiating (A2) with respect to x and using 

Differentiating (A4) with respect to x and using 
(28) and (30), we obtain 

l~(x, z) = - i L'" dT i"'dyeikC,,-r>R(lT - yl) 

X [/",(y, x, z) + J",(y, x, z)] 

+ ikl*(x, z) + 1 

- il(x, z) i"'dTei1,(",-r>R(X - T) 

- i i'" dyR(x - y)[J(y, x, z) + J(y, x, z)]. 

(A28) 
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Substituting (27) and (29) into the first integrand of 
(A28) and using (A3), (A4), (All), (A 12), (AlO), 
(20), and (8), we obtain 

J!(x, z) = (ik - Z-l)Jt(X, z) 

- iJ(x, z) f p(z')Jt(x, z') dz' 

+ tut(x) ( 1 - if p(z')H(x, z, z') dz') 

ib t - i a p(z')H (x, z, z') dz'. (A29) 

From (AI2), (AS), and (21), we obtain the initial 
condition 

1(0, z) = O. (A30) 

We see that Eqs. (A20) , (A23) , (A26), and (A29) 
constitute a set of four coupled linear homogeneous 
first-order differential equations in the variables 
Et(x, z'), Ht(x, z, z'), ut(x), and It(x, z) subject to 
the homogeneous initial conditions (A2I), (A24), 
(A27), and (A30), the unique solution of which is zero 
for all four variables. Hence, from (A9)-(A12), 

E(x, z) = E*(x, z), (A31) 

H(x, z, z') = H*(x, z, z'), (A32) 

u(x) = u*(x), (A33) 

I(x, z) = I*(x, z). (A34) 

Next, we obtain differential equations for the 
variables ut(t, x), vt(t, x), ItC!, x, z), and Jt(t, x, z). 

Differentiating (AS) with respect to x and using (72), 
we obtain 

U!(/, x) = -ifdT L"dyeik(t-TIR(lT - yl) 

x [u.,(y, x) + v.,(y, x)] 

- i fdTeik(t-TIR(X - T)g(X). (A35) 

Substituting (23) and (2S) into the first integrand 
and using (AS), (A7), (A 13), (A14), and (S), we 
obtain 

u~(t, x) = ikut(t, x) - ig(x) fp(Z)Jtct, x, z) dz 

- tiu t(t, x) ib 

p(z)E(x, z) dz. (A36) 

From (24), (AS), (A3), (A33), and (AI3) (with x 
replaced by f), we obtain the initial condition 

ut(t, t) = O. (A37) 

Differentiating (A6) with respect to x and using (72), 

we obtain 

v!(t, x) = - i 1 dT r dye-ik(t-rlR(lT - yl) 

x [u.,(y, x) + v,iy, x)] 

+ 2ikeik("'-tl - i 1'" dTe-ik(t-TIR(x - T)g(X) 

- i l"'dyeik(",-t)R(x - y)[u(y, x) + v(y, x)]. 

o (A3~ 
Substituting (23) and (2S) into the first integrand and 
using (A6), (AS), (A14), (A16), and (S), we obtain 

v!(t, x) = ikv\t, x) - iivt(t, x) f p(z)E(x, z) dz 

- ig(x) fp(Z)J\/, x, z) dz. (A39) 

From (A6), (28), and (A14), we obtain the initial 
condition 

(A40) 

Differentiating (A7) with respect to x and using (2S) 
and (30), we obtain 

J!(t, x, z) = -ifd'Ti"'dyeik(t-TIR(IT - yl) 

x [liy, x, z) + J.,(y, x, z)] 

- i fdTeik(t-T)R(X - T)J(X, z) 

- Z-l itdTeik(t-Tle-("'-TI!Z. (A41) 

Substituting (27) and (29) into the first integrand and 
using (AS), (A 7), (A13), (AtS), and (S), we obtain 

I!(t, x, z) = _z-ljtu, x, z) 

- iJ(x, z) fp(Z')Jtct, x, z') dz' 

+ tutu, X)(l - iiop(Z')H(X, z, Z')dz} 

(A42) 
From (2S), (A7) , (A4) , (A34) , and (AtS) (with x 
replaced by I), we obtain the initial condition 

It(/, t) = O. (A43) 

Differentiating (AS) with respect to x and using (28) 
and (30), we obtain 

* J ",(I, X, z) 

= - i 1'" dT i'" dye-ik(t-TIR(/T - yl) 

x [I",(y, x, z) + J iy, x, z)] 

-if' dye-ik(t-"')R(x - y)[I(y, x, z) + J(y, x, z)] 

- i i'" dTe-iklt-T)R(x - T)J(X, z) + eik("'-t) 

- Z-l i'" dTe-iklt-T)e-(",-r)/z. (A44) 
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Substituting (27) and (29) into the first integrand and 
using (A6), (A8), (AI4), (A16), and (8), we obtain 

J!(t, x, z) = _z-lJt(t, x, z) 

- iJ(x, z) fP(z')Jt(t, X, z') dz' 

+ tv\t, x) (1 - iL'p(Z')H(X, z, Z')dZ} 

(A45) 

From (A16), (A8), and (30), we obtain the initial 
condition 

jt(t, t, z) = O. (A46) 

We see that Eqs. (A36), (A39), (A42), and (A45) 
constitute a set of four coupled linear homogeneous 
first-order differential equations in the variables 
ut(t, x), vt(t, x), Jf{t, x, z), and jt(t, x, z) subject to 
the homogeneous initial conditions (A37), (A40) , 
(A43), and (A46). 

Since the unique solution vanishes, Eqs. (AI7) and 
(AlS) follow from (AI3) and (A14), respectively. 
This completes the proof of the theorem. 

APPENDIX B 

Theorem: Assume that p(x), L(x, z'), K(x, z, z'), 
and lex, z) are a solution to Eqs. (52)-(59), and 
p(t, x), q(t, x), let, x, z), and Jet, x, z) are a solution 
to Eqs. (61)-(6S), a ~ z, z' ~ b, where p(x) is given 
andf(x) is defined by (60). Let s(y, x) and M(y, x, z) 
be defined by 

s(y, x) == eikvp(y, x) + r ikllq(y, x) (Bl) 
and 

M(y, x, z) == eikll[(y, x, z) + e-ikIlJ(y, x, z), (B2) 

and assume also that the following quantities exist: 

(B3) 

K*(x, z, z') = f'e-(X-lI)!Z'M(y, x, z) dy, (B4) 

p*(x) = -if' dT LX dye-ikTR(ly - TI)S(y, x), 

(B5) 

I*(x, z) = -iIxdT IXdye-ikTRCIY - T!)M(y, x, z) 

(B6) 

p*(t, x) = -j fdT IX dye-ikTR(ly - TI)S(y, x), 

(B7) 

q*(t, x) = 2 - i 1X dT IX dyeikTR(ly - TI)s(y, x), 

(BS) 

I*(t, x, z) = -i fdT f'dye-ikTR(ly - TI)M(y, x, z) 

(B9) 

J*(t, x, z) = -i 1X dT f'dyeikTR(ly - TI)M(y, x, z) 

(BI0) 

In these equations ROT - yl) is defined in terms of 
p(z) by Eq. (S). Then pet, x) and q(t, x) satisfy the 
two-point boundary value problem defined by (49) 
and (50). 

Proof' The proof is similar to that given in Appendix 
A for the nontransformed case. Define the following 
quantities: 

Lt(x, z') = L*(x, z') - L(x, z), (BU) 

Kt(x, z, z') = K*(x, z, z') - K(x, z, z'), (B12) 

/(x) = p*(x) - p(x), (B13) 

It(x, z) = I*(x, z) - I(x, z), (B14) 

/(t, x) = p*(t, x) - pet, x), (B15) 

q \t, x) = q*(t, x) - q(t, x), (B16) 

It(t, x, z) = I*(t, x, z) - I(t, x, z), (B17) 

Jt(t, x, z) = ret, x, z) - J(t, x, z). (B1S) 

We first show that the quantities Lt(x, z'), 
Kt(x, z, z'), pt(x), and [t(x, z) are the unique vanish
ing solutions to a set of differential equations. 

Differentiating (B3) with respect to x, we obtain 

L!(x, z') = 2f(x) - (z')-lL*(x, z') 

+ iXe-b;-lI)!Z's.,(y, x) dy, (B19) 

since, by (Bl) and (60), 

s(x, x) = 2f(x). (B20) 

The quantity s.,(y, x) is obtained from (BI), (B2), (61), 
and (63): 

s.,(y, x) = -2if(x) fp(Z')M(Y, x, z') dz' 

- !iikXs(y, x) f p(z')L(x, z') dz'. (B21) 
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Substituting (B2I) into the integrand of (BI9) and 
using (B3), (B4), (BII), and (BI2), one obtains 

L~(x, z') = -(1/z')L
t
(x, z') 

fb t 
- 2if(x) Ja p(z)K (x, z, z') dz 

(BS), (B6), (B13), (BI4), (60), and (8), we obtain 

p!(x) = -tipt(x) lbP(Z')L(X, z') dz' 

- 2if(x) fp(z')l(x, z') dz'. (B30) 

_ tieik"'Lt(x, z') fabp(Z)L(X, z) dz. (B22) From (53), (BS), and (BI5), we obtain the initial 
Ja condition 

From (55), (B3), and (BIl), one obtains the initial 
condition 

Lt(O, z') = o. (B23) 

Differentiating (B4) with respect to x, we bbtain 

K:(x, z, z') = eik"'J(x, z) - (z,)-IK*(x, z, z') 

+ l"'e-(",-y)/z·M.,(y, x, z) dy (B24) 

since, by (B2), (66), and (68), 

M(x, x, z) = eik"'J(x, z). (B2S) 

The quantity Maly, x, z) is obtained from (BI), (B2), 
(65), and (67): 

M.,(y, x, z) 

= -z-1M(y, x, z) - ieik"'J(x, z) fp(Z')M(Y, x, z')dz' 

+ is(y, x)eik'" (I - {b p(z')K(x, Z, z') dZ'), (B26) 

Substituting (B26) into the integrand of (B24) and 
using (B3), (B4), (BIl), and (BI2), one obtains 

K!(x, z, z') 

= tLt(x, z')eika:( 1 - if p(z')K(x, z, z') dZ') 

- il(x, z)eik
'" fp(Z)K\X, z, z') dz 

- [Z-1 + (z')-11Kt(x, z, Z'). (B27) 

From (57), (B4), and (Bl I), one obtains the initial 
condition 

Kt(O, z, z') = 0. (B28) 

Differentiating (BS) with respect to x and using 
(B20), we obtain 

p:(x) = -i ia:dye-ik"'R(X - y)s(y, x) 

- 2if(x) ia:e-ikTR(X - T) dT 

- i ia: dT ia: dye-ikTR(ly - TI)S.,(y, x). (B29) 

Substituting (B2I) into the last integrand and using 

(B31) 

Differentiating (B6) with respect to x and using 
(B25), we obtain 

J:(x, z) = -ii"'dT i"'dye-ikTR(/y - TI)M.,(y, x, z) 

- i i"'dye-ik"'R(X - y)M(y, x, z) 

- il(x, z) i"'eik("'-T)R(y - T) dT 

+ Z-1 i"'e-ikTe-("'-T)/Z dT + e-ikx. (B32) 

Substituting (B26) into the first integrand and using 
(BS), (B6), (BI3), (BI4), (B12), (58), (60), and (8), 
we obtain 

J!(x, z) = -z-IJ\x, z) 

- ieik"'I(x, z) fp(Z')I\X, z') dz' 

+ teik"'pt(X) ( 1 - ifp(Z')K(X, z, z') dZ') 

- ie-ik", f p(z')K t(x, z, z') dz'. (B33) 

From (59), (B6), and (B14), we obtain the initial 
condition 

(B34) 

We see that Eqs. (B22), (B27), (B30), and (B33) 
constitute a set of four linear homogeneous first-order 
differential equations in the variables Lt(x, z), 
Kt(x, z, z'), pt(x), and Jt(x, z) subject to the homo
geneous initial conditions (B23), (B28), (B31), and 
(B34). Since the unique solution of these equations 
vanishes, it follows from (BII)-(BI4) that 

L(x, z') = L*(x, z'), (B3S) 

K(x, z, z') = K*(x, z, z'), (B36) 

p(x) = p*(x), (B37) 

lex, z) = I*(x, z). (B38) 

Next, we show that pt(t, x), qt(t, x), It(t, x, z), 
and Jt(t, x, z) are the unique vanishing solutions to a 
set of differential equations. 
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Differentiating (B7) with respect to x and using 
(B20), we obtain 

(B7), (B9), (65), (BI5), (BI7), and (8), we obtain 

t I.,(t, x, z) 

p!(t, x) = -ifdT f'dye-ikTR(IY - TI)S.,(y, x) = -z-lIt(t, x, z) - ieik:X:/(x, z) fp(Z')It(t, x, z') dz' 

- 2if(x) fdTe-ikTR(X - T). (B39) + !pt(t, x)eik:X:(l - ifpcz')K(X, z, z') dZ} 

Substituting (B21) into the first integrand and using (B46) 

(B21), (B7), (B9), (B15), (B17), (61), and (8), we From (B17), (B9), (B6), (66), and (B38) with x 
obtain replaced by t, we obtain the initial condition 

t . t i b 

Px(t, x) = (- i/2)e'k:X:p (t, x) a p(z)L(x, z) dz 

- 2if(x) fp(Z)I\t, x, z) dz. (B40) 

From (B15), (B7), (B5), (62), and (B37) with x 
replaced by t, we obtain the initial condition 

pt(t, t) = O. (B41) 

Differentiating (BS) with respect to x and using 
(B20), we obtain 

q!(t, x) = -ii:X:dyeikXR(X - y)s(y, x) 

- 2if(x) iX 
eikTR(x - T) dT 

- i i:X: dT L:X: dyeikTR(ly - TI)S.,(y, x). (B42) 

Substituting (B21) into the last integrand and using 
(BS), (B10), (B16), (B1S), (Bll), and (S), we obtain 

q~(t, x) = -ieik:x:fp(Z')Ltcx, z') 

- 2if(x) f p(z')J\t, x, z') dz' 

- !ieik:x:qt(t,x) fp(Z/)L(X,Z')dZ" (B43) 

From (64), (B8), and (B16), we obtain the initial 
condition 

qt(t, c) = O. (B44) 

Differentiating (B9) with respect to x and using 
(B25), we obtain 

I!(t, x, z) = -ifdT f'dye-ikTR(IY - TI)M:x:(Y, x, z) 

+ eik:X:I(x, z) ite-ikTR(X - T) dT 

- Z-l ite-ikTe-(X-Tl/Z dT. (B45) 

Substituting (B26) into the first integrand and using 

/t(t, t, z) = O. (B47) 

Differentiating (BIO) with respect to x and using 
(B25), we 9btain 

J!(t, x, z) = -ii
x 

dT L:X:dye-ikTR(,Y - TI)M:x:(y, x, z) 

- i i:X:dyeik:X:R(X - y)M(y, x, z) 

- iI(x, z) i
X 
dTeik("*T)R(x - T) 

-z-ll" eikTe-(aJ-Tl/z dT + eik:x:. (B48) 

Substituting (B26) into the first integrand and using 
(B7), (B9), (67), (BI6), (BI8), and (8), we obtain 

t 
J it, x, z) 

= _z-lJt(t, x, z) - ieik:x:I(x, z) ibpCZ')JtCt, x, Z/) dz' 

+ tq\t,x)eik:X:(l- iibp(Z/)K(X,Z,Z/)dz') 

- ieik:x: fp(Z/)Kt (x, z, z') dz'. (B49) 

From (6S), (B10), and (BI8), we obtain the initial 
condition 

Jt(t, t, z) = o. (B50) 

Now Eqs. (B40), (B43), (B46), and (B49) constitute 
a set of linear homogeneous first-order differential 
equations in the variables pt(t, x), qt(t, x), [t(t, x, z), 
and Jt(t, x, z), subject to the homogeneous initial con
ditions (B41), (B44) , (B47) , and (B50). Since their 
vanishing solution is unique, it follows from (B15), 
(BI6), (B7), and (BS) that 

pet, x) = p*(t, x) 

= -i fdT i:X:dye-ikTR(IY - TI)S(y, x) (B51) 

and 

q(t, x) = q*(t, x) 

= 2 - i" dT fdyeikrR(IY - TI)S(y, x). (B52) 
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One readily verifies that (B5l) and (B52) satisfy the 
two-point boundary value problem defined by (49) 
and (50). QED 

* Supported by the National Science Foundation under Grant 
No. GF-294 and the National Institutes of Health under Grants 
No. GM-16197·01 and No. GM-16437-01. 

t Present address: Microwave Division, Aerojet-General Corp., 
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Some properties of self-adjoint operators in indefinite metric spaces are explored, with emphasis on 
the problem of the completeness of the set of eigenvectors. For operators in spaces of finite dimension, 
some si~ple criteria are deduced r~g~rding th~ exist~nce of such a cOf!1plete set. Implications of complete
ness of eigenvectors for operators In infinite-dimensIOnal spaces are discussed, and some partial extensions 
of the results for finite dimensions given. 

I. INTRODUCTION 

Lee and Wick have recently put forward a number 
of field-theoretic models set in indefinite metric 
spaces,1.2 primarily with a view towards eliminating 
the divergences in physically interesting theories such 
as quantum electrodynamics.3 Their work (and that 
of Sudarshan,4 who has been critical of the Lee-Wick 
approach5) makes it seem worthwhile to examine some 
of the general properties of self-adjoint operators in 
such spaces. Lee has remarked that the problem of 
the completeness of the set of eigenvectors is an open 
question even for spaces of finite dimension. Yet it 
seems altogether reasonable to require this complete
ness for the Hamiltonian operator if the usual manipu
lations involving sums over intermediate eigenstates 
are to be meaningful. 

In the next section of this paper, we give some 
definitions and elementary properties of indefinite 
metric spaces and of self-adjoint operators defined on 
them. For a more complete treatment, the reader 
should consult the review article of Pandit.6 In his 
review, Pandit shows that the eigenvectors of a self
adjoint operator can fail to span the space when one 
of them has zero norm in the indefinite metric and 
corresponds to a real eigenvalue. In Sec. III, we 
sharpen this result somewhat and derive a set of 
necessary and sufficient conditions for completeness 
of the eigenvectors in finite-dimensional spaces. 

Section IV is concerned with some aspects of the 
infinite-dimensional case, including a partial extension 
of the results for finite dimensions. 

II. DEFINITIONS AND PRELIMINARIES 

The class of linear vector spaces which we shall be 
considering, and which we will call indefinite metric 
spaces, are a subset of the more general class of spaces 
with scalar product. Let S be a linear vector space; 
then a scalar product defined on S is a rule which 
associates with any two vectors 1p and cP in S, a 
complex number denoted by 

(1p, cp). 

Furthermore, the scalar product must have the 
properties 

(i) (1p, cp) = (cp, 1p), 

where the bar denotes complex conjugation, 

(ii) (1p, a1CPl + a2CP2) = a1(1p, CPl) + a2(1p, CP2), 

and 

(iii) (1p, cp) = 0 for all cP in S implies 1p = O. 

Let L be a linear operator defined on S. Then its 
adjoint LA is defined by 

(LA 1p, cp) = (1p,Lcp). 

An operator is said to be self-adjoint if L = LA. 
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We will say that S is an indefinite metric space if 
it has the orthogonal decomposition 

such that 
S = Sp EEl SN' 

1jJ E Sf' implies (1jJ, 1jJ) > 0, 

1jJ E S N implies (1jJ, 1p) < O. 

Every finite-dimensional scalar product space has 
such a decomposition. Now let P be the projection 
onto S p, and N, the projection onto SN' P and N 
are clearly self-adjoint, and hence so is the metric 

1J = P - N. 
Note that 

1J2 = I (the identity). 

Using the metric 1J, we can define an auxiliary scalar 
product 

(1p,4» = (1jJ, 1J4», 

which in addition to satisfying (i), (ii), and (iii) 
above also has the property that 

(1jJ,1jJ) > 0 if 1p =F O. 

This auxiliary scalar product is thus of the familiar 
positive-definite sort. We may use it to define the 
Hermitian conjugate of L, called L *, by 

(L*1p,4» = (1p, L4». 

The adjoint and Hermitian conjugate are related by 

LA = 1JL*1J. 

If L = L *, we say L is Hermitian. The metric 1J is 
both self-adjoint and Hermitian. 

We are now at the usual starting point for dis
cussions of indefinite metric spaces. Consider the set 
of eigenvectors 1pl, 1p2' ... of a self-adjoint operator 
L, with corresponding eigenvalues .11' .12 , •••• Then. 
the usual manipulations give 

(1) 

If m = n, there are three possibilities. First, the eigen
value can be real while (1pn, 1pn) is nonzero. Second, 
the eigenvalue can be complex while (1jJn, 1jJn) = 
O. We will call vectors satisfying (1p, '1jJ) = 0 null 
vectors. Third, we can have a real eigenvalue and a 
null eigenvector. In the next section we will see that 
the latter case is closely connected with the complete
ness of the eigenvectors. 

There is another property of self-adjoint operators 
which will prove useful later. Suppose 

L1p = A1p. 
Then consider 

Thus Land L* have the same eigenvalues and, if 1p 

is the eigenvector of L, 1J1p is the corresponding 
eigenvector of L *. 

III. SPACES OF FINITE DIMENSION 

We would like to know whether or not the eigen
vectors of a self-adjoint operator span the space. In 
finite dimensions, it is a general result that the 
generalized eigenvectors of any linear operator do 
span the space. A generalized eigenvector of rank k 
is defined to be a vector 1p for which 

(L - Ay-l1p =F 0, 
but 

(L - A)k1p = O. 

Note that this implies that A is an eigenvalue, since if 
we define 

then 
L4> = .14>. 

The following theorem indicates an interesting 
relationship between the generalized eigenvectors of a 
linear operator L and those of its Hermitian con
jugate L *. 

Theorem I 7: Let A be an eigenvalue of L; then X 
is an eigenvalue of L*. Furthermore, to any chain of 
maximum length k of generalized eigenvectors of L, 
namely, vectors 1pl' 1p2, ..• , '1jJk such that 

1jJj = (L - A)J-l1pl, 

there corresponds a chain of length k of generalized 
eigenvectors of L *, namely, vectors 4>1' 4>2' ••• , 4>k 
such that 

and such that 
(4)i' 1p;) = (jij' 

The proof of this hinges on the result8 that 

(L - A)1p' = 1p (2) 

has a nontrivial solution 1jJ' =F 0 if and only if 1p is 
orthogonal (via the positive-definite scalar product) to 
every solution of 

(L* - ).)4> = o. (3) 

Consider the simplest case, k = 1. If Eq. (3) has only 
the trivial solution, 4> = 0, then Eq. (2) would have a 
nontrivial solution. The vectors 1p and 1p' would form 
a chain of length 2, in contradiction to the assumption 
that k = 1. Hence L * must have an eigenvector 
corresponding to eigenvalue X, and this eigenvector 
cannot be orthogonal to 1jJ by the same reasoning. 
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The generalization of this argument to chains of 
arbitrary length is not difficult. 

Note that whenever L has a generalized eigenvector 
of rank greater than 1, then it has an ordinary eigen
vector"P satisfying Eq. (2). This is the key point in the 
proof of the main results of this section. 

Theorem 2: The eigenvectors of a self-adjoint 
operator L span the space Sunless L has a null 
eigenvector which is orthogonal to every other 
eigenvector of L. 

To prove this, suppose that the eigenvectors of L 
do not span S; then there must be at least one general
ized eigenvector of rank greater than 1. Hence we 
have vectors "P and "P' satisfying Eq. (2), where "P is 
an eigenvector of L corresponding to some eigenvalue 
A. Suppose it is real. Then, 

Thus, if it is real, "P is null; if it is not real, "P is null by 
virtue of Eq. (1). We have shown that the set of 
eigenvectors will be complete unless at least one of 
them is null. Now let us consider the scalar product 
of"P with the other eigenvectors of L. By Eq. (1), this 
scalar product must vanish except for eigenvectors 
corresponding to eigenvalue 1 In the case that it is 
real, the existence of such eigenvectors will depend on 
the degeneracy of the eigenvalue. For complex it, 
Theorem 1 and the remark at the end of Sec. II 
guarantee at least one such eigenvector. However, for 
either case, let cp be any eigenvector of L corresponding 
to eigenvalue ~ (which is the same as it, of course, if 
it is real). Then, 

Hence "P is orthogonal to all the eigenvectors of L. 
The converse of Theorem 2 is also true; we state it 

below as a separate theorem since it will be extended 
in Sec. IV to spaces of infinite dimension. For finite 
dimensions, the two theorems together provide a 
necessary and sufficient condition for the eigenvectors 
of a self-adjoint operator to span the space, namely, 
the absence of a null eigenvector orthogonal to all 
other eigenvectors. It is interesting to note that such 
eigenvectors are associated with the simultaneous 
vanishing of both the factors in Eq. (1). 

The()rem 3: If a self-adjoint operator L has a null 
eigenvector which is orthogonal to every other eigen-

This follows almost trivially from one of the 
properties of the scalar product as defined in Sec. I, 
for if "P were such an eigenvector, it would be orthog
onal to the subspace spanned by the eigenvectors of 
L. If this were the whole space S, "P would have to be 
the zero vector. 

IV. SOME REMARKS ON THE GENERAL CASE 

Once we abandon the terrain of finite-dimensional 
spaces, many simple ideas have to be replaced by more 
abstract notions. The question of the completeness of 
the eigenvectors of an operator, for example, is 
generally not an important one since many quite 
reasonable operators have no eigenvectors at all. 
Instead the analogous problem is that of the spectrum 
of an operator, which for Hermitian and normal 
operators is solved by the spectral theorems. It is not 
our ambition here to attempt an extension of the 
formidable machinery of spectral theory to self
adjoint operators in indefinite metric spaces, however 
desirable such an extension might be in principle. 
Fortunately, most physicists are generally content to 
circumvent these difficulties by tricks such as "normal
ization in a box," which convert the continuous 
spectrum into a discrete spectrum, and to equip the 
operator with properly normalized eigenvectors. We 
will sidestep the problem of whether or not this 
procedure is valid and instead investigate a few of its 
consequences. Suppose that when a self-adjoint 
operator is supplied with eigenvectors, these eigen
vectors do span the space in the sense of convergence 
in the topology defined by the norm 

1l"P112 = ("P, "P) = (tp, W)· 

In this case, we can show that complex eigenvalues 
must occur in complex-conjugate pairs. 

Lemma 1: If the eigenvectors of a self-adjoint 
operator L span the space S and if A is a complex 
eigenvalue of L, so is 1 

Assume the contrary. Let "PI be an eigenvector 
corresponding to complex eigenvalue it such that X is 
not an eigenvalue. Then, according to (1), 

("Pk, "PI) = 0, 

where "Pk is any eigenvector, including "Pl' Since L 
has a complete set of eigenvectors, for any cp in S we 
have 

N 

CPN = ! (Xi"Pi 
vector of L, then these eigenvectors do not span the such that 
space S. 

;=1 
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is arbitrarily small for sufficiently large N. Consider 

I(<p, 1J11)1 2 = 1(1) - <PN' 1J11)1 2 = 1(1) - 1>N' 171J11)1 2 

~ 111> - <PNIIII171J1III = 111> - <PNIIII1J1III. 

This can be made arbitrarily small by choosing N 
large enough, so in fact 

<1>, ?PI) = 0 

for any <P in S. But this is only possible if 1J1I = 0; so 
there must be some k for which 

(?Pk' ?PI) =;f= O. 

Then, by (1), this ?Pk must correspond to eigenvalue 1. 

Reasoning analogous to that used in the proof of 
Lemma 1 implies that Theorem 3 remains valid in the 
general case. 

We have assumed that by some means the contin
uous spectrum of L has been replaced by a discrete 
spectrum. It seems reasonable to conjecture that the 
resulting operator has only a discrete spectrum; i.e., 
every A in the spectrum of L is actually an eigenvalue. 
But the spectrum of L also contains the residual 
spectrum; this is made up of those values of A for 
which the closure of the range of L-A is a proper 
subset of S, but which are not eigenvalues. The next 
lemma shows that operators of the type we have 
been discussing have no residual spectrum, so that 
our speculation is correct. 

Lemma 2: A self-adjoint operator with a complete 
set of eigenvectors has no residual spectrum. 

Suppose A is such that the closure of the range of 
L-A is a proper subset of S. We must show that A is 
an eigenvalue. There is some <P in S such that 

(<p, (L - A)1J1) = 0 

for all1J1 in S. But then 

«L * - ).)1>, ?p) = 0 

for all1J1 in S, which implies that 1> is an eigenvector of 
L * with eigenvalue l The vector 171> is therefore an 
eigenvector of L with eigenvalue ).. But, according to 
Lemma 1, if ). is an eigenvalue, so is A. 

An interesting application of the results of this 
section' is in allowing a slight weakening of the 
quarantine condition imposed by Lee and Wick on 
their models to guarantee a unitary S matrix. 9 They 
require that any eigenstate of the Hamiltonian satisfy 

(4) 

and furthermore that no null eigenvector correspond 
to a real eigenvalue. However, if we agree that 
requiring the eigenstates of the Hamiltonian to span 
the space is reasonable on other grounds, then this 
assumption plus the inequality (4) is sufficient, for 
completeness would require that any null eigenvector 
corresponding to a real eigenvalue have a nonzero 
scalar product with some other degenerate eigenvector. 
Let ?PI be the null eigenvector and 1J12 another eigen
vector with the same eigenvalue, normalized so that 

and 

Then H would have the eigenvector 

?P = ?PI - ?P2 
such that 

which violates inequality (4). Hence, this inequality 
and the assumption of completeness of the eigenstates 
of H rules out any eigenstate with real eigenvalue 
being null. 

* Work supported in part by the U.S. Atomic Energy Commission. 
1 T. D. Lee and G.·C. Wick, Nucl. Phys. B9, 209 (1969). 
2 T. D. Lee and G.·C. Wick, Nucl. Phys. BI0, 1 (1969). 
3 T. D. Lee and G.·C. Wick, Phys. Rev. D 2, 1033 (1970). 
• E. C. G. Sudarshan, "Indefinite Metric and Nonlocal Field 

Theories," in Fundamental Problems in Elementary Particle Physics, 
Solvay Institute 14th Physics Conference (Interscience, New York, 
1968), pp. 97-127. 

5 A. M. Gleeson and E. C. G. Sudarshan, Phys. Rev. D 1, 474 
(1970). 

• L. K. Pandit, Nuovo Cimento Suppl. 10, 157 (1959). 
7 This is a paraphrase of a result in B. Friedman, Principles and 

Techniques of Applied Mathematics (Wiley, New York, 1956), p. 
131. This reference provides the details of the proof. 

S For a proof, see B. Friedman, Ref. 7, p. 45. 
9 Sudarshan's criticism of the work of Lee and Wick centers on 

the claim that the restriction (5) must break down in higher sectors 
of a field-theoretic model. 
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The propagation of a random electromagnetic field in a uniform medium is investigated. It is assumed 
that the two-point mutual coherence y is stationary over an initial plane. It is shown that the mean 
intensity will be conserved if and only if y(kx , k.), the spectrum of y, is zero for k; + k! > k 2 , where k 
is the wavenumber in the medium, meaning that evanescent waves are not considered; and it is proved 
that, under this condition, the transverse coherence is unchanged from plane to plane. 

I. INTRODUCTION 

Many modern problems involve electromagnetic 
fields which have been spatially randomized by such 
processes as passage through a turbulent dielectric. 
In this paper we consider such a field after randomiza
tion by such processes and its propagation from an 
initial plane on which the mutual coherence is sta
tionary into a homogeneous isotropic medium. More 
specifically, we determine the mutual coherence 
function in the medium in terms of the mutual coher
ence on the initial plane. Because of the existence of 
turbulence in the ionosphere and in tropospheric 
layers, this geometry is applicable to many problems 
and is, of course, different from that which is con
sidered in the well-known van Cittert-Zernike theorem 
in which a small planar source is considered. An 
infinite plane source has been considered by Beran,l 
who derived a result which may be considered as the 
high frequency case (for isotropic waves) of one of 
the general results we prove in this paper. The more 
general results obtained here follow from the inclusion 
of the assumption that the mean intensity will remain 
constant for a lossless medium. We find that the 
spectrum of the mutual coherence, y(k" , ky), is 
nonzero only for k; + k; ~ k2, where k is the wave
number in the medium, and that the transverse 
coherence propagates unchanged. Beranl showed pre
viously that mutual coherence is conserved if 
k; + k~ «k2. The present restriction on the spec
trum can be interpreted, in terms of the angular 
spectrum of plane waves,2 to mean, consistently, 
that evanescent waves are not included. (If such 
waves are generated during the randomization, they 
will be rapidly attenuated in any case.) 

Because we are treating the propagation of an 
electromagnetic field in a uniform isotropic medium, 
we can employ the scalar wave equation because the 
rectangular components of the electromagnetic field 
obey the scalar wave equation in such media.3 The 
mutual coherence is usually taken between similar 
polarizations, but this interpretation is not required 

and our results also apply to the coherence between 
cross polarizations. 

II. BASIC FORMULATION 

We consider the propagation of a wave "P(r) 
obeying the scalar wave equation 

(1) 

As usual, "P(r) represents a monochromatic wave with 
ko = wlc and k 2 = ERk~. We shall assume that the 
boundary values are given over the z = 0 plane, use 
Green's theorem, and obtain the Helmholtz
Kirchhoff integral 

"P(r) = ~ fJ(a~(r') G(r, r') - "P(r') aG(r, r'») dS', 
47T un an , 

(2) 

where G(r, r') is an appropriate Green's function and n 
is the outward normal. The integral is over the plane 
z = 0, the contribution over the infinite hemisphere 
having been eliminated by the application of the 
Sommerfeld radiation condition. We employ the 
Green's function 

G(r, r') 

exp {jk[(x - X')2 + (y - y,)2 + (z _ Z')2]t} 

= [(x - X')2 + (y - y')2 + (z _ Z')2]! 

exp {jk[(x - X')2 + (y - y')2 + (z + Z')2]!} 

[(x - X')2 + (y - y')2 + (z + Z')2]t 
(3) 

Then G(r, r') = 0 on the boundary plane. On this 
plane, the outward normal is in the -z direction. 
Consequently, Eq. (5) takes the form 

"P(r) = ..!. ff"P(r') oG(r, r') dS'. (4) 
47T oz' 

Equation (4) is a standard form.3 We now cast this 
equation into a form more useful for our purposes by 

1211 



                                                                                                                                    

1212 D. J. TORRIERI AND L. S. TAYLOR 

noting that by direct calculation 

OG(r,r')! = _ 2Z(jk _ !)e ikR = -2 i(e ikR
) , 

OZ' .'=0 R2 R oz R 

(5) 
where R = [(x - x'? + (y - y')2 + Z2]!. Thus 

1p(r) = - -.L ~ If1p(r') eikR 

dS'. (6) 
27T OZ R 

Using Eq. (6), we now obtain the following expression 
for the mutual coherence function4 y(rl' r2) = 
(1p(rl)1p * (r2», in the space Z > 0 in terms of the 
mutual coherence on the boundary plane: 

1 a 0 If If eiklrl-r'l 

y(rl' r2) = 47T2 OZI OZ2 dS dS" Irl _ r'l 

exp Uk Ir2 - r"l) (' ") 
x Yo r, r . 

Ir2 - r"l 
(7) 

The zero subscript has been placed on the function y 
inside the integral as a reminder that it is being evalu
ated over the Z = 0 plane. We shall assume that the 
mutual coherence is spatially stationary on the 
boundary plane, that is, 

yo(r', r") = Yo (x' - x",y' - y") = Yoa, 'Y), (8) 

where ~ = x' - x" and 'Y) = y' - y". We can now 
introduce the Fourier transform relations 

00 

yo(r', r") = 4~2 II dk", dky 
-00 

yo(k"" ky ) = II d~ d'Y) exp [-j(k",~ + ky'Y))Jyo(~, 'Y). 

-00 

(9) 

Substituting in Eq. (7) and reversing the order of 
differentiation and integration, we obtain 

y(rl' r2) 

= ~ fIoo 

dkx dkyyo(kx, ky ) ':J
0 

':J
0 

T(rl )T*(r2), 
(27T) UZI uZ2 

-00 

(10) 
where, for example, 

-00 

X exp U(kxx' + kjJy')J dx' dy'. (11) 

III. EVALUATION OF T(r) 

We evaluate the expression for T(rl ) , using the 
representation of a spherical wave as a sum of ele
mentary cylindrical waves": 

exp (jk Ir - r'l) = [00 AdA Jo(Ap) 

Ir - r'l Jo (.1.2 
- k2)! 

x exp [-(z - Z')[).2 - k2]!], (12) 

where Z - z' > 0, Ir - r'l = [(x - x')2 + (y _ y')2 + 
(z - z')]!, and P = [(x - X')2 + (y - y')2]!. Thus, 
from Eqs. (II) and (12), setting z' = 0 and inter
changing the order of integration, we obtain 

X exp [-Zl(A2 
- k2)!] exp U(k",x' + kyy')], 

with PI = [(Xl - X')2 + (Yl - y')]!. 
(13) 

We introduce polar coordinates, setting x' - Xl = 
PI cos e and y' - Yl = PI sin e and defining k., = 
Kcos tpand ky = Ksin tp. We obtain 

X fll'exp Ukpl cos (e - tp)] de. (14) 

The inner integral is recognized as 27TJO(kpl)' Thus, 
interchanging the order of integration of PI and A, 
we obtain 

T(rl ) = exp [j(k",Xl + kyYI)] 

x LX) PI dPllOO A dAJo(APl)Jo(kpl) 

x (exp [-Zl(A
2 

- k
2
)!]). (15) 

[.1.2 _ k2]! 

The double integral on the right is recognized as the 
Fourier-Bessel integral transform of the term in 
brackets,6 provided that 

l OO I exp [-ZI(A2 - k2)!] I 
A 1 < 00. 

o (.1.2 _ k2)" 
(16) 

This condition is clearly met because the integrand will 
decrease exponentially with A for large A. Thus we 
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obtain 

T(r1) = exp [j(k",X1 + kYYl)] 

x exp [-zl(K2 - k2)i]/(K2 - k2)i, (17) 

where K2 = k; + k;. 

IV. MATHEMATICAL RESULTS 

Our general result is obtained from Eq. (to), using 
Eq. (17). Substituting, we find, upon carrying through 
the differentiation, 

00 

y(rl' r 2) = 4~2 II dkx dkyyo(k"" ky) 
-00 

x exp [- zl(k! + k~ - k2)t] 

x exp [-z2Ck; + k! - k2)'!]* 

x exp {j(kxCXI - x2) + k/YI - Y2)]}' 

(18) 

The validity of Eq. (18) may readily be checked by 
considering the example of an incident plane wave. 
In this case, yo(k", , ky) is a delta function, and we have 
y(rl' r2) = exp [jk(Zl - Z2)], as expected. A con
siderable simplification is available when the mutual 
coherence is assumed to be isotropic in x and y over 
the boundary plane. In this case yo(k", , ky) = yo(K), 
where K = (k; + k!)~. We again set k" = K cos cp and 
k y = K sin cp and define Xl - X2 = S cos band YI -
Y2 = s sin b. As a result, 

y(rl , r 2) = ~ rooK dKyo(K) exp [-zl(K2 _ k2)i] 
41T Jo 
x exp [- z2(K2 

- k2)!J* 

x r1J"exp [jKs cos (cp - b») dcp 

1 Loo = - K dKYo(K)JoCKs) 
21T 0 

x exp [-zl(K2 _ k2)i] 

x exp [-z2(K2 - e)iJ*, (19) 

with s = [(Xl - X2)2 + (YI - Y2)2]!. 

V. THE MEAN INTENSITY 

We readily calculate the mean intensity (/) = 
y(r, r) = <,rp(r}rp*(r», using Eq. (I8). Thus, 

00 

(/) = 4~2 If dk", dkyyo(k"" kg) 
-00 

(20) 

and for the isotropic case 

(I) = - K dKYo(K) lexp [_z(K2 
- k2)iJI 2. (21) 1 Loo 

21T 0 

It is clear from Eq. (21) that if Yo(K) is zero for 
K> k, then (/) is not a function of z. We shall now 
show that if (/) is independent of z, then yo(K) = 0 
for K> k. 

Write Eq. (21) in the form 

(I) = 1.. r
k 

K dKYo(K) 
21T Jo 
+ - K dKYo(K) exp [-2zCK2 - e)!]. 1 100 

21T k 

(22) 

If (I) is independent of z, the second integral on the 
right must also be independent ofz. Setting t = 
[K2 - k2]!, we write this integral in the form 

S = LOOt dtyo([t2 + k2]!)e- tz ', (23) 

where we have set z' = 2z 2 o. Because Yo is piece
wise continuous, we may continue the integral 
analytically into the complex z' plane. The integral 
now represents a Laplace transform. Taking the 
inverse transform of both sides of Eq. (23), we obtain 

L -1 [S] = tYo«t 2 + k2)!). (24) 

Since S is not a function of z', the left-hand side of 
Eq. (24) is a delta function of t or zero. Thus yo«t 2 + 
k2)!) is zero for t > 0, which implies it is zero for 
K> k. QED 

With this result, we may write Eq. (19) in a form 
that is valid for lossless media (k real), 

y(rl' r2) = yes, Z2 - Zl) 

= 1.. r
k 

K dKYoCK)Jo(Ks) 
21T Jo 
x exp [j(Z2 - zl)(k2 - K2)!]. (25) 

Since yo(K) = 0 for K > k, we may extend the inte
gral to infinity: 

1 foo yes, Z2 - Zl) = - K dKYo(K)Jo(Ks) 
21T 0 

x exp [j(Z2 - zl)(k2 
- K2)!]. (26) 

We observe that,in the transverse plane Zl = Z2 = Z, 

Eq. (26) reduces to 

1 foo yes, z) = - K dKYo(K)Jo(Ks) = roes). (27) 
21T 0 
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In order to arrive at the final result in Eq. (27), we 
observed that the integral was the inverse Hankel 
transform. We have thus demonstrated that the 
coherence function propagates unchanged from plane 
to plane. A restricted form of this result was derived 
by Beran,1 using an approximation for the Green's 
functions. 

We may easily extend our result to anisotropic y, 
beginning with Eq. (20). We find, corresponding to 
Eq. (23), 

S' = II dkllJ dk,/yo(kllJ • kll) 

k x
2
+k.

2
>k

2 

2 2 2 ! x exp [-2z(k", + kll - k) ]. (28) 

where S' is not a function of z. Using the same trans
formations and converting to polar coordinates in the 
k plane. we obtain 

S' = i''') e-z't dt fit dcptYo«k2 + t2)! cos cp, 

(k 2 + t2)! sin cp). (29) 

We again take the inverse Laplace transform, and find 
that if yo(kllJ , kll) ~ 0 for all (kllJ , k ll ), then yoCkllJ • kll ) = 
o for k; + k! > k2• We then obtain, in an exactly 
similar manner to Eq. (27), that 

Y(XI - X2 ,Yl - Y2, z) = yo(x1 - X2,Yl - Y2) (30) 

is valid for anisotropic waves. 

VI. LONGITUDINAL SEPARATIONS 

When y(kllJ , kll) = 0 for k~ + k! > K~ and 

K! IZ2 - zll « 8k3
, 

our general expression, Eq. (I8), may be simplified 
using 

[k! + k! - k2]! = -jk + j(k! + k!)/2k (31) 

and observing that 

exp [j(Zl - z2)(k~ + k!)/2kJ 

-'k 
= J .1"{exp Uk(~2 + 1]2)/2(ZI - Z2)J}. (32) 

27T(ZI - Z2) 

Substituting, we find 

y(fl' f 2) = - Uk exp [jk(Zl - z2)]/27T(Zl - Z2)} 

X .1"-l{yo(kllJ , k
ll

) 

X .1"{exp Uk(;2 + r/)/2(zl - Z2)J}} 

= {-jkexp [jk(ZI - z2)J/21T(Zl - Z2)} 

X yo($, 'Yj) * exp [jk(e + 'Yj2)/2(Zl - Z2)J. 

(33) 
where the asterisk indicates the convolution. 
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The integral equation 

faIT (1 u(r', 0') r' 
f(r,O) = Jo Jo [r2 + r'2 _ 2rr' cos (0 _ O')]l (1 _ r")! dr' dO' 

arises in connection with the problem of the electrostatiC potential due to a charged disk. We solve the 
equation by computing a complete set of eigenfunctions and eigenvalues for the integral operator. The 
eigenfunctions have the form F$.,,(r, 0) = P;:'[(l - r2)t]e±imll, 0 ~ m ~ n, m + n even. Here P;:'(x) is 
the associated Legendre function of the first kind. 

The main result we wish to prove is as follows: Let or,switching to polar coordinates and setting/(r, 0) = 
lCr cos 0, r sin 0), rpCr', 0') = ¢(r' cos 0', r' sin 0'), we 

F;',n(r, 0) = P;:'[(l - r2)t]rimll, have 

o ~ r ~ 1, 0 ~ m ~ n, m + n even. (1) 
Then 

Am n = 1. r«n + m + 1)/2)r«n - m + 1)/2). (3) 
, 7T r«n - m + 2)/2)r«n + m + 2)/2) 

The problem arises in the following way. Suppose we 
wish to find the electrostatic potential due to the 
presence of a charged circular disk when the potential 
on the disk is given. The mathematical problem then 
is to find a function u(x, y, z) continuous for all 
(x,y, z), tending to zero at infinity, and harmonic for 
all (x,y, z) except for (x,y, z) on the disk, x2 + y2 ~ 
1, z = O. On the disk, u is to be equal to a given 
functionl(x, y), We look for a solution of the form 

u(x, y, z) 

= II ¢(x', Y') dx'dy' 
[(x _ X')2 + (y _ y')2 + Z2]! . 

,",2+11,2$1 

Here ¢ is the jump in the normal derivative of u across 
the disk. In order to satisfy the boundary condition, 
we must have 

](x, y) = II ¢(x', y') dx'dy', 
[(x - X')2 + (y - y')2J! 

0:,2+11,2$1 

fCr, 0) 

=i2"i 1 

rp(r',O') r' dr' dO'. 
o 0 [r2 + r,2 _ 2rr' cos (0 _ O')]! 

(4) 

To see why a result such as (2) must hold, we observe 
the following. The problem as described above can be 
solved by separation of variables in oblate spherical 
coordinates, 1 

x = cosh TJ sin'll cos rp, 
y = cosh TJ sin v sin 4>, 
z = sinh TJ cos v. 

The range of the variables is 0 ~ TJ < 00, 0 ~ v ~ 11', 

o S rp ~ 27T. The surface TJ = 0, 0 S 'V ~ 7T/2 corre
sponds to the top of the disk xl! + y2 S 1, z = 0, 
while the surface TJ = 0, 7T/2 ~ v ~ 7T corresponds to 
the bottom of the disk. The solutions found by separa
tion of variables areP;;'(cos 'V)Q~(i sinh TJ)rim</>, m + n 
even, where Q;:'(x) is the associated Legendre function 
of the second kind. The condition m + n even assures 
that the function is single valued on the disk. If we 
take 0 ~ 'V ~ 7T/2 on the disk, the jump in the normal 
derivative of this function across the disk is 

2pm( ) l' dQ;:'(i sinh TJ) 1 ±im</> 
n cos v 1m -- e . 

'1-+0+ dTJ COS'll 

In terms of the usual polar coordinates on the disk, 
we have r = sin'll. Thus from (4) we see that (2) 
holds with 

x 2 + y2 ~ 1, 

1215 
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Unfortunately, the value of Am.n does not seem to be 
readily available, and so we will use a different method 
to compute it. We will derive the result for F~.n(r, 6). 
The result for F;;'.n(r, 6) will follow by taking complex 
conjugates. 

We will use the method of Fourier transforms. We 
note that the left hand side of (2) is a convolution of 
l/r and Gm.n(r, 0), where 

G (r 0) = {F!..nCr, 0) . (1 - r2ri, r < 1, 
m.n' 0, r> 1. 

We will proceed formally to take the Fourier 
transform of the left-hand side of (2) and invert it. 
This can be made rigorous by considering our opera
tions to be taking place in the space of temperate 
distributions.2 

Thus, if Hm.n(p,4» is the Fourier transform of 
Gm.n(r, 0), 

Hm .nCp, 4» 

Using the relations3 

P':(x) = (_1)m[rCn + m + l)jr(n - m + 1)]p~m(x) 

(6a) 
and 

C~,!(x) = 2m r(n + m + 1) (_1)n rem + 1) 
r(2m + 1) r(n - m + 1) 

X p~m(x)(1 - x2rm
/
2

, (6b) 

where Ct(x) is a Gegenbauer polynomial, we find 

[1 P:;'[(l - r
2
)!] rJm(pr) dr 

Jo (1 _ r2)! 

= r(2m + 1) e rm+lCm!![(l _ r2)!]J (pr) dr. 
2mr(m + 1) Jo n m m 

The integral on the right has been tabulated.4 Using 
this result, we find 

r1 
P:;'[(1 - r

2i] rJm(pr) dr 
Jo (1 - r2)! 

= [r(2m + 1)/2mr(m + 1)]( _1)(n-m)/2 

X (7T/2)! p-!C:;'~~(O)J n+!(P)' 

On substituting in the value5 of C::'~~(O) and sub
stituting in (5), we find 

Gm .n(p, 4» 

= H2/7T)!p-!Jn+!(p) 

r«n+m+1)/2)r(2m+1) im(Hl1/2) 
X e 

2mr(m+ 1)r«2m+ 1)/2)r«n-m+2)/2) 

_ 2m-~ -!J () r(Cn + m + 1)/2) eim(H1T/2) 

- 7T P n+! P r«n - m + 2)/2) , 

where in the last step we have used the multiplication 
theorem for the Gamma function. 

Now the (distributional) Fourier transform of l/r 
is 1/21Tp.6 Thus, if I m.n(p,4» denotes the Fourier 
transform 'of Gm.n(r, 6) * (I/r), we have 

1m.n(P, 0) = [(2m-5/2)/1T2]p-!Jn+!(p) 

r«n + m + 1)/2) im(</>+7f!2) 
X e. r«n - m + 2)/2) 

Denote the left-hand side of (2) by Jm.n(r, 0). We have 

Jm.n(r,O) 

= 2m
-! r«n + m + 0/2) e!imlT roo -iJ () d 

1T2 rc(n - m + 2)/2) Jo p n+! P P 

X 1211' eipr cos (8-</»+im</> d4> 

= (_l)mim8 2
m

+! rc(n + m + 1)/2) 
7T r«n - m + 2)/2) 

x lOOp-iJn+!(p)Jm(pr) dp 

= (_1)meim8 2
m 

r2«n + m + 1)/2) 1 
1T r2«n - m + 2)/2) rem + 1) 

(
n + m + 1 m - n 2) 

X 2Fl 2 ' -2- ; m + 1, r . 

In the last step we have used Eq. (9) on p. 48 of 
Ref. 4. Now if we use the identity' 

r(1 + m)P~m[(1 - r2)!] 

= rm2-m
2F l «m + n + 1)/2, (m - n)/2, m + 1; r2) 

and (6), we find 

J m.n(r, 0) 

= 22m 
r2«n + m + 1)/2) r(n - m + 1) F~ nCr, fJ). 

1T r2«n - m + 2)/2) r(n + m + 1) . 

We again apply the multiplication theorem for the 
Gamma function to obtain (2) and (3). This result is a 
partial generalization of a result of Bouwkamp.8 Our 
results agree with his on their intersection. His methods 
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are different from ours. Ashour9 considers an integral 
closely related to ours. However, we believe that his 
result for the eigenvalues is incorrect. 

The set F;.n(r, 0), 0 ~ m ~ n, m + n even, forms 
a complete orthogonal set in the space of functions 
square integrable over th,e unit disk with weight 
function (1 - r2)-!. To see this, we note that the set of 
spherical harmonics 

Y ( e) = (2n + I (n - m)!)!pm( ) ill10 
" ,In v, n cos v e , 

417 (n + /11)! 
Iml ~ n, 

are a complete orthonormal set on the unit sphere, 
i.e., 

l~" dol"sin vYn',m'(v, O)Y",,,,(v, 0) dv = b",n,o",.m" 
o 0 

(7) 
and,if lis square integrable over the sphere, i.e., 

f"de fSin v li(v, oW dv < 00, (8) 

then/may be expanded in a Fourier series with respect 

to the Yn ,1tI' 

Now, for 17 + m even, Yn .",(17 - v, e) = Y".m(v, e), 
while, for n + m odd, Y".m(17 - v, 0) = - Yn.m(V, e). 
Thus, if](17 - v, e) = lev, e), the Fourier expansion 
off will contain only terms with 17 + m even. Thus, if 
lev, e) is defined and square integrable over the upper 
hemisphere, we can extend it to the lower hemisphere 
by nv, e) =/(17 - v, e), 77/2 < v < 17. Then the 
extended 1 will be square integrable over the sphere 
and have a Fourier expansion in terms of the Yn.m(v, e) 
with n + m even. Thus the set 2! Y".m(v, e), n + m 
even, is a complete orthonormal sequence on the 

upper hemisphere, ° < v < 1712, ° ~ e ~ 277. Now 
make the change of variable sin v = r. This maps the 
hemisphere into the disk. The condition of square 
integrability [(8) with 17 replaced by 1712] now becomes 
[with/(r, e) =l(sin-1 r, e)] 

JbdeJl r ! I/(r, 0)1 2 dr < 00. 
o 0 (1 - r2) 

The complete orthonormal set now becomes 

(
2n + 1 (n - m)!)! P;:'[(l _ r2)!]e imO, Iml ~ 17, 

217 (n + m)! 

(9) 

m + n even. 
If m ~ 0, this is 

(
2n + 1 (n - m) !)!Ft..n(r, 0) 

2 (n + m)! 

and, if m < 0, this is 

(_1)",(2n + ~ (n + m)!)!F=m.n(r, e). 
277 (n - m)! 

Thus, if/(r, e) satisfies (9), we may write 

OCJ n 

1= L L (e;;'.n F;;',,, + e-;;'.,.F-;;,.,,), 
7/=0 m=O 

e = -- de 
.L 2n + 1 (n - m)! 12

" 

In.'' 217 (n + m)! 0 

xII r l . F-;;,,,,(I', e)/(r, e) dr, 
o (I - r2)2 

- _ _ III 2n + 1 (n - /11)! 12
" 

em n - ( I) de 
. 27T (/1 + m)! 0 

xII rIFt, n(r, e)/(r, e) dr. 
0(1 - r2)'Z ' 

(10) 

We now consider the integral equation (4), with I 
satisfying (9). This equation will have a solution in the 
class of functions satisfying 

ff"r(1 - 1'2)~ I~(I', e)1 2 dl' de < 00 

if and only if 

~ i _1_(2n + 1 (n - m)!)-l 
n=O m=O A~,n 217 (n + 111)! 

(11) 

X (le;;;.,,1 2 + 1c;;;,nI2
) < 00. (12) 

If (12) is satisfied, the solution to (4) is 

~(r, e) 

(13) 

with the e's given by (10). 
It would be desirable to give an alternate description 

of the range of the integral operator. We can state a 
necessary condition for a function to be in the range of 
the operator. Let g(r, e) satisfy (11). An application 
of Holder's inequality shows that if 1 < p < t, 

f" f r Ig(r, e)I P dr de < 00, (14) 

i.e., g E Lp(Q), where Q is the unit disk. Now let 

1
2"11 r'g(r' e') 

fer e) = 'dr' d(}'. 
, 0 0 [r2 + r'2 - 2rr' cos (e _ e')]! 
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If we apply a theorem of Mikhlin,IO we see that f has 
generalized first derivatives in Lp(Q). 
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This paper presents the necessary and sufficient conditions that a Riemannian geometry have as its 
source a massless complex scalar field. 

1. INTRODUCTION 

The purpose of this paper is to show that a complex 
scalar field satisfying the massless Klein-Gordon 
equation can be geometrized in the spirit of the 
already unified field theory. Partial results to this 
problem have been obtained previously by Penney.1.2 
In previous work3 •4 we have shown how to geometrize 
a real scalar field and null and non null electromagnetic 
fields using a certain classification of the Ricci tensor. 

In Sec. 2 we obtain the algebraic conditions in 
terms of this classification. The differential conditions, 
which together with the algebraic ones are necessary 
and sufficient for a Riemannian geometry to have as 
its source a complex scalar field, are derived in Sec. 3. 
In the final section we present a brief discussion. 

2. ALGEBRAIC CONDITIONS 

Of the various classes for the Ricci tensor RaP we 
shall need mainly C ll.nd B1 • If RaP belongs to class 
C±, we have 

(2.l) but with R . R = 0, the plus sign corresponding 
to class B1a , and the minus sign to class BIb' 

We want to find necessary and sufficient conditions 
on a Riemannian geometry in order that it have as 
its source a complex (massless) scalar field 4>. We 
assume that 4>.a cannot be made real by multiplying 
by a phase factor. 

From the Lagrangian 

L = ..J..aI 
'f' tf.a.' 

we obtain the equations of motion 

..J. ;a = ° '1'. a 

as well as the stress-energy tensor 

TaP = 4>.(a~.P) - tgap4>.Y~·Y' 

(2.2) 

Because of the Einstein field equations, the Ricci 
tensor is then given by 

(2.3) 

(2.1) and the Ricci scalar by 

where Ra is a complex vector which cannot be chosen 
real, R • R ;;t:. 0, gall is the metric tensor, and K is a 
constant. The invariant J, defined by 

J = t IR . RI2 - t(R . R)2, 

distinguishes between subclasses Cl± (/ > 0), C2 ± (/ = 
0), and C3± (/ < 0). It is quite easy to show that a 
Ricci tensor of class Bl may be expressed as in Eq. 

(2.4) 

where 4>a is the gradient of 4>. Therefore, we have two 
necessary conditions. RaP must be in class C_ or Bib' 
and R must be given in terms of the corresponding 
complex vector 4>a by Eq. (2.4). 

Conversely, suppose these two conditions are 
fulfilled. The complex vector 4>1Z is determined only up 
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1. INTRODUCTION 

The purpose of this paper is to show that a complex 
scalar field satisfying the massless Klein-Gordon 
equation can be geometrized in the spirit of the 
already unified field theory. Partial results to this 
problem have been obtained previously by Penney.1.2 
In previous work3 •4 we have shown how to geometrize 
a real scalar field and null and non null electromagnetic 
fields using a certain classification of the Ricci tensor. 

In Sec. 2 we obtain the algebraic conditions in 
terms of this classification. The differential conditions, 
which together with the algebraic ones are necessary 
and sufficient for a Riemannian geometry to have as 
its source a complex scalar field, are derived in Sec. 3. 
In the final section we present a brief discussion. 

2. ALGEBRAIC CONDITIONS 

Of the various classes for the Ricci tensor RaP we 
shall need mainly C ll.nd B1 • If RaP belongs to class 
C±, we have 

(2.l) but with R . R = 0, the plus sign corresponding 
to class B1a , and the minus sign to class BIb' 

We want to find necessary and sufficient conditions 
on a Riemannian geometry in order that it have as 
its source a complex (massless) scalar field 4>. We 
assume that 4>.a cannot be made real by multiplying 
by a phase factor. 

From the Lagrangian 

L = ..J..aI 
'f' tf.a.' 

we obtain the equations of motion 

..J. ;a = ° '1'. a 

as well as the stress-energy tensor 

TaP = 4>.(a~.P) - tgap4>.Y~·Y' 

(2.2) 

Because of the Einstein field equations, the Ricci 
tensor is then given by 
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real, R • R ;;t:. 0, gall is the metric tensor, and K is a 
constant. The invariant J, defined by 
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distinguishes between subclasses Cl± (/ > 0), C2 ± (/ = 
0), and C3± (/ < 0). It is quite easy to show that a 
Ricci tensor of class Bl may be expressed as in Eq. 
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where 4>a is the gradient of 4>. Therefore, we have two 
necessary conditions. RaP must be in class C_ or Bib' 
and R must be given in terms of the corresponding 
complex vector 4>a by Eq. (2.4). 

Conversely, suppose these two conditions are 
fulfilled. The complex vector 4>1Z is determined only up 
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to the transformations 

(2.5) 
and 

(2.6) 

Choosing anyone of these as "extremal field" q,~, we 
now ask whether there is a real function 0 (the 
"complexion") such that q,~, given by 

satisfies 

q,[~;(I] = ° 
(2.7) 

(2.8) 

and Eq. (2.2). If so, there exists a complex scalar field 
q, with gradient q,~ satisfying Eqs. (2.2)-(2.4). 

3. DIFFERENTIAL CONDITIONS 

Let us now find necessary and sufficient conditions 
for the existence of such a function O. If 0 exists, 
substitution of Eq. (2.7) into Eqs. (2.8) and (2.2) gives 

q,[~;(I] - iq,;/).(I] = 0, (3.1) 

q,~;~ - iO."cp'~ = 0. (3.2) 

If q,~q,'" ~ 0, multiplying Eq. (3.1) by q,'" and using 
Eq. (3.2), we obtain 

(3.3) 
where 

H = -i[2-1..I"-I..I + -I..I;~-I../]/-I..I"-I..I (I 'I' 'I'[~:(I] 'I'~ '1'(1 'I' '1',,' 

From Eqs. (3.1) and (3.3) we then find 

q,[~;(I] - iq,[~H(I] = O. (3.4) 

It is not hard to show that Eqs. (3.3) and (3.4) are 
equivalent to Eqs. (3.1) and (3.2). We also have 

H(I - N(I = 0, (3.5) 
since 0 is real, and 

H[~;(I] = 0 (3.6) 
due to Eq. (3.3). 

In a similar fashion we can show that, provided that 
q,~~/~ ~ 0, the equations 

0.(1 = Kp , (3.7) 

q,[~:p] - iq,[~K(I] = 0, (3.8) 

are equivalent to Eqs. (3.1) and (3.2), where Kp , 

defined by 

K = -i[2:r.'~-I..I _ -I..IJ:I;~]/-I..IJ:I" (I 'I' 'I'[~;(I] 'I'(I'I'~ '1',,'1', 

satisfies 
(3.9) 

and 
K[~;(I] = O. (3.10) 

Equations (3.4)-(3.6) and (3.8)-(3.10) are conditions 
on the geometry since they are independent of the 
particular choice of extremal field. To see this, note 
that under the transformation (2.5) 

H"_H,, - y.",K,.-K" - y.", 

and under the transformation Eq. (2.6) H" and K~ 
become the negatives of their complex conjugates. 

Thus, if q,~q,'" ~ 0, Eqs. (3.4)-(3.6) are necessary 
conditions on the geometry in order that a function 0 
with the desired properties exist. They are also sufficient. 
Equations (3.5) and (3.6) ensure the existence of a 
real function 0 satisfying Eq. (3.3). Since Eqs. (3.3) 
and (3.4) are equivalent to Eqs. (3.1) and (3.2), q,,,, 
given by Eq. (2.7), satisfies Eqs. (2.2) and (2.8). 

Similarly, when q,~q,'" ~ 0, we find the necessary 
and sufficient conditions to be Eqs. (3.8)-(3.10). 

4. DISCUSSION 

We have found necessary and sufficient conditions 
on a Riemannian geometry so that its source is a 
complex scalar field satisfying the massless Klein
Gordon equation. The algebraic conditions are that 
the Ricci tensor belongs to class C_ or BIb and that 
the Ricci scalar be given in terms of the associated 
complex vector q,~ by Eq. (2.4). If q,,,q," ~ 0, the 
differential conditions are given by Eqs. (3.4)-(3.6), 
if q,,,~" ~ 0 by Eqs. (3.8)-(3.10). If neither q,,,q," nor 
q,~~" vanish, either set of conditions will do. 

The scalar field q, is not uniquely determined by 
these conditions. 0 is determined up to an additive 
arbitrary constant 00 for any choice of q,~. A different 
choice of extremal field may yield a different 0, but q,,, 
is determined uniquely up to Egs. (2.5) and (2.6) with 
y = 00 , It follows that q, is unique up to the transfor
mations 

(4.1) 

(4.2) 

(4.3) 

where q,o is another arbitrary constant. This is not 
surprising. Given a complex scalar field which satisfies 
Eqs. (2.2)-(2.4), then the fields obtained from q, by 
transformations (4.1)-(4.3) also satisfy (2.2)-(2.4). 

It should be noted that our geometrization procedure 
also holds for the degenerate case for which q, may 
become real provided that q,." is not null. (Of course, 
the algebraic conditions are then different.) At points 
where q,." is real (or real but for a phase factor) and 
null, our procedure breaks down. 

In the nondegenerate case the equations of motion 
(2.2) follow from Eq. (2.8) and the contracted Bianchi 
identity, just as in the case of a real scalar field.a•5 
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This paper presents the necessary and sufficient conditions that a Riemannian geometry have as its 
source a real or complex massive scalar field. 

1. INTRODUCTION 

In a recent paperl a classification of the Ricci tensor 
was obtained which enabled us to geometrize2 the null 
and nonnull electromagnetic fields3 as well as the reall 

and complex4 massless scalar fields. The present 
article deals with the geometrization of a massive 
scalar field. This problem has been tackled previously 
by PenneyS and Nagaral for the real field and by 
Peres7 and Kuchar8 for both the real and the complex 
case. These authors expressed the conditions for 
geometrization explicitly in terms of the Ricci tensor, 
whereas in our approach the Ricci tensor is involved 
only implicitly. This results in considerable simplifica
tion. 

The notation employed here is as follows. Tensor 
indices are given by small Greek letters; the summation 
convention is used throughout. Ordinary differentia
tion is indicated by a comma, covariant differentiation 
by a semicolon. Round brackets around suffixes 
denote symmetrization; square brackets denote anti
symmetrization. A bar over a quantity stands for 
complex conjugation of that quantity. "Re" stands 
for the real part, "1m" for the imaginary part of a 
number. The signature and the Ricci tensor are defined 
as in Ref. 3. 

2. THE MASSIVE REAL SCALAR FIELD 

The Ricci tensor for a real massive scalar field cP 
satisfying the Klein-Gordon equation 

cp'~;~ + ",2cp = 0 

has the trace-free part 

S~p = - 1>.~1>.P + !g~{J1>.1 1>.1 
and the trace 

R = - 1>.1CP·1 + 2",2cp2. 
We shall assume that 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

anywhere in the region D of space-time under con
sideration. The degenerate case with vanishing 1>.~ 
may be treated separately. We wish to find necessary 
and sufficient conditions on a Riemannian geometry 

for the existence of a real scalar field cp satisfying 
(2.1)-(2.4) at each point in D. Let us exhibit sufficient 
conditions. 

Supposel 

S~{J belongs to class A_ (2.5) 

at every point of D. This defines a nowhere vanishing 
vector field A~ uniquely up to sign satisfying (2.2) 
with CP.~ replaced by A~. Assume further that the 
condition 

(2.6) 

is obeyed by the geometry, and define the geometrical 
entity 

If 

H.~ =;6 0 

anywhere in D and if the vectors 

(2.7) 

H.~ and A~ are linearly dependent (2.8) 

at every point in D, then 

H.a. = ",Aa. 

for some nonzero '" (defined by the geometry up to 
sign only). Assuming that ft is a constant, i.e., that 

"'.~ = 0, (2.9) 

we define a real scalar function cp by 

cp=H/",. 
Since CP.~ = A~, cp satisfies (2.2)-(2.4). That cp also 
obeys (2.1) follows from the contracted Bianchi 
identity and (2.4). It is easily verified that (2.5)-(2.9) 
are not only sufficient but also necessary conditions 
for the existence of a real scalar function 1> with the 
desired properties. These conditions determine 1> up 
to sign only. Conversely, (2.1)-(2.4) are invariant 
under such a change of sign. 

It should be noted that the massless case ('" = 0) 
has to be treated separately.l 

3. THE MASSIVE COMPLEX SCALAR FIELD 

The complex massive scalar field 1> satisfying (2.1) 
and its complex conjugate is geometrized in a similar 

1220 
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fashion. The Ricci tensor whose source is cf> has trace
free part 

and trace 
S,.p = - cf>.(,.;P.PI + !g,.Pcf>.1;P·1 

R = - cf>.if)·7 + 2",2cf>;P. 

(3.1) 

(3.2) 

We shall assume that cf>.,. is nowhere proportional to a 
real vector in the region D of interest. The degenerate 
case where cf>.rJ. is essentially real in a subregion of D 
may be treated separately in an analogous manner. 

We shall exhibit sufficient (and necessary) condi
tions on the geometry in order that there exist a complex 
scalar field cf> satisfying (2.1), (3.1), and (3.2). We 
shall also show how to find cf> provided that these 
conditions are satisfied. 

Supposel 

S,.p is in class Bib or C_. (3.3) 

This specifies a vector ArJ. (which is nowhere propor
tional to a real vector) up to the transformations 

(3.4) 
and 

(3.5) 

Conditions involving ArJ. (explicitly or implicitly) can 
be geometrical conditions only if they are invariant 
under (3,4) and (3.5). 

Suppose further that 

R + A7.1.fi' > O. (3.6) 

Then, as in the previous section, we may define the 
geometrical entity 

H = [HR + A1A1)]1. 

We also define BrJ. = Re ArJ. and CrJ. = 1m ArJ. and note 
that these vectors are linearly independent due to the 
fact that ArJ. is not proportional to a real vector. 
Assuming 

(3.7) 
and 

H,IT.' BIT.' and C,. are linearly dependent, (3.8) 

we have 
H,IT. = aB,. + bCIT. for some a, b. 

We note that (3.8) is a geometrical condition since the 
B-C plane is invariant under (3.4) and (3.5). Under 
these transformations 

a --+ a cos "p + b sin "p, b --+ -a sin "p + b cos "p 

and 
a--a, b-- -b, 

respectively. Denoting the nonzero invariant a2 + b2 

by ",2, we require that", (defined by the geometry up to 
sign) be a constant, i.e., that 

"'.IT. = o. (3.9) 

The function (] given by 

a = '" cos (], b = - '" sin (] 
is determined up to additive multiples of 217 for any 
given choice of A .. but transforms as (] --+ (] +1p, 
(] --+ -(] under (3.4) and (3.5), respectively; that is, 
(3.4) leaves AlT.eicr invariant and (3.5) maps it into its 
complex conjugate. 

The geometrical condition 

(3.10) 

is then necessary and sufficient for the existence of a 
function (J satisfying 

(J.IT. = (",!H) 1m (A .. eia
). 

() is determined up to an additive constant (Jo for any 
given A .. , remains invariant under (3.4), and changes 
sign under (3.5). Since 

H ... = '" Re CArJ.eicr), 
we have 

[(HI",)i9L. = A .. ei(cr+9l. 

The complex scalar function cf> given by 

cf> = CH!",)ei9 

is, therefore, defined by the geometry up to 

cf> --+ cf>ei9o 

and 

and has the gradient 

(3.11) 

(3.12) 

Therefore, cf> satisfies (3.1) and (3.2). That it also 
satisfies (2.1) follows from the contracted Bianchi 
identity and the fact that AIT. is nowhere proportional 
to a real vector. The conditions (3.3) and (3.6)-(3.10) 
are easily seen to be necessary as well as sufficient 
conditions on a Riemannian geometry in order that 
it have as its source a complex scalar function cf> 
satisfying the Klein-Gordon equation. Provided that 
these conditions are satisfied, we have shown how to 
extract cf> from the geometry uniquely up to the 
transformations (3.11) and (3.12). Conversely, from 
any solution cf> of (2.1), (3.1), and (3.2), others may be 
obtained by applying transformations (3.11) and (3.12). 

Again, we see that the massless case must be 
considered separately. 
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A bounded gravitating system in an asymptotically hyperbolic Friedmann space is examined. The 
Bondi-Metzner-Sachs (BMS) group is shown to be the asymptotic symmetry group. The BMS generators 
and the Weyl tensor are used to construct an asymptotic invariant which allows the energy of the 
gravitating system to be calculated without infinite contributions from the cosmological dust. It is shown 
that a bounded gravitating system in a cosmological space can be understood in much the same 
manner as a similar physical system in an asymptotically flat space-time. 

1. INTRODUCTION 

Gravitational radiation in asymptotically flat space
times has been intensively studied over the past 
decade. l Asymptotic flatness is an excellent approxi
mation for a system whose boundaries are large 
compared to the "disturbance" and small compared 
to the radius of curvature of the universe. In this 
context, general relativity has been brought within 
the mainstream of physics. Questions of advanced and 
retarded gravitational waves have been clarified and the 
concepts of the momentum and angular momentum 
of both the waves and gravitating object have been 
defined. Bondi et 01.2 and Sachs3 have identified the 
mass and mass loss of a bounded radiating system, 
and Penrose4. 5 and Tamburino and Winicour6 have 
introduced invariant techniques to relate the momenta 
to the Bondi-Metzner-Sachs (BMS) group, the 
symmetry group of asymptotically flat space-time.5- 7 

This paper considers how these concepts can be 
extended to a cosmological space-time. 

For cosmological studies, one examines gravitational 
radiation propagating over large distances where the 
effects of matter and the expansion and curvature of 
the universe must be included. HawkingB has used the 
Newman-Penrose method of asymptotic expansions 
along null rays to study outgoing radiation in an 
expanding dust-filled universe. With the boundary 
condition that space-time asymptotically approaches 
an hyperbolic Friedmann universe, Hawking found 
the asymptotic symmetry group to have no super
translations and to be the same as the isometry group 
of the unperturbed Friedmann model, i.e., a group 
isomorphic to the six-parameter homogeneous Lorentz 
group. With no translations as symmetries, he 
defines the mass as an integral over a spacelike 2-
surface sliced from an outgoing null surface. In the 
limit of future null infinity, this mass expression 
becomes infinite because of the infinite amount of 

matter which contributes to the mass via the Ricci 
tensor. Hawking points out that his mass expression 
can be separated into a part which remains finite and 
a part which becomes infinite. The finite part is then 
interpreted (following Bondi and Sachs2 •3) as the 
mass of the bounded perturbing source plus the 
energy of the outgoing radiation. 

In this work we consider the same physical system 
as Hawking, but take a different approach. The 
"mass renormalization" is achieved by constructing 
an asymptotic invariant from the intrinsic geometric 
quantities of the system, and, since a meaningful 
energy expression should be defined in an invariant 
manner which directly relates the energy to a sym
metry, we are led to a view of the asymptotic sym
metries which is alternative to Hawking's. Following 
Penrose,5 the asymptotic symmetry group of the 
physical manifold is defined as the group of conformal 
motions of the boundary of the compactified manifold. 

The conformal technique of Penrose5 is used to 
construct future null infinity (J+). The Einstein field 
equations, in the conformal space, then tell us that J+ 
is a shear-free null hypersurface. Solving the Killing 
equations on J+ provides the BMS group as the 
asymptotic symmetry group. 

To measure the energy of the bounded source plus 
gravitational radiation, an asymptotic invariant is 
constructed which is a function of the Weyl tensor, the 
normal vector field of the outgoing null hypersurfaces, 
and the asymptotic Killing vectors. For an asymp
totically flat space-time, with Newman-Vnti9 or 
Bondi-Sachs2•3 coordinate conditions, the invariant 
reduces to the usual Bondi mass result. The asymptotic 
solutions of the Einstein field equations (in their 
Newman-PenroselO form) allow us to evaluate the 
mass and mass loss of the radiation and bounded 
source in an asymptotically Friedmann universe. 
There are no infinities in the result since the Ricci 

1222 
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tensor, in which the cosmological matter appears, 
plays no role in the energy expression. 

The question of boundary conditions is interesting. 
Penrose has shown,ll for asymptotically flat spaces, 
that a shear-free null J+, together with asymptotic 
simplicity and the asymptotically vacuum Bianchi 
identities (which are conformally covariant), provides 
the peeling of the Weyl tensor. This is fully equivalent 
to the Newman-Penrose condition 'Yo = 0(,-5). 
However, in the asymptotically Friedmann space the 
vacuum Bianchi identities no longer obtain (even 
asymptotically). The existence of a null shear-free J+ 
provides the weak condition 'Y 4 = o(rll) or, if 
sufficient differentiability is also assumed, 'Y4 = 
O(r!I), where r! is a luminosity distance. Conformal 
considerations alone produce no further information 
about the falloff of the Weyl tensor. 

Hawking's boundary conditions were found by a 
physically reasonable approach essentially equivalent 
to examining perturbations of the linearized field 
equations in a background hyperbolic Friedmann 
space. The conditions "Po = O(r-~) and <1>01 = O(r-i), 
have the lowest order (in r-") for which 'ljJo and <POI 
are driven by the gravitational news function and the 
highest order which can be maintained when "P4 = 
O(r-l). These boundary conditions do allow the 
momenta of a bounded gravitating system to be 
evaluated in an invariant manner. 

Section 2 presents the exact hyperbolic Friedmann 
metric in outgoing null coordinates. In Sec. 3, 
Penrose's conformal technique is introduced and 
used to compactify the asymptotically Friedmann 
space. The geometry of J+ is examined, and it is 
shown to be a shear-free null hypersurface. Killing's 
equations are solved on J+ in Sec. 4, and the BMS 
group is found to be the asymptotic symmetry group. 
Section 5 discusses the Tamburino-Winicour linkage 
expressions for asymptotically flat spaces. A new 
asymptotic invariant is introduced which is independ
ent of the Ricci tensor. It is shown to be equivalent 
to the Tamburino-Winicour expression in asymp
totically fiat space-time (vacuum or Einstein-Maxwell) 
when the BMS descriptors are restricted to the 
translations and conformal rotations (I ::;; 1). In Sec. 
6 the new asymptotic invariant is used to define the 
momentum and angular momentum of a bounded 
radiating source in an asymptotically Friedmann 
space-time. 

Appendix A presents Hawking's asymptotic solu
tion of the Newman-Penrose field equations, and 
Appendix B proves the equivalence of the Tamburino
Winicour linkage expression with our asymptotic 
invariant for asymptotically flat space-time. 

2. ASYMPTOTIC FORM OF THE METRIC 

Following Hawking,S we restrict our attention to 
the hyperbolic Friedmann model (dust with zero 
pressure) as an asymptotic metric: 

ds2 = R2(T)[dT2 - dX2 - sinh2 X(d()2 + sin2 () dq:>2)], 

R(T) = A(cosh T - 1), A > O. (2.1) 

The parameter A-I represents the kinetic plus potential 
energy of the matter, and the energy-momentum 
tensor for this model is given byI2 

Tpv = 6AR-1
T,pT. v ' (2.2) 

All the Friedmann metrics are conformally fiat, and 
the work of Infeld and Schild13 provides us with the 
conformal relation between (2.1) and the Minkowski 
metric. In the usual null Minkowski coordinates, the 
Friedmann metric (2.1) can be written as 

ds2 = P(u, r)[du2 + 2 du dr - r2(d()2 + sin2 () dcp2)], 

where (2.3) 

F(u, r) = tA{1 - [u(u + 2r)]-r}2, 

along with the coordinate transformation 

u = eT
-

X, r = eT sinh X. 

We see that the infinite past in Minkowski coordinates 
corresponds to the u = 0 surface and in the following 
work the range of u is restricted to u > O. The six
parameter isometries of the spacelike Friedmann 
hypersurfaces T = const are now seen as isometries of 
the hyperbolas (2 - r2 = const > 1 in Minkowski 
coordinates. 

3. GEOMETRY OF FUTURE NULL INFINITY 

In order to study null infinity in a covariant 
manner, Penrose's conformal technique4 •5•1I is used. 
Null infinity is to be thought of as a boundary to 
space-time consisting of the limit points of null rays. 
By means of a coordinate transformation, finite values 
can be assigned to these limit points. Clearly, in such 
a coordinate system the metric must be singular at the 
points representing null infinity in order that neigh
boring points be infinitely distant. By performing a 
conformal transformation on this metric, it is possible 
to arrive at a conformal metric which is regular at 
null infinity. 

Denoting the physical space metric by gllv, the rela
tion to the conformal metric is14 

(3.1) 

Before proceeding to the compactification of the 
asymptotic Friedmann manifold, it is instructive to 
examine the compactified exact Friedmann manifold. 
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Introducing a new coordinate z = ,-1 and conformal 
factor 0 = ZF-l, we give the metric conformal to 
(2.3) via (3.1) by 

ds2 = Z2 du2 - 2 du dz - (d02 + sin2 () drp2) , (3.2) 

with 

o = (2/A)zu(uz + 2){[u(uz + 2)]! - Z!}-2. 

This conformal metric is manifestly regular (C") in 
the neighborhood of, and at, the hypersurface J+ 
given by z = 0, u finite. It should be noted that the 
conformal factor15 0 (and hence the conformal 
manifold) is ct, but the in-surface derivatives on J+ 
are Coo so that 0 properly determines the geometry of 
J+. By direct differentiation, J+ is found to be a shear
free null hypersurface with nonzero normal O.jt. 

At this point, one may note that the conformal 
metric (3.2) is the same as the compactified Minkowski 
metric and inquire where the difference lies. It lies in 
the fact that the conformal factor for the Minkowski 
compactification is Coo, and the one we have chosen 
for Friedmann is C t , The Ricci tensor in the un
physical conformal space with a CI conformal factor 
will be infinite on J+, and this is interpreted physically 
as the result of confining an infinite amount of dust 
in a finite region. 

Since the conformal Ricci tensor is related to the 
physical one by 

RI" = Rjtv - 20-10;jtv + gjtv(30-20.~0·~ _ 0-10;~") 

and is thus clearly not a conformal covariant, a 
possible objection to the interpretation above is that a 
poor choice was made for O. However, after a detailed 
examination of the Friedmann metric (2.3), we con
jecture that this is not the case and that there is no 
conformal map better than Cl which provides a 
sufficiently regular conformal metric (say C3) for the 
compactified manifold while maintaining 0." :;o6J O. 
Thus, while the geometry (and, as we will see below, 
the symmetry group) of J+ is identical for compactified 
Minkowski space and compactified hyperbolic Fried
mann space, its embedding as a hypersurface in a 
4-manifold is different for each case. 

In null coordinates, the Friedmann metric (2.3) is a 
special case of 

ds2 = goo du 2 + 2(gOI drt + gOi dx
i
) du 

- riliij dx i dx i (3.3) 

where solutions of g"'u.jtu. v = 0 define a family of 
xU = u = const null hypersurfaces. The null hyper
surfaces with normal Ijt = u." are generated by a two
parameter system of null geodesics tangent to Til' 
called rays. Two additional coordinates Xi are chosen 

as parameters constant along each ray: 

Xi.J' = 0, i = 2,3. 

The coordinate Xl = r z is defined as a luminosity 
distance along the null rays by the algebraic condition 

I !iii 1 = f2(x i ) , 

where f (Xi) is some known function characterizing 
the type of angular variable used to label the null rays. 
For the usual spherical coordinates X2 = (), .x3 = cp, 
we have I(xi) = sin O. The determinant of (3.3) 
satisfies 

(3.4) 

The exact Friedmann metric (2.3) in null Bondi
Sachs coordinates is given by (with A = 2 for con
venience) 

goo = -C.j2)u-i rt + 1 + 3u-2 + O(r;-i), 

gO! = 1 - 3(.j2)u-!r;-! + (3u- l )r;-1 + O(r;-i), 
(3.5) 

gOi = 0, 
- . 2 hij = b22 + SIll () baa. 

(See Appendix A for Hawking's asymptotic solution.) 
To compactify (3.3), we introduce the coordinate 
z = Fr~l with F(u, z) = tA{l - [z/u(uz + 2)]!}2 and 
conformal factor 

o = r;-l = zF-l
• (3.6) 

The hypersurface J+ will be given by z = 0, u finite 
(u > 0). Since (3.3) is a solution of the Einstein 
equations 

(3.7) 

the geometry of J+ will be determined by the conformal 
Einstein equations. With the relation between the 
physical and conformal spaces given by (3.1), the 
Einstein equations take the form 

- n-ln -T". = Gjt. - 2:." :''';". 

where 
+ g/l.(20-l 0;a" - 30-20.,,0'''), (3.8) 

with 

- _ -1 -~ -
T". - (3A/2)Oz Y Y.jtY .• + I"v (3.9) 

y = u(u + 2Z-l). 

i". represents the energy-momentum contribution of 
the bounded perturbing source. In the physical space 
the asymptotic behavior of this term is of higher order 
in ri l than the energy-momentum of the cosmological 
dust given by (2.2). This is in keeping with our model 
of a space-time which is asymptotically Friedmann 
and in which the interaction between the dust and the 
perturbing source dies out as infinity is approached 
along the null rays. In the conformal space, Ijtv and 
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its divergence vanish more strongly on j+ than the 
first term of (3.9), and thus Il'v plays no role in the 
geometry of J+. 

Multiplying (3.8) by a2 and evaluating at z = a = 
o immediately tells us that J+ is a null hypersurface: 

a,aa·a J: O. (3.10) 

In addition, with (3.8) multiplied by a, we have the 
result 

where a polarization dyad has been introduced: 

_gii = mimi + mimi, i,j = 2,3, 

mi = giimi' mimi = 0, mimi = -1. 

(3.11) 

(3.12) 

Equation (3.11) provides the conformally covariant 
result that J+ is shear-free. 

The divergence of j+, a;l'vmio/lnio/, is not a con
formally covariant property. We happen to have 
chosen a gauge in which the divergence can be zero 
(a is the inverse luminosity distance), but no direct 
use will be made of this condition. 

We shall see below that the supertranslations are an 
asymptotic symmetry and this is possible only because 
j+ is shear-free. The topology of j+ is S2 X £1 (see 
Penrosell and Geroch16 for proofs of the topological 
structure), and it is this structure which ultimately 
allows only the boosts and rotations (conformal 
transformations of the 2-sphere) as symmetries and 
rules out the superboosts. 

4. ASYMPTOTIC SYMMETRIES 

The conditions for an infinitesimal transformation 
xl' = xl' + kl' to be an asymptotic symmetry are that 
Killing's equations in the conformal space vanish on 
J+: 

k(l';v) - a-1a,akagl'V J: O. (4.1) 

We immediately have the regularity condition 

a.aka J: O. (4.2) 

In the conformal Bondi frame above, the metric on 
j+ takes the form 

[ 

0 -1 

-1 0 
[gI'V] J: 

o 0 
o 0 

o 0 1 o 0 

_hii(Xk ) , 

where hii •o :i!: O. Since J+ has topology S2 x E\ hii 

can be restricted to one of the usual spherical metrics 
(with components depending on the particular choice 
of ray labels). Equation (4.2) provides17 

(4.3) 

and, using I'Hospital's rule, we can write (4.1) as 

gl'PkV + gVPkl' _ gl'V kP _ 2k1 gl'V 4 O. (4.4) 
.p .P ,p ,1 

From (4.4) the following conditions obtain (with the 
two-dimensional covariant derivative abbreviated by 
a colon): 

k1 ki ° J ,0 = ,0 = k ,1 = 0, 
kl 1. lki k i 1. kO. i (4.5) .1 - 2 :i' .1 - , 

j (i:j) 1. l.h'1'j' k 
- 2 ok' 

The solutions of (4.4) are 

k i ib l(xi ), kO J: luji:i + IX(Xi), (4.6) 

where IX is an arbitrary function of angle. Equations 
(4.6) are the defining equations of the BMS group as 
given by Sachs.7 The functions p and IX determine the 
transformation freedom at J+. The transformations 
with IX = 0 describe the six-parameter subgroup of 
conformal transformations of the 2-sphere which are 
isomorphic to L~ (the orthochronous homogeneous 
Lorentz group). The transformations with P = 0 form 
the invariant subgroup of supertranslations. 

Note added in proof' It is possibly surprising that the 
constant density surfaces of the Friedmann space 
(which in the conformal Minkowski picture appear 
as hyperbolas all asymptotically tangent to the u = 0 
null cone) do not rule out the translations. However, 
the dust and radiation end up asymptotically in 
different places, and a point on j+ which the radiation 
reaches is inaccessible to u = o. 

5. ASYMPTOTIC INVARIANTS 

For asymptotically flat space-time, the Bondi mass 
has been linked geometrically to the asymptotic 
symmetry group, the BMS group, through the work 
of Tamburino and Winicour.6.18 They have introduced 
functionals defined on closed two-dimensional cross 
sections of nonsingular outgoing null hypersurfaces. 
If ~ is a closed spacelike cross section of the outgoing 
null hypersurface .N', given by u = const, with 
normal II' = u'I" their linkage expression is given by19 

L(~) = £ (k[I';V] + ka;a1[l'nV]) dSl'v, (5.1) 

where nl' is a vector field on ~ normalized by nl'll' = 1. 
The BMS descriptors k~, which are associated with 

two infinitesimally differing null polar-coordinate 
systems on J+, 

xl' 4 xl' + k~EP + O( E2), 

are determined by solving Killing's equations on J+ 
and then are uniquely evaluated everywhere on .N' 
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according to the propagation equation6 

k(ll;v)lv = tk\)Il. (5.2) 

The linkage expression transforms as an adjoint 
representation of the BMS group: 

LQ(~) J: LQ(~) + CPQRLR(~)€P, 
where the C PQ R are the BMS structure constants. 20 

The asymptotic invariance of (5.1) is best discussed 
by casting the linkages into the usual form of a 
conservation law, 21 

L(~2) - L(~I) = flux - fNTllvkV dSIl , (5.3) 

through the use of the Ricci identity and the Einstein 
field equations (3.7), where 

flux := fN(k(Il;V);v - kV;/ + iRkll) dSIl 

-1 t(k~,lJV),v dV. 
.N' , • 

Winicour and Tamburino have shown that for an 
empty, asymptotically flat, space-time the local flux 
across an outgoing null hypersurface, i.e., the right
hand side of (5.3), vanishes at J+. (This is also true for 
an asymptotically flat Einstein-Maxwell space.) 
Furthermore, in a Bondi-Sachs or Newman-Unti 
coordinate system, with the usual tetrad 

lllnil = 1, rnllmll = -1, 

all other contractions zero, and completeness relation 

gllv = 21(llnv) - 2rn(llmv) , 

the linkage expression (5.1), in the limit of future null 
infinity, reduces t022 ,23 

L(~+) J: Re 1 {-kO(1p~ + a°fyo - l)2aO) 
X+ 

+ k+[2tP~ - ~(a°at') - 2at'B"aon dw, (5.4) 

where dw is the area element of the unit sphere and 

k+ := lim r-1karn a = am
1 Y1 ,m 

'-+00 

for three complex constants am. When the angular 
dependence of kO : = kala is restricted to spherical 
harmonics with I ::s;; I, this angular restriction of the 
translation descriptor singles out the four-parameter 
translation subgroup of the BMS group. When the 
conformal transformations (isomorphic to the homo
geneous Lorentz group) are turned off, the linkages 
(5.4) are called Pa , the energy-momentum linkages 
associated with the translational descriptors Ya , where 

kO = oc = ya€a, a = 0, 1,2,3, 

with 
Yo := (47T)IYoo, Y1 + iY2 := -(87T/3)lyn • 

Y3 := (47T/3)IYlo, 

the Y!m being the usual spherical harmonics. The 
parameter choices €a represent unit translations along 
four orthogonal axes, with a = ° corresponding to a 
timelike translation. Thus, from (5.4), 

PaCu) J: -f Ya(1p~ + aOao) dw (5.5) 

and, as Sachs has shown, 7 the rate of radiation of 
energy and momentum is given by the spacelike (null 
if the news is zero) 4-vector Pa: 

(5.6) 

In order to treat the mass and mass loss of a 
radiating system in an asymptotically Friedmann 
space-time, we cannot appeal directly to the linkage 
expression (5.1). Any expression which integrates the 
Ricci tensor and hence the energy-momentum tensor, 
as is evident from (5.3), over spheres of increasing 
radius must have an infinite limit whenever Tllv 
includes cosmological dust. [In fact, TIl.lllkonv = 
O(ri'"f) for asymptotic hyperbolic Friedmann.] Thus a 
new expression is called for, one which does not 
depend on the Ricci tensor. The generic form of this 
expression will bel9 

E(~) = i VIlV dSllv , (5.7a) 

with Vilv a bivector to be specified. The integral (5.7a) 
must (a) have a finite value in the limit of future null 
infinity and reduce to (5.4) when evaluated in an 
asymptotically flat space-time, (b) transform properly 
under the BMS group, and (c) be independent of the 
2-surface ~ embedded in ..N'. Guided by early work 
of Goldberg24 and the need for agreement with (5.4) 
and (5.5), we propose 

VIlV = p-l[CIlVP"kp l" + 21[llnv](A + k(,,;Pll,,;/l)]' (5.7b) 

where22 

A = p-l Re {karn,,[(D - 3p)ipl - 3'(0'0') 

- 20'(8 - 20c + 2P)0']}. 

For asymptotically flat spaces, (5.7) can be evaluated 
directly, or (B4) can be mapped back to the physical 
space; and, in Newman-Unti or Bondi-Sachs 
coordinates, (5.7) reduces to (5.4). Equation (B4) 
verifies the agreement of our expression with the 
Tamburino-Winicour linkage in the conformal space 
(for asymptotically flat space-time). The term A, in 
(5.7b) above, appears in order that the angular 
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momentum part of (5.7) agree with the Tamburino
Winicour (TW) angular momentum. The transfor
mation properties are identical with the TW linkages, 
i.e., (5.7) transforms on J+ as a representation (adjoint) 
of the BMS group. The in-surface flux must satisfy 

V!'v;)!' = O(r-3
-

f
) (5.8) 

for £ > 0 in order that condition (c) be satisfied. 
Tamburino and Winicour have already demonstrated 
this to hold for asymptotically flat space-time. 

6. MOMENTA IN AN ASYMPTOTICALLY FRIED
MANN SPACE-TIME 

The asymptotic invariant, (5.7) presented above, 
must be re-examined in the asymptotically Friedmann 
space-time to ensure that it has a finite value on J+ 
and that the in-surface flux (5.8) falls off fast enough. 
Via the propagation law (5.2) and 'It = u.!', (5.7) 
reduces t022 

£(1:) = -Re £p-l{-kalaCTP2 + aA) + k"maifl 

+ 2kanaaii + ii(o + <i - p)k7 m7 

+ p-lkam.[(D - 3p)ifl - b(aii) 

- 2ii(J - 21X + 2,B)a]} dS (6.1) 

with dS = -J -g dx2 dx3
• 

With the rotations turned off and the asymptotic 
solutions of Appendix A substituted, (6.1) has a 
finite limit on25 J+: 

P(u) 4: -Re f kO(TP~ + a°}.o) dw, (6.2) 

where kO = IX is restricted to the translations (I'::;: 1). 
The in-surface flux falls off properly for (6.2) to be an 
asymptotic invariant, i.e., 

V!'v;)!, = O(r-~). 
Thus, the Bvndi mass of a bounded radiating system 
in an asymptotically hyperbolic Friedmann space
time can be defined in precisely the same manner as 
for asymptotically flat spaces. In addition, there is a 
mass loss expression similar to the one for asymp
totically flat spaces25 : 

p(u) ~ - f kO 1}.°12 dw. 

When we turn to the angular momentum, however, 
it is not as easily seen that (6.1) is finite as r - 00 along 
the outgoing null surface. This is so because (see 
Appendix A) 

'ljJ1 = [2p3V( 'ljJgP-2) - 3cI>gl + 3ATo/2-J2]r-t + O(r-4
) 

is a solution of the hypersurface equation26 

(D - 4p)'ljJ1 = (,3 - 41X + f)'ljJo + (D - 2P)cI>01 

- (15 - T)cI>OO - 2acI>10' (6.3) 

With Hawking's boundary conditions CA2), (A3), 
and (A4) , each of the first three terms on the right
hand side of (6.3) contributes to the leading order 
of 'ljJ1' 

In order to see that the angular momentum has a 
finite limit, we must understand the angular behavior 
of the leading part of 'ljJ1 in terms of an expansion 
a1m

l Y1•m • Since 'ljJg is a spin-weight-2 quantity, its 
lowest I value is 2. Similarly, since TO = - aerO up to 
a numerical factor, 23 its lowest I is also 2. cI>gl has spin 
weight I, but when the ~cI>01 field equation is examined, 

one finds that <DOl is driven only by 5ao and 00-0 and 
thus cI>gl has a lowest I of 2. It is now clear that the 
leading term of 'ljJ1 , when integrated over the sphere in 
(6.1), will vanish. Thus, the angular momentum is 
given by2j 

with k+ = amI Yl .m for three complex constants am. 

L(u) can be given bivector labels corresponding to the 
six real independent parts of k+, which in turn 
correspond to the six generators of the Lorentz boosts 
and rotations. 27 

7. SUMMARY 

The goal of this work was to show that the physically 
interesting characteristics of a bounded radiating 
source, in a cosmological space, can be understood in 
much the same manner that we have come to under
stand a similar physical system in asymptotically flat 
space-time. 

Future null infinity, for an asymptotically hyperbolic 
Friedmann space, has been shown to be a null, shear
free, hypersurface. The asymptotic symmetry group is 
the BMS group, and, from the BMS descriptors, the 
Weyl tensor, and the normal of the outgoing null 
hypersurfaces, an asymptotic invariant has been 
constructed which defines the energy and angular 
momentum of the gravitating system. For asymp
totically flat spaces, this invariant is identical to the 
Tamburino-Winicour linkages. 

J- is not discussed other than to note it must be 
spacelike, which follows from the existence of a 
particle horizon. 5 Future work will consider Einstein
Maxwell-dust solutions and Newman-Penrose con
stants. 
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APPENDIX A 

For the purpose of easy reference, we list here 
Hawking's asymptotic solutionS of the Newman
Penrose field equations. The notation, definitions, and 
sign conventions are those of Newman and Penrose10 

with the exception that Greek indices here range from 
o to 3. 

The twelve complex spin coefficients are defined 
below: 

K := mIlDIIl' €:= HnllDIIl - milD mil)' 

1T := -mIlDnll , 

p : = ml'blll , 17.: = Hnllblll - mllbmll ), 

A := -ii1llbnll , 

(] := milMIl' (3:= HnllMIL - mllr5mll ), 

fl := -ii1llr5np, 

T := milA III , y:= HnllAII' -ii1I'Aml')' 

v:= -milAnI" 

with tetrad derivatives defined as 

D : = IV'I\j v , A: = n V'I\j v , 15: = m V'I\j v . 

The Weyl tensor components are five complex scalars: 

1fJo := -Cl'vpall'mVIPma, 1fJl:= -Cllvpall'nVIPma, 

1fJ2 := -CllvpamllnvIPma, tp3:= -Cl'vpaml'nVIPna, 

1fJ4 := -CllvpamllnV,n"na. 

The Ricci tensor components are four real and three 
complex scalars: 

ih _;t;; • _ lR [I'IV 
'1'00 - '1'00 .- -2 IlV , 

<l>u = (jju := -!Rllv(ll'nv + ml'mV), 

<1>22 = (jj22 := -tRllvnl'nv, 

A = A:= -l4R, 

<1>01 = (jjl0 := -tRIl)l'mV, 

ffi _;t;; ._ lR ml'mv 
'1'02 - '1'20 .- -2 IlV , 

<1>12 = (jj21 := -tRllvnllmv. 

The coordinate XO = U labels the outgoing null 
hypersurfaces, with lit: = U,Il' Xl = r is chosen to be 
an affine parameter: 

r,)1' = 1. 

x 2 and x3 are the ray labels in the const u surfaces. 
ml' and IfII' are chosen to be surface forming and lie in 
the 2-surfaces of const u and r. These coordinate and 
tetrad conditions imply (with the propagation of mil 
chosen such that € = 0) 

K = € = 0, P = p, 
f-l = ii, T = a + (3 = iT. 

In these coordinates, the tetrad vectors are expressed 
as 

II'=r5~, IIl=r5i, 

nil = r5~ + Ur5i + Xiof, 

ml' = ~ir5f. 

The boundary conditions are chosen to be2s 

A = tA(R)-3 + O(,-~), (AI) 

<1>00 = 3A(R)-5 + OCr-i), (A2) 

<1>01 = OCr-I), (A3) 

1fJo = OCr-I). (A4) 

The leading terms of A and <1>00 come from the exact, 
unperturbed, metric (2.1), The critical choice for 1fJo 
and <1>01 was the highest order which preserves 1fJ4 = 
0(r-1) and where the u derivatives of 1fJo and <1>01 

depend on (]o (interpreted by Hawking as having the 
perturbations to exact hyperbolic Friedmann arise 
only from the gravitational radiation of the perturbing 
source). Below, the leading terms of Hawking's 
asymptotic solution of the Newman-Penrose field 
equations are listed: 

p = _r-1 + 3A(2r)-i + 0(r-210g r), (AS) 

(] = (]or-2 + OCr-i), (A6) 

T = iT = TOr-2 + OCr-i), (A7) 

17. = rxOr-1 + OCr-i), (A8) 

(3 = -aOr-1 + OCr-i), (A9) 

A = 2(600 
- 0'°)r-1 + O(r-i ), (AIO) 

fl = (AJ2J2)r-! + 0(r-1
) , (All) 

y = -t - (Aj2J2)r-! + 0(r-1
), (AI2) 

v = 1fJ~r-l + OCr-i), (Al3) 

U = r + (2J2A)r! + O(log r), (AI4) 

Xi = _(TO~iO + TO~iO)r-2 + O(r-~), (AIS) 

~i = ~iOr-l + OCr-i), (AI6) 

° -~ + O( -4) 1fJo = 1fJor r, (AI7) 

1fJl = Hr-~ + 1fJ~r-4 + O(r-! log r), (Al8) 

0-3 + O( -~) 1fJ2 = 1fJ2r r - , (Al9) 

0-2 + O( -t) 1fJ3 = 1fJ3r r, (A20) 

1fJ4 = 1fJ~r-l + OCr-f), (A21) 
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where ~OB = P(u, Xi), ~3 = iP, and P := (Ae"/.j2) x map is given by 

(1 + H~) with' := X2 + ix3• Additionally, gllv = Q-2gllv , 

(1,.0 = (2r!A~, TO = 2p3V(a°p-2), 

1f'~ = -2(aO - 3ao + 2aO), 1f'~ = _iP3VCJ.°p-2), 
tp~ _ ip~ = p2V(T0p-l) _ p2V(-rOp-l) + 4aDXo _ 4aoAo, 

H = 2p3V(V'gp-2) - 3<I>gl + 3ATO/2.J2, 

where 

V :=~+ i~; ox2 ox3 

V'~ + ipg is undetermined; 

ci>oo = OCr-I), A = O(ri), 

<POI = O(ri ), tPo = OCr-i), 

with the four u-derivatives above depending on 0'0. 

The remaining Ricci tensor components are related to 
the ones above by 

ct>11 = 3A + ct>;;-tct>Olct>lO' 

ct>12 = 6Act>Ql<l>;;-l(1 + tA-l <l>;l<l>01<l>1O)2, 

ct>22 = 6A<l>;;-fct>12' ct>02 = ct>;;-tct>~l' 

APPENDIX B 

In order to compare our asymptotic invariant with 
the Winicour-Tamburino linkage expression18 in 
asymptotically flat space-time, we will work in the 
conformal space. The definitions and conventions of 
Ref. 18 will be followed in this appendix with the 
exception of the relabeling 

~Il---+ kll, kll---+ III til ---+ mil mil ---+ nil , , , 

gil' ---+ - gil' , t5 ---+ - t5 

where the arrow points from Winicour's notation to 
ours and the normalization 

/Ilnll = -mlliiill = 1. 

The final linkage expression, on J+ in the conformal 
space, is given by Eq. W(5.5),29 

L(!:) ~ -Re {{E + klllll<l> 

+ kl'mll [20/ + g(aa) + 2aga]} dS (Bl) 

with the definitions 

E := a(ka;Piiiamp);vIV, 
<l> . = CJlII:PV;Yn m iii / l . Il a P v Y' 

0/ . = Cllapv;Ym m- m- I I 
• " a p v y' 

To show the equivalence of the asymptotic in
variant (5.7) with (Bl), we will map (5.7) into the 
conformal space. Following W(2.8), the conformal 

'" = Ill' iill = Q-2n" ' mil = Q-1m". 

The Weyl tensor maps as C"VPIX = e llvpIX , and the tensor 
surface element as dB"v = Q-4 dSllv ' Rewriting (5.7), 
we have 

E(!:) = £ p-l [CIlVP"kp1" + 2Al£llfiv] 

+ 2ka;P( Bmamp + ij,iji'p)l£"iiV
] dB"v, (B2) 

where the propagation law (5.2) has been used to 
reduce k(a;P) Ia.;p, Since the divergence of III maps as 

p = Q2p + QzvQ .• , 

we follow Winicour in setting p = ° by choosing 
p = QDQ. Equation (B2) maps over to the conformal 
space as 

E(!:) = - £ (QDQ)-l[C"VP"llln)pk .. 

+ ka.;P(aiiia.iiip + amamp)] dS 

- Re £ ~amaCDQr2[Dipl - J(aa) 

- 2a(J - 20c + 2p)a] dS, (B3) 

where we have used 

(D - 3jJ)"Pl = QS(D - 3p)V'1' 

and, with W(2.l5), 

b( ijB) = QS(j( aa). 

L'Hospital's rule is used to evaluate the limit Q ---+ 0, 
which restricts the integral to J+. With DQ = J -1, 
W(1.8) and W(2.6), the limit of (B3) is evaluated as 

E(!:) 1 - Re £ {E + ka.l(Zct> 

+ kama.[20/ + g(aa) + 2aBan dS. I (B4) 

We note that the middle term of (B2), (Alp) dB, maps 
conformally covariantIy to the expression 

Re {kama[o/ + ~(O'a) + 2a~a]} dS, 

which is essentially just the third term of W(3.19). 
The other two terms of (B2) map to the first two terms 
of W(3.l9). Finally, we mention again that the above 
proof of agreement of our expression with Winicour's 
is for asymptotically flat vacuum, or Einstein
Maxwell, space-time. 
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A Hilbert space formulation of quantum statistical mechanics is developed by using the notion of 
myriotic fields. The nonseparable nature of the Hilbert space is investigated, and it is shown that in the 
classical limit, h --+ 0, the Hilbert space approaches, in the absence of point eigenvalues, that Hilbert 
space appropriate to classical statistical mechanics. 

I. INTRODUCTION 

In recent years a considerable amount of theoretical 
investigation has been devoted to quantum statistical 
mechanics. This has placed the field of statistical 
mechanics among the major branches of mathematical 
physics. One particular area of extensive research is 
in the extension to quantum statistical mechanics of 
the algebraic approach proposed by Segal and Haag 
in quantum field theory.1.2 In essence, this approach 
emphasizes the purely algebraic structure of local 
observables. Presently, the development in the alge
braic approach is in understanding the description of 
equilibrium states. Thus, one hopes from this to 
learn more about interacting equilibrium and non
equilibrium states. In particular, some general 
features of states in thermal equilibrium have been 
obtained,3 and it has been shown that invariant states 

of infinite systems may be decomposed into elementary 
(extremal) invariant states.4 

In recent works5 a new formulation of quantum 
statistical mechanics has been developed. It suggests 
that the notions of "the approach to equilibrium" in 
statistical mechanics and that of the asymptotic 
condition in axiomatic quantum field theory are one 
and the same. This link implies a deep unity in physics 
and allows for a complete utilization, in quantum 
statistical mechanics, of procedures already developed 
in axiomatic quantum field theory. 

One noteworthy feature of the algebraic approach 
(as applied to quantum statistical mechanics) is that 
one begins by considering a macroscopic or infinite 
system. This differs considerably from the usual 
consideration of a large, but finite, system and then 
taking the thermodynamic limit. Besides being more 



                                                                                                                                    

1230 EDWARD N. GLASS 

• H. Bondi, M. van der Burg, and A. Metzner, Proc. Roy. Soc. 
(London) A269, 21 (1962). 

3 R. K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962). 
4 R. Penrose, Phys. Rev. Letters 10, 66 (1963). 
6 R. Penrose, in Relativity, Groups, and Topology, 1963 Les 

Houches Summer School (Gordon and Breach, New York, 1964), 
p.565 

8 L. Tamburino and J. Winicour, Phys. Rev. 150, 1039 (1966). 
7 R. K. Sachs, Phys. Rev. 128, 2851 (1962). 
8 S. W. Hawking, J. Math. Phys. 9,598 (1968). 
9 E. T. Newman and T. Unti, J. Math. Phys. 3, 891 (1962). 

10 E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 
4, 998 (1963). 

11 R. Penrose, Proc. Roy. Soc. (London) A284, 159 (1965). 
12 We follow the usual convention that partial derivatives are 

denoted by a comma or ov, and covariant derivatives by a semicolon 
or Vv. 

13 L. Infeld and A. Schild, Phys. Rev. 68,250 (1945). 
14 In this section and Appendix B, we follow Penrose's convention 

of placing tildes over the quantities in the physical space. In all other 
sections we omit the tildes. 

15 The second derivative of 0, o'O/oz', blows up on the z = 0 
surface. 

18 R. Geroch, "Space-Time Structure from a Global Viewpoint," 
lectures given at the 1969 "Enrico Fermi" Summer School (Varenna). 

17 Coordinate components of k" are used in this section. 
18 J. Winicour, J. Math. Phys. 9, 861 (1968). 

JOlJRNAL OF MATHEMATICAL PHYSICS 

19 Square brackets around indices denote antisymmetrization and 
dSllv := u'[llr.V] dS. Symmetrization is correspondingly denoted 
by parentheses around indices. 

20 The BMS descriptors are given four labels Q = a, a = 0, 1,2, 3, 
and six bivector labels Q = lab] analogous to the descriptors of the 
Poincare group. The remaining BMS descriptors, corresponding to 
the supertranslations, are given the spherical-harmonic labels 
Q = (1m) with I ~ 2. 

21 dSIl = III dV, 2Av;[p,,] :; ArzRrzvp", Rvp : = gil" Rllvp". 
22 See Appendix A for definitions of the Newman-Penrose spin 

coefficients and Weyl tensor components .. 
23 If 1'} is a function of spin weight s, then 61'} : = _(<50 + 2srxO)1') 

and 61'} has spin weight s + 1. Two additional properties of t5 are 
used: (a) If 1'} has spin weight -I, then 61'} is a divergence on the 
sphere, and (b) 6. Y •. m = O. 

24 J. N. Goldberg, Phys. Rev. 131, 1367 (1963). 
25 With the solutions of Appendix A in terms of a luminosity 

distance, coefficients e-", which appear in Hawking's expressions, 
are eliminated. 

28 The Newman-Penrose field equation (6.3) is given for Hawking's 
tetrad conditions, which are presented in Appendix A. 

., A. Held, E. T. Newman, and R. Posadas, J. Math. Phys. 11, 
3145 (1970). 

'8 R(T) given in (2.1) is a function of the affine parameter r = 
A2(1 sinh 2T - 2 sinh T + iT}, and has the expansion R = (2r}1 + 
A + O(rt log r). 

29 W will precede all equation numbers of Ref. 18. 

VOLUME 12, NUMBER 7 JULY 1971 

Myriotic Fields in Quantum Statistical Mechanics 

MOORAD ALEXANIAN 
Centro de lnvestigacion dell.P.N., Departamento de Fisica, Mexico 14, D.F. 

(Received 26 October 1970) 

A Hilbert space formulation of quantum statistical mechanics is developed by using the notion of 
myriotic fields. The nonseparable nature of the Hilbert space is investigated, and it is shown that in the 
classical limit, h --+ 0, the Hilbert space approaches, in the absence of point eigenvalues, that Hilbert 
space appropriate to classical statistical mechanics. 

I. INTRODUCTION 

In recent years a considerable amount of theoretical 
investigation has been devoted to quantum statistical 
mechanics. This has placed the field of statistical 
mechanics among the major branches of mathematical 
physics. One particular area of extensive research is 
in the extension to quantum statistical mechanics of 
the algebraic approach proposed by Segal and Haag 
in quantum field theory.1.2 In essence, this approach 
emphasizes the purely algebraic structure of local 
observables. Presently, the development in the alge
braic approach is in understanding the description of 
equilibrium states. Thus, one hopes from this to 
learn more about interacting equilibrium and non
equilibrium states. In particular, some general 
features of states in thermal equilibrium have been 
obtained,3 and it has been shown that invariant states 

of infinite systems may be decomposed into elementary 
(extremal) invariant states.4 

In recent works5 a new formulation of quantum 
statistical mechanics has been developed. It suggests 
that the notions of "the approach to equilibrium" in 
statistical mechanics and that of the asymptotic 
condition in axiomatic quantum field theory are one 
and the same. This link implies a deep unity in physics 
and allows for a complete utilization, in quantum 
statistical mechanics, of procedures already developed 
in axiomatic quantum field theory. 

One noteworthy feature of the algebraic approach 
(as applied to quantum statistical mechanics) is that 
one begins by considering a macroscopic or infinite 
system. This differs considerably from the usual 
consideration of a large, but finite, system and then 
taking the thermodynamic limit. Besides being more 
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logical, the direct treatment of infinite systems should 
give an insight into the true nature of states in statisti
cal mechanics and bring forth the peculiar behaviors, 
e.g., phase transitions, condensation, etc., which 
appear only in infinite systems. 

In the formulation of Ref. 5 one also considers 
infinite systems. If one attempts to extend the notion 
of asymptotic condition of field theory to these states, 
one is led naturally to the concept of an asymptotic 
approach to equilibrium. Thus, the infinite nature of 
the systems considered is of crucial importance in 
this formulation and noticeably distinguishes these 
states from those studied in scattering theories (which 
describe finite systems). This generalized notion of 
asymptotic condition, as applied to any vector in the 
general Hilbert space, serves as a foundation to both 
scattering theory and statistical mechanics. 

Hence, a quantum field theory in its general form is 
applicable to both of the above situations with the 
distinguishing factor being the Hilbert space under 
consideration. The separable Hilbert space, the part 
in which the physical vacuum state appears as a 
vector and, thus, with zero particle density, is ap
propriate to scattering theory, whereas, the non
separable Hilbert spaces, with nonvanishing particle 
density, are appropriate to statistical mechanics. This 
distinction of the Hilbert spaces is directly related to 
the existence of (infinitely) many unitarily inequivalent 
irreducible representations.2 

II. OCCUPATION NUMBER REPRESENTATION 

Classical statistical mechanics defines a state of 
statistical equilibrium with the aid of the ensemble of 
Gibbs.6 Consequently, the probabilistic nature of the 
state of equilibrium (or for that matter any state of 
the system) is due to the association of the state of the 
system with an appropriate ensemble of states. On the 
other hand, quantum mechanics already contains an 
inherent probabilistic interpretation. Therefore, it is 
not absurd to suppose that the physical interpretation 
of quantum mechanics, in terms of probabilities, 
should suffice to give quantum statistical mechanics 
a probabilistic interpretation without the additional 
use of the concept of an ensemble of states. 

In the formulation of quantum statistical mechanics 
of Ref. 5, single states of the system were introduced 
which represent states of statistical equilibrium. This 
differs from the usual concept of equilibrium as an 
ensemble of states. Friedrichs7 has also considered 
these types of states and used them to describe non
interacting equilibrium states. The simple construction 
of Friedrichs will be used in this section to derive some 
well-known results in quantum statistical mechanics 

for noninteracting systems. This will also serve as an 
introduction to the mathematical aspect of the theory. 

Throughout this work an occupation number 
representation will be employed since, as shown by 
Friedrichs,7 particle representations do not exist for 
the case of interest in statistical mechanics, that is, 
when the total number of particles is expected to be 
infinite in every state of the system. 

Let s denote any continuous quantum variable such 
as the momentum or the position of a single particle. 
The occupation number will be denoted by v(s) and 
is a function of the continuous variable s but may 
assume only integer values '1'= 0, 1,2, .... The s
space is partitioned into bounded and semi-infinite 
cells, and it state is given by specifying the amplitude 
of the probability of finding each cell occupied by a 
certain number of particles. This probability is 
independent of the distribution of the particles within 
the cells. One considers refinements for such partitions 
and performs a limiting process. 

The (reduced) representer of the state cD is a 
functional rfy(v) of the occupation function v(s). The 
inner product of two states cD1 and cD2 will be expressed 
in the symbolic form 

(<1\, cD 2) = ~ rfyt(V)rfy2(V) II [v(s) lf1[dw(s)y(s)e-dW
(s), 

v S (1) 

where w(s) is called the weight and is a measure 
function. The above expression represents the follow
ing formal operation which can be justified rigorously 
by considering a limiting process: For a given occu
pation v(s), one forms the infinite product 

II [v(s) !]-1 [dw(s)Y(s) e-dW(S), 
8 

with the variable s extending over the whole of 
s-space. One multiplies this product by rfyt(V)rfy2(V) and 
sums the result over all possible choices of the occu
pation v(s). Since one requires states of finite norm, 
(cD, cD) < 00, the series (1) is convergent by Schwarz's 
inequality. 

The manifold of functionals which are compatibleS 
(in the second manner) with some partition forms a 
linear space. This linear space is extended to a com
plete linear space by the addition of its ideal elements. 
The Hilbert space of all compatible and ideal occu
pation functionals 1>('1') are the representers of the 
states. One can express the probability of an observable 
having a value in a given range for any state in terms 
of the representer rfy(v) of the state. 

The states of interest in statistical mechanics contain 
an infinite number of particles (but finite density). In 
the present formulation of quantum statistical 
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mechanics these states are those of a field with infinite 
total weight W, W = f dw(s). Friedrichs denotes these 
fields by the term myriotic. In case W = 00, it is not 
possible to introduce the total number of particles 
operator; however, operators denoting the number of 
particles in cells of finite weight do exist. Since the 
vacuum state is defined in terms of the preceding 
operators, a vacuum state does not exist for a myriotic 
field. Consequently, a particle representation for 
myriotic fields is also nonexistent. On the other hand, 
myriotic fields possess equidistribution states [with 
representer 1>(v) == 1] which are closely related to 
(noninteracting) equilibrium states. 

III. OCCUPATION NUMBER REPRESENTATION 
FOR BOSON FIELDS 

The inner product defined by (I) is appropriate to 
Maxwell-Boltzmann statistics. This is the case treated 
by Friedrichs, and for equidistribution states it leads to 
the usual formula for the expected number of particles 
at s with the energy restricted by L, ).(s)v(s) = K. 

[See (20.58) in Ref. 7.] 
As an extension to the above work and also an 

introduction to the formal operations, let us consider 
the statistics of Bose and Einstein and summarily that 
of Fermi and Dirac. The presentation of Friedrichs 
will be followed closely so that one may feel free to 
omit nonessentials and, hence, benefit both in clarity 
and conciseness. As stated previously, one is particu
larly interested in myriotic fields for the description of 
states in statistical mechanics. Accordingly, one 
considers directly the generalization of the usual 
occupation number representation (discussed in Ref. 7, 
Sec. 18), which will apply equally to myriotic, as well 
as to ordinary or amyriotic fields. 

The s-space is as described above. A partition ~f of 
the s-space is given by a subdivision of the space into 
distinct, bounded, or semi-infinite, cells. The region 
formed by all bounded cells will be denoted by :R, and 
is composed by cells Ck , k = 1,2,3,···. The region 
formed by the remaining cells will be denoted by C*. 
For every occupation yes) one has 

and 

vk=LV(S), k= 1,2,···, 
SE(''k 

(2) 

By assumption, the numbers Vk are required to be 
finite, but not v *. 

A functional fey) is compatible (in the second 
manner) with the partition :1' if it depends only on the 

values of Vk' k = 1,2,·· . , but not on V*. Let gk' 
k = 1,2, ... , denote the number of elementary 
eigenvalues in the cell denoted by Ck • Define the inner 
product of two functionals 1>1 and 1>2' which are 
compatible with the partition :1', by 

(3) 

The constant €, with ° < € < I, is, so far, an arbi
trarily chosen converging factor. However, its need is 
essential in the above definition of the inner product 
for functionals compatible in the second manner. 
[See the remark after Eq. (7).] The exponential factor 
in (3) is merely a normalization factor. The summation 
symbol in (3) indicates sums over VI = 0, 1,2, ... , 
V2 = 0, I, 2, ... , etc.; the subscript k in the product 
symbol extends over all values of k for which cells Ck 

are assigned but not over e *. 
A partition :1" is called a refinement of the partition 

:1' if each cell of ~r' is contained in a cell of:1' and C~ 
is contained in C*. Clearly a functional 1>(v) which is 
compatible with the partition :1' is also compatible 
with its refinement :1". Now any two partitions have a 
common refinement; therefore, the manifold of 
functionals compatible with a given partition forms a 
linear space with the inner product defined by (3). 
One of the properties required of the inner product is 
that the vanishing of the unit form, (<P, <P) = 0, 
implies the vanishing of the element, <P == 0. This is 
accomplished by including the elements for which 
(<PI - <P2, <PI - <P2) = ° into an equivalence class of 
compatible functionals and assigning a single element 
to each class of equivalent functionals. 9 

This linear space of compatible functionals is 
extended to a complete linear space, the Hilbert space 
of functionals, by assigning an ideal element to every 
Cauchy sequence of compatible functionals. The 
manifold of all these functionals forms the Hilbert 
space of interest and its elements represent possible 
representer of physical states. 

The value of the inner product (<PI' <P2) of two 
functionals compatible with the partition :1' is unaltered 
by a refinement :1" of:1'. Let C~k and C;* denote all the 
cells of:1" which compose Ck and C* respectively, so 
that 
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Now, 

V1. V2 ... • 

Since, by the binomial theorem, 

(Vk + gk - I)! 

vk! (gk - 1)! 

~ II E V,*' 
VI.'. "2*' .... r 

x exp [g' * In (1 - E){V;* + g;* - I)! = 1 (7) 
r ( , _ 1)' ' , ' gr* ,Vr*· 

where it is essential to have the converging factor E 

to obtain a finite value for (7). Then, (5) becomes 

:T' :T:T II (<1>1' <1>2). = I 4>t (V)4>2(V) EVkexp [gk In (1 - f)] 
VI. "2. ... k 

:T 
X (Vk + gk - 1)!/vk! (gk - I)! = (<1\, <P 2) •• 

(8) 

For the inner product of two occupation functionals 
4>1 (v) and 4>2( v) the following symbolic notation is 
adopted: 

(<1>1' <P2)!l 

= ~ 4>i(v)4>zCv) II fV('<)eY('<) In (1-<l [v(s) + g(s) - I]!, 
v .< v( S )! [g( s) - t]! 

(9) 

which indicates that the inner product originated from 
the expression (3) valid for functionals compatible 
with the partition ~. 

A. Equidistribution State 

Myriotic fields have two rather important features. 
Friedrichs has proved that myriotic fields possess no 
vacuum state and, also, that the total number operator 
cannot be defined for myriotic fields. It can similarly 
be proved that the above features also exist for the 
modified inner product (9) provided that the fields are 
myriotic, that is, ~k gk = 00. However, just as in 
Friedrich's case, the myriotic fields considered here 
possess equidistribution states which play a funda
mental role in the theory. The equidistribution state 

has reduced representer <Pv(v) == 1. From the inner 
product (9) one has that the equidistribution state is 
normalized to unity. 

Consider the expected value of the biquantized 
observable ~s ~(s)X'(s) in the equidistribution state. 
[The number operator X'(s) itself is not a proper 
operator. However, the expected value will be proper 
if certain integral (see below) is finite.] This can be 
obtained by formal manipulations which can be 
justified rigorously: 

/ ~ ~(s')X'(s')\ 
\s' / 
= ~ (~ ~(S')V(S'») 

II 
v(s) g(s) In (H) [v(s) + g(s) - I]! 

X E e 
.< v(s)! [g(s) - 1]! 

= ~~(s') ~v(s') II [v(s) + g(s) - 1]! EV(S)eY(s)ln(H) 

s' v s V( S )! [g( s) - 1]! 

_ '" Y(') ~ [v(s') + g(s')]! v(s') g(s') In (H) 
-£.,c"Sf£., f e . 

s' v(s')~O v(s')! [g(s') - I]! 

Therefore, 

<; ~(S')X'(s'» = [f/(1 - f)]; ~(s')g(s') 
= (1 - frlJ~(s) dw(s), (10) 

and the operator Is ~(s)X'(s) is proper if 

J"(S)I dw(s) < 00. 

A word on the limiting process on refinements seems 
to be appropriate. In this limit the number of ele
mentary eigenvalues in a cell g(s) approaches unity, 
that is, each point in the continuum of s-space is 
associated with a cell. Also, the passage to the limit 
in (10) presupposes that ~(s) is a sufficiently regular 
function of s. (An example where such regular 
behavior is not satisfied arises later on and is due to 
Bose condensation.) 

For the total number of particles operator 

which becomes infinite for a myriotic field, W = 00, 

thus showing that the total number operator is an 
improper operator. 

The introduction of the f factor in the inner 
product (9) was a necessity dictated by convergence 
requirements. Nevertheless, after expectation values 
and probabilities are evaluated, one may inquire into 
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their behavior as € approaches unity. From (10) it 
seems that every biquantized observable I. '(s)X(s), 
with S "(s)1 dw(s) < 00, becomes an improper oper
ator in this limit. We shall introduce later on con
ditioned equidistribution states for which finite values 
are obtained for such observables as € approaches 
unity. One must conclude from this that equidistri
bution states are nonexistent as € - 1. 

The equidistribution state may be studied further by 
considering the probability that X particles will be 
found in the region :R when the field is in an equi
distribution state cI>v. One has for such probability 

P (X(:R) = X) 

= ([X + W(:R) - 1]!/X! [W(:R) - I]!} 
X €.A"eW (3t)ln(l-<). (12) 

Letting :R cover the whole space and for Jf < 00, 

P(X(oo) = X) = o. (13) 

Therefore, in the equidistribution state of a myriotic 
field the probability of finding a finite number of 
particles is equal to zero. This result can be extended 
to states with representers 4>(11), which are bounded, 
but since these type of states are dense in the Hilbert 
space of all compatible and ideal functionals 4>(11), the 
result (13) follows for any state of a myriotic fields. 

B. Probabilities and Expectation Values for the Equi
distribution State 

Consider the evaluation of certain values of the 
inner product (9) for states which can be constructed 
from the equidistribution state, 4>v == 1. Let 

[ [ ]
' = ~ ()II V(8) g(.)ln(1-<) (v(s) + g(s) - I]! 

<7' -k7'V € e . 
v ,. 1I( s)! [g( s) - I]! 

(14) 

A class of functionals 7'(11) for which the value of (14) 
is of considerable importance is given by the form 

(15) 

The function A(S) has properties to be specified later 
on and H(oc) admits the representation 

H(oc) = ft~h(z) dz, (16) 

with h(z) analytic in the neighborhood of the path L, 
and behaves appropriately when z approaches infinity 
along the path. Specifically, one may view (16) as the 
formula for the inverse Laplace transform of the 
function h(z) analytic in the right half-plane. 

For such form of the functional 7', (14) becomes 

1< [ H( ~ ,1(S)lI(S») ] 

=1/< [exp (Z~,1(S)lI(S»)}(Z)dZ, (17) 

Now, 

I.[exp (z ~ ,1(S)lI(S») ] 

= ~ exp (z ~ ,1(S)V(S») 

II .(s) 9(S) In (1-<) [lI(S) + g(s) - I]! x € e 
S lI(S)! [g(s) - I]! 

= I II (€ez;'(s)r(s)e"C') In (1-<) [lI(S) + g(s) - I]! 
• s lI(S)! [g(s) - I]! 

eO(S) In (1-<) 

= 11 [1 - €ez;'(s)]o(s) , 
(18) 

where (18) follows by interchanging the summation 
and product symbols and performing the summation. 
Hence, 

where 

1.[ exp (z ~ ,1(S)lI(S») ] = eY
(.;;'), (19) 

Y(z; A) = - f d:(S) [In (1 - d,l(s» - In (1 - €)]. 

(20) 

The function Y(z; A) corresponds to the adjusted 
grand partition function in statistical mechanics. 
Substituting (19) into (17) gives the important result 

1.[ H(~ ,1(S)v(S») ] = 1eY(Z;;')h(z) dz. (21) 

Let us establish the conditions on ,1(s), wee), and 
h(z) which enable us to obtain formula (21) rigorously. 
The function ,1(s) is nonnegative, 

,1(S) ~ 0, (22) 

and is integrable with respect to the weight wee), so 
that 

KO = f ,1(s) dw(s) < 00. (23) 

The quantity in (23) multiplied by (1 - €)-l gives the 
expectation value of the observable .Ls ,1(s).N'(s) [see 
(10)] in the equidistribution state 4>v. Now 

00 >f,1(S) dw(s) ~ r ,1(s) dw(s) ~ 1 r dw(s). 
);'(s)21 );'(8)21 

Consequently, 

r dw(s) < 00, 1 > O. (24) 
);'(8)21 
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Therefore, if the total weight W = S dw(s) is infinite, 
it must arise from the region of s for which }.(s) = O. 
If }.(s) denotes the energy of a particle and the weight 
function w(s) is properly chosen, then the preceding 
situation applies to the problem of the infrared 
catastrophe. (See Ref. 7.) 

The adjusted grand partition function Y(z;}.) and 
its derivative Yz(z; }.) are defined in the left half-plane 
Re z = x :$; O. Now for the principal determination 
of the logarithm and for 0 < E < 1 with Re z :$; 0 

In 11 - Eezi ~ In(l- Ee''') ~ In(l - E) 
and 

lIn [(1 - d)/(l - E)]I :$; [E/(l - E)] Izl. 

Therefore, 

Re Y(z;}.) = - f dw(s) 

X [In 11 - Eez).(s)1 - In (1 - E)] :$; 0, 
(25) 

f dw(s) I 1 - aZ).(s) I 1 
IY(z; }.)I:$; -- In :$; -- KO Izl, 

E l-E 1-E 
(26) 

and 

f 
dw(s) E}.(s)eo:).(s) 1 

IYZ{z; }.)I ~ -- ,l( ):$; -- KO' (27) 
E 1 - Eex 

S 1 - E 

Stronger conditions may be obtained for Y(z; }.) as 
Izl -+ 00 when Re z :$; 0 if further restrictions are 
imposed on }.(s) and wee). Let 

pel) = - r dw(s), (28) 
)).(8) 2: ! 

which by (24) is finite, and suppose there exists a 
nonnegative number P such that 

i!O I d11 o dp(l) - PI :$; mo (29) 

where ml is obtained from (32). Therefore, 

I Y(z; }.) - pIn (1 - E) In (-z)1 :$; 2(mo + p(lo» 

x In [(1 - E)-I] + pm l , (34) 

or, what is the same, 

leY(z;).)1 :$; y/lzl-P In (1-<) (35) 

for Izi ~ p, Re z :$; 0, with p, y, p > O. 
The conditions under which the integral (21) is well 

defined are, therefore, established. If the function 
eY(z;).) vanishes sufficiently rapidly as Izl-+ 00 in the 
left half-plane, for instance as in (35), then it is 
sufficient that the function h(z) vanish of first order at 
infinity. In what follows the case where h(z) = z-le-zK 

with K ~ 0 will be considered. 

C. Evaluation of Probabilities 

As an explicit application of (21) consider the 
evaluation of the probability P(K) that the observable 

~ = ~ }.(s).N'(s) (36) 
• 

has a value less than K if the field is in the equi
distribution state <Pv' Denote the shifted' unit step 
function by 

'fJK(ex.) = 1, for ex. < K, 

= 0, for ex. ~ K, (37) 

which, from the theory of Laplace transform, has the 
integral representation 

'fJIC(ex.) = ~ r e(a-K)z dz , (38) 
2m )t z 

where the path L is any straight line z = x + iy, with 
fixed x < 0, and the integral goes from lower limit 
y = + 00 to upper limit y = - 00. 

The probability P(K) is given by 

(39) 

holds for appropriate positive numbers 10 and mo· If where 'fJK(K) is the operator obtained from (38). The 

(10 dl result follows from (16), with h(z) = (27Ti)-Ie-KZ, 
4>(z) == Jo 1 [In (1 - EeZI

) -In (1 - E)], (30) and (21): 

then 

IY(z;}.) + P4>(z) 1 :$; 2[mo + p(lo)] In [(1 - E)-I]. 

(31) 
But, 

14>(z) + In (1 - E) In (-z)1 

:$; 14>(-1)1 + \i-- 1n 
(1 ~ a-tlO) dt/ (32) 

so that for Izl ~ p > 0 and Re z ~ 0 

14>(z) + In (1 - E) In (-z)\ ~ ml' (33) 

P(K) = _1_ r e[Y(z;).)-ICzl dz . (40) 
27Ti )t z 

For K = 0 the integral (40) may be evaluated by 
considering a semicircle with side L in the left half
plane. Because of (35) the value of the integral is not 
altered and, since no poles are enclosed, one obtains 

P(O) = o. (41) 

Also, if one considers 

1 - P(K) = ~ r (1 _ eY(z;).)e-kz dz , (42) 
27TIJC z 
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the path of integration can be moved to coincide with 
the imaginary axis. Since 

(00 leY(iY;.1.l _ 11 dy < 00, 

Loo y 

then by the Riemann-Lebesgue theorem one has that 

lim [1 - P(K)] = O. (43) 

Finally, it is clear, by the same arguments used to 
obtain (41), that 

P(K) = 0 for K < O. (44) 

D. Conditioned Equidistribution State 

The equidistribution state introduced in Sec. I gives 
an expected number of particles occupying the place s 
which is equally distributed over the s-space relative 
to the weight dw(s). Let the energy of the system be 
restricted to lie between the value K and Kl (with 
Kl > K). The field is then in a state denoted by cpV.K.Kl 
and is referred to as a conditioned equidistribution 
state. The representer of this normalized state is given 
by the functional 

cp(v) = 1JK'Kl(~ }.(S)v(S») [P(K1 ) - p(K)r!, (45) 

where 

1JK."/rx) == 1J"l(rx) -1Jirx). (46) 

Consider the evaluation of the expected value <r)"'V.K.Kl 
for the observable r = Is '(s)X(s) in the state cpV.K'''l' 
Now 

with 

Q(K; 0 = lco[ ~ '(S)V(S)1JK(~ }.(S)v(S») 1 (48) 

In what follows it will be shown that one obtains for 
Q(K; ') the simple expression 

Q(K; 0 = f'(S) dW(S)n~lEn-lp(K - n}.(s». (49) 

Note that in the limit E --+ 0 one recovers the result of 
Friedrichs. Result (49) may be obtained in a formal 
manner but, nevertheless, can be justified rigorously 
since 

x Lexp (Z~A(S)v(S»)e-KZd: 

IT 
v(s) g(s) In (1-<) [V(S) + g(s) - I]! x E e . 

s v( S )! [g( s) - I J ! 

After performing the sums over all the v(s), except 
s = s', one obtains 

Q(K; 0 = I '(s') ~ (e-KZ dz f V(S')(Ee",I.<B')Y(B') 
s' 27T1 Jr. Z V(8')=0 

[v(s') + g(s') - 1]! g(s')]n (1-<) 
X e 

v(s')! [g(s') - I]! 
eg(s') In (1-<) 

X II' ---"----
s (1 - Eez;'(8)Y(S) , 

where the prime in the product symbol indicates the 
s = s' term is to be omitted. The sum over v(s') may 
be done, and one has 

Q(K; ') = I '(s')q(s') - e-KZ ~ Ee Z . 
1 I d Z).(8') 

s' 27Ti r. z 1 - Ee ).(8 ) 

eg(s) In (1-<) 

X If (1 _ Eez).(s»g(s) 

= I '(s')q(s') -. e-KZ - E , eY(Z;).). 
1 1 dz eZ).(s') 

s' 27T1 L z 1 - Eez).(s ) 
(50) 

Finally, (49) follows from the form (40) for P(K). 
In the limit when the conditioned equidistribution 

state has a fixed well-defined energy K, i.e., Kl --+ K, 

(47) becomes 

r 
_ f '(s) dw(s)J/n-lp'(K - nA(s» 

( )"'V.K - P'(K) , (51) 

where the prime denotes differentiation with respect to 
K. For the expected value ('(s)X(s»)t/>v." , (51) gives 

A case of considerable importance, for which 
expression (51) may be simplified greatly, occurs when 
the weight function dw(s) is replaced by M dm(s) with 
M large and positive. For large values of M the 
quantity P(K) may be evaluated by the saddle point 
method. Suppose 

J 
___ d_m.....;(,-,S )'---__ < 00, 
E-

I exp [-xoA(s)] - 1 
(53) 

for given Xo < 0, where A(s) ~ O. From (53) one has 
that S exp [XoA(S)] dm(s) < 00. Therefore, for every 
1>0 

r dm(s) < 00. (54) 
J(sbl 

Consequently, if W = M S dm(s) is infinite, this 
infinity must arise from the region s for which }.(s) = 
00. This situation is quite different from that of Sec. 
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II which is obviously applicable to the case of the 
infrared catastrophe. 

Condition (53) implies that the integral 

Z(z; Je) == - J d:(s) In (1 - EeZA(s) (55) 

converges uniformly and absolutely for Re z < xo. 
Hence, by the Riemann-Lebesgue theorem 

lim JdW(S) In (1 - Ee'A(S) = O. (56) 
Ilmzl-o::> 

From the convergence of the integral (55) one has that 
the adjusted partition function Y(z; Je) is not defined 
for myriotic fields. However, the unadjusted partition 
function Z(z; Je) is well defined and is given by (55) 
with 

eY(z:i.) = eZ(z:i.)e(WI<) In (1-<). (57) 

It follows from (40) and (57) that P( K) = 0 for K 
finite and W = 00. 

For the present case, one has to revert to the 
concept of compatibility of a functional in the first 
mannerlO and proceed as in Sec. III for functionals 
compatible in the second manner. In (14) the expo
nential factor does not appear if the functional T(V) is 
defined in the first manner and in result (21) the 
function Z(z; Je) would occur instead of Y(z; Je). 

The quantity 

F(K) = _1_ (e(Z(Z:l)-K.) d:: (58) 
27Ti Jr z 

takes the place of P(K) in the preceding formulas. 
Note especially formulas (47) and (49). For large 
values of M the quantity F(K) may be evaluated by 
the saddle point method. The saddle points are 
determined by the equation 

J Je(s) dw(s) = K. 

e-z).(s) - E 
(59) 

As M approaches infinity, the ratio KIM, by (53), 
approaches a finite limit. Therefore, in this limit, the 
unique saddle point, for Re z = x :::;; 0, is given by the 
real point Zo = - () K with 

f Je(s) dw(s) 

K = exp [()"Je(s)] - E • 
(60) 

From the behavior (56) one has that Re [Z(z; A) -
KZ - In z] approaches - 00 at either end point of the 
path C. Therefore, the distant portions of the path of 
integration contributes an infinitesimally small amount 
to the value of the integral as M becomes infinite. 
Also, the total contribution to the integral comes 
from an infinitesimal neighborhood of the saddle 

point and gives for F(K) 

F(K) = exp [Z(-(),,; A) + K(),,] 

[27T2();Zzz( -(),,; A)]! 
For 0( finite, 

(61) 

(62) 

which, interestingly enough, is a derivation of the 
Boltzmann factor. Result (62), in conjunction with 
(49), yields 

Q(K; 0 =J dw(s) ~(S)F(K) . (63) 
E E-

1 exp [()"A(S)] - 1 

Combining the results (47) and (63) gives a funda
mental result in quantum statistical mechanicsll : 

f 
{(s) dw(s) 

(r)"".K = e-1 exp [()"Je(s)] - 1 e 
(64) 

Consequently, the conditioned equidistribution states 
are nothing else than the equilibrium states of a 
system of noninteracting bosons with E taking the 
place of the fugacity. Thus, the arbitrarily chosen 
converging factor E has a deep physical meaning and is 
related to the chemical potential of the system. 

IV. OCCUPATION NUMBER REPRESENTATION 
FOR FERMIONS 

The occupation number representation for boson 
fields, discussed in the preceding sections, may be 
extended to fermion fields. The presentation which 
follows differs considerably from that given by 
Friedrichs for fermion fields. 

The main consideration of Friedrichs is to the space 
\5", of reduced functionals 4>(v) appropriate to the 
statistics of Boltzmann. The space \5~ of fermion 
representer cp(v) is defined as the subspace of all 
functionals cp(v) in \5", which are of the form 

4>(v) = F(v)cp(v), (65) 

where F(v) = I ifv(s) = 0 or yes) = 1, for all values 
of s, and F(v) = 0 otherwise. This approach leads to 
peculiar expressions which require care for their 
evaluation and to results which are already indicative 
of its limitations. Friedrichs shows that the functional 
F(v) is identically equal to one if s has no point eigen
value. Therefore, for the occupation representation of 
Boltzmann fields, when summing over all possible 
choices of the occupation yes), we might have had to 
restrict the values of yes) to yes) = 0 and yes) = 1 
without altering the final results. Thus, the same results 
ate obtained for Boltzmann or fermion fields. This, 
clearly, is unacceptable. 

As for the boson case, a partition ~ of the s-space is 
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introduced. The inner product of two functionals ~1 
and CP2, which are compatible in the second manner 
with the partition (1', is defined. The value of the inner 
product is unaltered by a refinement (1" of (1'. The 
inner product is given by the symbolic expression 

(<<1>1' «I>2)~ 
= ~ ~i(V)CP2(V) 

v 

x n {g(s)!/v(s)! [g(s) - v(s)]!}".vcs)e-gCS )lnCl+£) • 

.< 

(66) 

The summation symbol in (66) indicates a sum over 
VI = 0, 1,2, ... , gl; '1'2 = 0, 1,2, ... , g2' etc. In con
trast to the definition of the inner product for boson 
fields, the parameter € in (66), with € > 0, is not 
needed for convergence purpose but is introduced as 
a convenient characterization of the Hilbert space. It 
will be shown later that in the limit € approaching 
zero the corresponding states with the Boltzmann 
statistics are recovered. 

The manifold of functionals compatible with a 
given partition forms a linear space with the above 
defined inner product. This linear manifold is closed by 
adding all its ideal elements. An equivalence class is 
introduced for functionals which differ only on a set 
of Lebesgue measure zero. This closed linear space is 
a Hilbert space and is denoted by IJ~ . 

The equidistribution state «1>" is the state with 
reduced representer ~(v) == I which, according to 
(66), is normalized to unity.l2 

The expected value of the biquantized observable 
.Is '(s).N'(s) in the equidistribution state can be 
calculated by similar formal operations as for boson 
fields which may equally be justified rigorously, 

( <<1>", .I ~(S).N'(S)«I>,,)F = _1_ f~(S) dw(s), (67) 
.' • 1 + € 

where in the limit to the continuum the factor €q(s) 
is replaced by the weight function dw(s). 

The probability that the biquantized observable 
.Is A(S).N'(S) has a value which lies below the value K 

when the field is in the equidistribution state «1>" is 
given by 

with 

Y(z;)') = J d:(S) [In (1 + €eZA(s» -In (1 + E)]. (69) 

As € approaches zero, the equidistribution state for 
fermions approaches the corresponding state but with 
Boltzmann statistics. 

The equidistribution state «1>1) is composed of states 
which give rise to all possible values of the observable 
K = .Is A(S).N'(S). Let the operator K represent the 
energy of the field and suppose the states composing 
«1>" are restricted to have energies which lie between 
the values K and K 1 • The state «1>"''''''1 so obtained is 
the conditioned equidistribution state and has the 
reduced representer 

'Yj"l (.I ).(S)v(S») - 'Yj" (~A(S)'I'(S») 
,1.('1') - s • (70) 
't' - P(Kl) - P(K) , 

where 'Yjl«oc) is defined by (38), For the state «I>v''''''l the 
expected value of the observable .Is '(s).N'(s) is 

( )

F Q(Kl; ~) - Q(K; ~) 
«I>V,I<,"l' ~ ~(s).N'(s)WV''''I<l • = P(Kl) _ P(K) , 

(71) 
where 

1 i dz €eZ).cs) . 
Q(K;~) = -,.I ~(s)q(s) - e-KZ eYCz,).). 

27ft s l: z 1 + €ezMs
) 

(72) 

The integral in (72) may be evaluated by the saddle 
point method under the same circumstances as that 
for boson fields. (See Sec. 4.) This gives 

€exp [-O"A(S)] 
Q(K; 0 ~ ~ ~(s)q(s) P(K), (73) 

s 1 + € exp [-O,,).(s)] 

where the saddle point z = -0" is given by 

f ).(s) dw(s) 

K = exp [OK).(S)] + € ' 
(74) 

If Kl and K are sufficiently close in value, the saddle 
points for Q(Kl; A) and Q(K; ).) are the same; then one 
obtains from (71) 

( )

F f '(s) dw(s) 
Wv.I<' ~ ~(s).N'(s)Wv." :=:::; • (75) 

s • exp [O,,).(s)] + € 

Thus giving for the expected number of fermions 
occupying the value s, when the energy of the field is 
on the energy shell K = .Is ).(s)v(s), the value 

(<1>".", .N'(s)<I>v,,,)~ ~ dw(s)/exp [O,).(s)] + €. (76) 

V. CLASSICAL LIMIT OF QUANTUM STATES 

In the previous sections, the spaces IJ~, and IJr of 
functionals appropriate to Bose-Einstein and Fermi
Dirac statistics, respectively, were introduced. It will 
be seen in what follows that the space iY", , appropriate 
to Boltzmann statistics, is the limiting case of iY~ and 
iY~ as € ---+ 0 if the quantum variable s has no point 
eigenvalue. Since Ii ---+ 0 implies the above limit, one 
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has that as Ii - 0 every quantum state, described by 
a myriotic field, approaches the same classical state. 
More precisely, let cf>(v) be the reduced representer of 
the state <1> in o:~ or o:~, in the limit e - 0; if s has 
no point eigenvalue, one obtains the same state <1>, 

with reduced representer cf>(v), but in {Yeo' 
The projection F, which was interpreted by multipli

cation by the functional F(v) defined by (65), may be 
defined precisely so as to be applied to ideal elements. 
Let :R, be the finite part of the partition ;j' and ;j" be a 
refinement of;j'. Let the subscript k' denote the cells 
Ck , of;j" which lie in :R,. Define the functional 

F!R(v) = 1 Vk' = 0 or 1 for each k', 

= 0 otherwise. (77) 

Let cf>(v) be a functional compatible in the second 
manner with some partition ;j'". Since any two parti
tions have a common refinement and a function 
compatible with a given partition is also compatible 
with a refinement of that partition, one may suppose, 
without loss of generality, that ;j'" is a refinement of 
;j". Then F~(v)cp(v) is well defined and is compatible 
in the second manner with ;j'''. Consider a sequence of 
refinements of the partition ;j'; then, since ;j" is a 
refinement of;j', 

Fj{F':R: = F.:R. (78) 

The operators F.:R' corresponding to this succession of 
refinements of ;j' forms a nonincreasing sequence of 
projection and by a theorem of von Neumann con
verge to a limit projection. Finally, one considers a 
sequence of regions :R,11, with a = I, 2, 3, ... , which 
tend to cover the whole s-space. For :R,T contained in 
:R,D', one has 

(79) 

As in the above case, the sequence of projections F.:R" 
forms a nonincreasing sequence of projections which 
converge to a limit projection F and is denoted by 
multiplication by the functional F(v). 

Therefore, the projection F is defined precisely in 
the Hilbert spaces {Y;, {Y~, and {Yeo of functionals 
compatible in the second manner. 

Consider the state obtained, in both Hilbert spaces 
{Y~ and {Y~, by applying the projection F to the 
equidistribution state <1>..,. The norm of this F-equi
distribution state will be of considerable value later 
on in establishing the classical limit of quantum states. 

Suppose the point eigenvalues of the quantum 
variable s has no limit point. Denote these eigenvalues 
by s(p), P = 1,2,3, ... ,and by WP ' the weight of the 
cell consisting of the point sIp) 

Let the partition ;j", a refinement of;j', be so chosen 

that each eigenvalue SIp) contained in :It, the finite part 
of ;j', forms a cell of ;j". Let the cells Ck " with weight 
w~, refer to the cells of;j" which lie in :R and contain 
no eigenvalue. Consider first the case of boson fields; 
then, from (9) and (77), 

(F!R(v), F!R(v»~ 

= ~(1 + Wp)exp (~Pln(l-e») 

X lJ' (1 + w~) exp (:k' In (1 - e»). (80) 

The product IT~ refers to the eigenvalues /p) in :R, and 
the product II~ to all the cells Ck , in :It. The second 
term in the product in (80) becomes, as one chooses 
finer refinements, 

IT' (1 + w~) exp [(wdE) In (1 - e)] 
k 

= exp (e-1 t' w~ In (1 - e2»). (81) 

Now L~w~ = w(:R,) - Lf Wp is the contribution to the 
total weight w(:R,) = J.:R dw(s) < 00 from all the cells 
in :R, excluding the point eigenvalues and 2~ w~ ::;; 
F(:R) < 00. For the limit (F.:R(v), F.:R(V»~l of (F!R.(v), 
w~(v)W, one has 

(F .:R(v), F .:R(v»~ = exp (W~:R,) In (1 _ e2») 

X g(1 + Wp)exp (-:Pln(l + e»), 

o ::;; e ::;; 1. (82) 

Similarly, for the case of fermion fields, (66) and (77) 
give 

(F .:R(v), F .:R(v»~' 

= ~(1 + Wp)exp (-eWP1n(1 + e»), 

o ::;; e ::;; 00. (83) 

The method used above in derivings (82) and (83) is 
somewhat different than that used by Friedrichs in 
obtaining the corresponding result for the Maxwell
Boltzmann case. In fact, the above limiting process 
leads to a different result for the Maxwell-Boltzmann 
case from that obtained by Friedrichs. For the 
Maxwell-Boltzmann case, one has 

(F.:R(v), F.:R(v»~J-B 

= exp [( -1 +: In (1 + e»)w(:JO] 

X g(1 + Wp)exp (-eWPln(1 + e»), 

o ::;; e ::;; 00. (84) 
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Our result (84) reduces to that given by Friedrichs 
only in the limit f --+ O. 

From the projective nature of the operator F it is 
clear that the quantities given by (82), (83), and (84) 
must be less than unity. That this is so is easy to 
verify. However, Friedrichs' method of evaluating 
these quantities would lead, in the absence of point 
eigenvalues, to a value greater than unity for the 
Fermi-Dirac case. 

The parameters f of (82) and (83) are given, for 
nonrelativistic kinematics, by 

1 = 47T (2mk)! V Tf roo X2 fx , (85) 
h3 N Jo f-1e", ± 1 

where V, N, and T represent the volume, number of 
particles, and temperature, respectively, of the non
interacting equilibrium state in the space ~! or ~~. 
The upper sign refers to the Fermi-Dirac case and the 
lower sign to the Bose-Einstein case. For the Maxwell
Boltzmann case, f is given by 

N = fV(mkTj27T1i2)t. (86) 

In fact, in the limit f --+ 0 both parameters f given by 
(85) approach the result given by (86). 

Consider the expressions (82), (83), and (84) in the 
limit when f approaches zero with w(5t) < 00. One 
finds 

(F.'R,(v), F.'R,(V»)~oB = (F .'R,(V) , F.'R,(v»)~=o 

= (F .'R,(v), F .'R,(v»~=o 
j{. 

= II (1 + Wp ) exp ( - Wp ). (87) 
p 

If 5t covers the whole s-space, this becomes 

(F(v), F(v».=o = II (1 + Wp) exp (-Wp), (88) 
p 

which is less than unity in the presence of point 
eigenvalues. Hence, in the absence of point eigen
values, one has that F.'R,(v)4>(v) = 4>(v) for the func
tional cp(v) == 1. From this result one can prove that 
F .'R,(v)cp(v) = cp(v) for every boson, Maxwell-Boltz
mann, or fermion functional cp(v), that is, the pro
jector F is the identity in the limit Ii --+ 0 if the quantum 
variable s has no point eigenvalue. 

It will be sufficient to have F.'R,cp(v) = cp(v) for all 
functionals cp(v) of a dense subset in ~~ or ~~. A 
dense subset is given by the compatible functionals 
which are different from zero for only a given occu
pation V1 = v~, V2 = v~, •.. , cp:fO( vo) = cpo. Without 
loss of generality, </>0 may be chosen to be unity. In 
what follows the case of boson fields is considered. 
The situation for fermion and Maxwell-Boltzmann 
fields goes through with slight alterations. 

Let CPo (v) be such a functional and suppose ~o is a 
refinement of the partition ~ which has finite part 5t. 
Let ~' be a refinement of ~~ and F~, the operator 
defined by (77). Then, 

(11(1 - F.1t)CPoll~)2 

= I' ICPo(v)1 2 II [v'(s) + g'(s) - 1]! fY'lsleg'lsllnIHl. 

y' s v'(s)l[g'(s)-I]l 
(89) 

The prime in the summation symbol indicates that one 
should omit all occupations numbers v~, v;, ... for 
which each v~ is either zero or one. Thus, 

(11(1 - F.1t)CPoll~)2 

:$; I' IT [v'(s) + g'(s) - 1]1 fY'(sleY'(slln(Hl (90) 
v' s v'(s)! [g'(s) - 1]1 

or 

11(1 - F.1t)CPo\l~ ~ 11(1 - F.1t)l II~· (91) 

Since the refinement ~' can be made arbitrarily fine, 
one has that 

Now, 

(\1(1 - F.'R,)1I1~)2 = (111\1~)2 - (1IF.'R,111~)2 

= 1 - (11F.'R,111~)2 --+ 0 (93) 

as f --+ 0 because of (88), in the absence of point 
eigenvalues. Thus, from the dense nature of the subset 
of functionals CPo(v), the statement F.'R,cp(v) = cp(v) is 
proved for every boson functional cp(v) as Ii --+ 0, in 
the absence of point eigenvalues. 

The conclusion that in the limit Ii --+ 0 the state in 
o:~ (or ~~) with the representer given by the functional 
cp(v) gives the same result as that given by the func
tional cp(v) in ~~-B follows readily from the above. 
Now, from (9), (66), and (77), in the absence of point 
eigenvalues, 

(F .'R,<D1' <1>2); 
= exp [_f-1 In (1 - f2)W(5t)](F .'R.<1>1' <P2)~ (94) 

for arbitrary states <P1 and <P2. Hence, in the limit 
€ --+ 0, since F.'R,cp(v) = </>(v), one has that 

(<1>1' <P2)~=0 = (<P1, <1>2)~=O' (95) 

Therefore, all the physical results of the theory 
approach the same classical result. Note that the order 
of the limiting processes f --+ ° and 5t covering the 
whole s-space cannot be interchanged in (82) and (84). 
Thus, the result of Friedrichs that for the Maxwell
Boltzmann case the values of v(s) might have been 
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restricted to v(s) = 0 and v(s) = 1 for all s except for 
point eigenvalues is only true here in the limit Ii -+ O. 
Note, also, that Planck's constant does not appear 
when evaluating physical quantities in the Maxwell
Boltzmann case, for example, the expected number of 
particles at the value s on the energy shellls v(S)A(S) = 
K, but it does appear in expression (84) where the 
projector F occurs. 

VI. NONSEPARABILITY OF THE HILBERT SPACE 

The Hilbert space of all compatible and ideal 
occupation functionals cp(v), with inner product 
defined by (9) [or (66)], will be denoted by o:~ (or o:n. 
The subscript E, with 0 S E < 1, emphasizes the 
dependence of the inner product on this parameter. 
Consider the Hilbert space o:~ with E' ~ E and 0 S 
E' < 1. In what follows it will be shown that for 
myriotic fields the spaces o:~ and o:~ are orthogonal. 
Hence, one obtains a sequence of Hilbert spaces, 
each orthogonal to all the others, parametrized by the 
continuous variable E. This representing a non
separable Hilbert space. 

Consider the cell e in such a way that it contains all 
bounded cells of the partition :r with which the 
functional cp(v) is compatible. One has that Wee) = 
f c dw(s) < 00 and Wee) approaches infinity when the 
cell e tends to cover the whole s-space. Now, 

(<I>, <I»~ 

= llcp(v)12 IT (E'r(sJeg(slln(H'J [v(s) + g(s) - 1]! 
v s v(s)! [g(s) - 1]! 

= (<I>, (~)N(C) exp [w~e) In G = :) J<I> r. (96) 

where the operator 

.N'(e) =fcA+(S)A-CS) dm(s) (97) 

corresponds to the number of particles in the cell e. 
Expression (96) suggests introducing the operator 

T = (E'jE)io"i'(C) exp {[W(e)/2E] In [(1 - /)/(1 - E)]), 

(98) 

which transforms the state represented by the func
tional cp(v) in o:~ to the same state in O:~. Actually, 
the operator T maps elements of the space o:~ with 
representee <p(v) into elements of the same space but 
with representer 

(E'jE)!v(C) exp {[W(e){2E] In [(1 - E'){(l - E)]}cp(V), 

with vee) = lSEC v(s). Since, by assumption, (<I>, <I»B < 
00, therefore, one has that (<I>, <I»~ < 00 for 0 S E' < 

I. It follows from (96) and (98) that 

(<I>, T<I»: = (<I>, <I»(€€,}t exp ([Wce)/E] 

x In {[(I - E')(1 - E)Jtj[1 - (E'E)tJ)), (99) 

which tends to zero as the cell e covers the whole of 
s-space since 

for 
o < E < 1 and 0 < E' < 1. 

By the Schwarz inequality and result (99), 

(<1>1' T<I>2)~ --+ 0 as Wee) --+ 00 for 0 < E < 1 

(100) 

for arbitrary functionals CPi(V) and cpz(v) in 'iJ~. 
Therefore, the operator T takes every vector of o:~ 
out of this space and into the orthogonal space O:~. 

Similar results hold for the cases of Maxwell
Boltzmann and Fermi-Dirac statistics. For instance, 
for the Maxwell-Boltzmann case treated by Fried
richs 

(<I>, <I»w = ll(cp(v»lz II [dw(s)t(s) e-dw(sJ < 00. 

v s v(s)! 
(101) 

Suppose the weight function is modified by a simple 
nonzero multiplicative factor so that dw'(s) = C dw(s). 
The new scalar product is, evidently, 

(<I>, <I»cw = !lcp(v)IZ II [dw'(s)r(s)e-dw'(s) < 00, 

v s v(s)! 

for 0 < C < 00. But, 

(<I>, <I»cw = (<I>, cN(C) e-CW(C}+W(C)<I»w' 

Introduce the operators 

(102) 

(103) 

T = dN(CJi[-CW(C)+W(ClJ. (104) 

Hence, by (103) and (104), 

(<I> T<I» = e-W(C)(t+tc-v' C)(<I> <1» t , w , (Cw)' (105) 

which approaches zero as the cell e covers the whole 
of s-space, since t + jC - .JC > 0 for 0 < C ~ 1. 
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We construct a family of distribution spaces :1\,;" Each:l\,;, completely characterizes the (tempered) dis
tributions (i) which are the discontinuity of functions holomorphic in a cut plane with given bounded ness 
properties and (ii) the Froissart-Gribov transforms of which are holomorphic in a half-plane with given 
asymptotic behavior. The main results are stated in two reciprocal theorems. Such a reciprocity shows 
the adequacy of our spaces :Kl. Some mathematical properties of these ones are given after introducing 
the proper test function spaces X;,. In particular, we prove a representation theorem for the distributions 
in X;'. 

1. INTRODUCTION AND RESULTS 

In elementary particle physics, one constantly has 
to deal with the following three objects: 

(1) a scattering amplitude F(z) which usually is an 
analytic function of z (the cosine of the scattering 
angle) in a complex cut plane; 

(2) an absorptive amplitude ~(x) which, within a 
factor 2i, is the discontinuity of F(z) through the cut; 

(3) partial wave amplitudes f(1), which are con
nected to ~(x) by the so-called Froissart-Gribov 
transformation! [see, further on, Eq. (Ll )]. 

It is well known that when Mx), defined say on2 

[zo, + 00], is a function which behaves like x;' at 
infinity, we have the following: 

(i) It is possible to construct a function F(z) holo
morphic in C[zo, + 00] with the discontinuity 2i~(x), 
which behaves like z). at infinity in the complex 
z-plane; 

(ii) The Froissart-Gribov transform f(l) of ~(x) 
is holomorphic in the complex half-plane Re I > A. 

We want to emphasize the fact that if ~(x) (always 
bounded in modulus by Cx;', where C is a constant) 
oscillates at infinity, it may happen that there exists a 
function F(z) which behaves at infinity like zl' with 

p, < A. At the same time f(1) will be analytic in the 
larger domain Re I > fl. This shows that one cannot 
give a reciprocal statement for (i) and (ii): If F(z) 
behaves like ZA or if f(l) is holomorphic in Re I > A, 
nothing can be said about the behavior of 1~(x)1 
when x goes to infinity. 

Secondly, the discontinuity through the cut of a 
given function F(z) analytic in C[zo, + 00] is not 
necessarily a function: It may be a distribution (or 
even a more complicated object like a hyperfunction). 
In axiomatic quantum field theory, the absorptive 
parts generally are distributions. Thus we cannot 
restrict ourselves to amplitudes F(z) the discontinuity 
of which are functions, and we will allow ~(x) to be a 
distribution (which from now on we shall denote ~<t). 

The purpose of this paper is to solve the following 
two problems: 

(1) If F(z) is a holomorphic function in C[zo, + 00], 
bounded in modulus by C Izl). in any direction of the 
complex z plane but possibly in the direction of the 
positive real axis, with a discontinuity 2i~ .. which 
is a distribution, what can be said about ~<t ? 

(2) Let f(l) be the Froissart-Gribov transform of 
a distribution ~<t; that is to say, 

(1.1) 
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to deal with the following three objects: 

(1) a scattering amplitude F(z) which usually is an 
analytic function of z (the cosine of the scattering 
angle) in a complex cut plane; 

(2) an absorptive amplitude ~(x) which, within a 
factor 2i, is the discontinuity of F(z) through the cut; 

(3) partial wave amplitudes f(1), which are con
nected to ~(x) by the so-called Froissart-Gribov 
transformation! [see, further on, Eq. (Ll )]. 

It is well known that when Mx), defined say on2 

[zo, + 00], is a function which behaves like x;' at 
infinity, we have the following: 

(i) It is possible to construct a function F(z) holo
morphic in C[zo, + 00] with the discontinuity 2i~(x), 
which behaves like z). at infinity in the complex 
z-plane; 

(ii) The Froissart-Gribov transform f(l) of ~(x) 
is holomorphic in the complex half-plane Re I > A. 

We want to emphasize the fact that if ~(x) (always 
bounded in modulus by Cx;', where C is a constant) 
oscillates at infinity, it may happen that there exists a 
function F(z) which behaves at infinity like zl' with 

p, < A. At the same time f(1) will be analytic in the 
larger domain Re I > fl. This shows that one cannot 
give a reciprocal statement for (i) and (ii): If F(z) 
behaves like ZA or if f(l) is holomorphic in Re I > A, 
nothing can be said about the behavior of 1~(x)1 
when x goes to infinity. 

Secondly, the discontinuity through the cut of a 
given function F(z) analytic in C[zo, + 00] is not 
necessarily a function: It may be a distribution (or 
even a more complicated object like a hyperfunction). 
In axiomatic quantum field theory, the absorptive 
parts generally are distributions. Thus we cannot 
restrict ourselves to amplitudes F(z) the discontinuity 
of which are functions, and we will allow ~(x) to be a 
distribution (which from now on we shall denote ~<t). 

The purpose of this paper is to solve the following 
two problems: 

(1) If F(z) is a holomorphic function in C[zo, + 00], 
bounded in modulus by C Izl). in any direction of the 
complex z plane but possibly in the direction of the 
positive real axis, with a discontinuity 2i~ .. which 
is a distribution, what can be said about ~<t ? 

(2) Let f(l) be the Froissart-Gribov transform of 
a distribution ~<t; that is to say, 

(1.1) 



                                                                                                                                    

DISPERSION RELATIONS 1243 

where QI(X) is the Legendre function of the second 
kind and, as usual, (/). .. , q?(x» denotes the scalar 
product of the distribution /). .. with the test function 
q?(x). Knowing that f(l) is holomorphic in the half
plane Re I > A, what can be said about the distribu
tion /). .. ? 

In order to make clear the results we have obtained, 
we shall start summarizing them right now, post
poning the different proofs to the following sections. 

The study of the two problems formulated above 
will lead us to construct spaces J\,~ of tempered 
distributions on the real axis, such that the answers 
we are looking for can be formulated in two theorems. 
Before defining the spaces J\,~, we shall state these 
theorems: 

Theorem 1: Let /). .. be a distribution which 

(AI) belongs to J\,~ with A ~ -1 and 
(A2) has its support contained in [zo, + 00]. Then 

there exists a function F(z) 
(Bl) holomorphic in C[zo, +00] with the discon

tinuity 2i/). .. and 
(B2) bounded in the cut plane by 

IF(z)1 < const x (1 + IzI)H'/If:W<<l, 

where E is any positive number (as small as one wants), 
() is the phase of z (-'IT < () ~ 'IT), and pee) a non
negative number which eventually may indefinitely 
increase when E approaches zero. Reciprocally, let 
F(z) be a function enjoying properties (Bl) and (B2) 
with A ~ -1. Then its discontinuity satisfies (A 1) 
and (A2). 

Let us make some comments about this first 
theorem: 

(1) The presence of the factor 1/1(W<£) in the bound 
(B2) ensures that the boundary value of F(z) on the 
two sides of the cut (and thus the discontinuity) is a 
distribution.3 Moreover, when () is fixed :;E= 0, that is 
to say, in any complex direction different from the 
direction of the positive real axis, IF(z) I is bounded 
by e(l + Izl),w for any strictly positive E. But, in 
the direction of the positive real axis, IF(z) I is allowed 
to grow much faster, and its rate of growth is no 
longer connected to A.4 

(2) The bound (B2) is the kind of bound which 
emerges from axiomatic field theory.5 It allows the 
writing down of dispersion relations with a finite 
number of subtractions. 

(3) As consequences of the reciprocal character of 
Theorem 1: First, if /). .. does not belong to J\,~, there 

is no function F(z) with the discontinuity 2;/). .. which 
satisfies a bound of the form (B2); second, if F(z), 
holomorphic in C[zo, + 00], does not satisfy (B2), 
its discontinuity does not belong to J\,~ . 

The reciprocal character of Theorem 1 ensures that 
the spaces J\,~ are the good ones to be considered (at 
least when A ~ -1). Let us remark that neither the 
spaces O~ introduced by Bremermann and Durand in 
a similar context6 nor the various ones studied by 
Gel'fand and Shilov7 are convenient in that respect. 

The restriction A ~ -1 is essential. It makes 
Theorem 1 only a partial answer to our problem. 
We shall come back to that point later on, when we 
know the content of J\,~ . 

Now comes the second theorem: 

Theorem 2: Let /). .. be a distribution which enjoys 
properties (AI) and (A2) of Theorem 1. Then its 
Froissart-Gribov transform f(l) is 

(Cl) holomorphic in the half-plane Re I > A and 
(C2) bounded by 

If(/)1 < P,(I/I)[zo + (z~ - l)ir Rel 

for Re I ~ A + E, 

where E is any positive number and P,W!) is a poly
nomial in III, the degree of which depends on E and 
may eventually indefinitely increase when E approaches 
zero. Reciprocally, let f(l) be a function satisfying 
(Cl) and (C2) with A ~ -1. Then it is the Froissart
Gribov transform of a distribution which enjoys 
properties (AI) and (A2) and which is given by 

1 (HiOO 
/). .. = 2'ITi J~-iOO dl(21 + l)f(l)Pb), ~ > A. (1.2) 

Some comments about this second theorem are in 
order: 

(1) The bound (C2) means that, in the half-plane 
Re I > A, If(l)1 exponentially decreases at infinity in 
all directions but the direction of the imaginary axis 
where If(l) I is allowed to grow polynomially in 1/1.8 

(2) The first part of Theorem 2 is trivial. It is the 
extension to the distributions of J\,~ of a well-known 
result proved by Froissart.1 On the contrary, to our 
knowledge, the reciprocal statement is new. 

(3) The third comment we made after Theorem 1 
keeps all its value here. 

(4) The exact mathematical meaning of the inver
sion formula (1.2) in terms of test functions will be 
given in Sec. 4. 

So far we said nothing about the spaces J\,~. To 
describe them, we first introduce the spaces J~. They 
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are such that any distribution Ll", which belongs to J~ 
[and satisfies (A2)] has the following representation: 

A", = x)'+l DV[(Iog X)qxV-l~(X)], (1.3) 

where p and q are nonnegative integers and ~(x) is 
a continuous and bounded function of x (D is the 
symbol of derivation in the sense of distributions). 

The representation (1.3) is valid for any value of A. 
However, when A ;?: - I, Eq. (1.3) can be replaced by 

A", = DV[(1og x)qx./.+vZi(x)], (1.4) 

where 2i(x) has the same properties as ~(x). 
We note that, for any value of A, the distributions 

Ll", in J~ are tempered: the J~ are subspaces of S', the 
space of tempered distributions. 9 Moreover, if 
Al < A2 , then J~ is contained in J~ : J~ c J~ c S'. 

1 2 1 "2 

Now comes the definition of J(,~: It is the inter-
section of all the spaces J~ for fl- strictly larger than A, 

(1.5) 

A given distribution Ll", which belongs to J(,~ has a 
representation of the type (1.3) [or (1.4) when A;?: - I] 
in each J~, with parameters p" and q" and a function 
~ix) [or Zi,,(x)] which depend on fl-. In particular, 
it may happen that p" indefinitely increases when fl
approaches A (in Sec. 2 we shall exhibit a distribution 
which has that property). This phenomenon is the 
origin of the possible indefinite increase of peE) in the 
bound (82) and of the degree of p.(I/!) in the bound 
(C2), when E approaches zero. 

Let us make some comments about these definitions: 

(I) According to Eq. (1.4), the distribution 

Ll", = D sin eX = eX cos eX 

belongs to J':"l . It is indeed a function, and we see 
that its modulus is not bounded at infinity by any 
power of Ix\. At the same time, it oscillates more and 
more rapidly when Ixl increases. This has to be put 
close to what we said at the beginning of the intro
duction. We realized that, in order to have reciprocal 
statements in Theorems I and 2, we had to be able to 
take into account oscillations in the absorptive parts: 
These oscillations are completely described by the 
representations (1.3) and (1.4). 

(2) When regularizing A", by an infinitely differenti
able function IX (x) , the oscillations of Ll", kill its fast 
increase at infinity. One could so hope to recover, 
for the regularized distribution ~Ll(x), a behavior at 
infinity at C Ixl)., if Llx belongs to J~. This is not true, 
as it will be shown in Sec. 2 on an explicit example. 

(3) If Ll", is a positive distribution (like the absorp-

tive part in forward direction), then p is not larger 
than 2 in formulas (1.3) and (1.4), and the functions 
between brackets are convex. 

(4) Once more we encounter the condition A ;?: -1. 
In order to understand this important condition, we 
have to say a few words about the test functions. The 
distributions of J~ operate on test functions which 
belong to a space J;., which will be constructed in 
Sec. 2. What we have to know here is that when 
A ;?: -1, J;. contains no polynomial in x. On the 
contrary, when A < -N, N= 1,2,"', J;. contains 
all polynomials of degree S N - 1. 

Suppose now that a distribution Llx, belonging to 
J~ for - (N + 1) S A < - N, can be represented 
according to Eq. (1.4) with p at least equal to N. 
Then, we immediately conclude that Ll", satisfies N 
"sum rules": 

(A"" xn) = ((log x)qx./.+vZi(x), (- DYxn) 

= 0 for n = 0,1, ... , N - I. (1.6) 

These "sum rules" are exactly the conditions Ll", 
has to satisfy in addition to (AI) and (A2), in order 
to have Theorem 1 for A < -1. However, the 
representation (1.4) is not valid in general for A < -1: 
This implies that there exist distributions in J~ which 
do not satisfy any "sum rule." Consequently, to these 
distributions there correspond no functions F(z) with 
properties (81) and (82). That is the reason why we 
cannot extend Theorem I (and also Theorem 2) to 
A < -1. 

This means that the spaces J~ are not convenient for 
our purpose when A < -1. Let us say, however, that 
it is possible to construct more sophisticated spaces 
such that Theorems I and 2 hold for A < -1. This 
requires some more work, and it is now under 
investigation. 

(5) Finally let us give two examples which illustrate 
the previous considerations. The first one is o(x - Xl)' 

It has the representation 

where e(x - Xl) is the "Heaviside function." The 
function between brackets in Eq. (1.7) being con
tinuous and bounded by C lxi, o(x - Xl) belongs to 
J':"l . Indeed, it belongs to J':"oo , as it can be shown 
easily by using representations of type (1.3). 

Its Froissart-Gribov transform is Q!(xl ), which is 
holomorphic in Re I > -1, in accordance with 
Theorem 2. {QtCx1) is indeed holomorphic in 
C[ - co, -I].} Note that, although o(x - Xl) belongs 
to J':" oo , Q!(Xl) is not holomorphic in Re I > - co, 
because o(x - Xl) satisfies no "sum rule." 
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The inversion formula (1.2) gives 

1 IHioo 
(l(x - Xl) = -. dl(21 + l)PI(X)QI(X l ), 

27T1 g-ioo 

~ > -1. (1.8) 

As it will be explained in Sec. 4, the right-hand side 
of Eq. (1.8) belongs to J~: It is not a representation of 
(l(x - Xl) in J~l . 

The second example is the unitarity kernel of 
Mandelstamlo : 

K _ O(x - Xl X2 - [(x~ - l)(x~ - l)]!) 
'" - (2 2 2 2 1)! X + Xl + X2 - XXl X2 -

Xl' x2 > 1. (1.9) 

It has the representation 

K = D(O( _ )1 (x - x_)! + (x - x+)!) 
'" X X+ og ~ ! ' 

(x - x_) - (x - x+) 

(1.10) 
where 

x± = Xl X2 ± [(x~ - 1)(x~ - 1)]!. 

We notice that the function between brackets in 
Eq. (1.10) is continuous, and behaves at infinity like 
log x. Thus K", belongs to J'_l' 

Its Froissart-Gribov transform is11 

1
00 QI(X) 

dx ! = QI(XI )QzCx2), (1.11) 
"'+ [(x - x_)(x - x+)] 

and it is hoI om orphic in Re I > -1. The inversion 
formula (1.2) gives 

O(x - X1X2 - [(x~ - 1)(x~ - l)]!) 

(x 2 + xi + xi - 2XX I X 2 - l)! 

1 1Hioo 
= -. dl(21 + 1)PzCX)QI(XI )QzCX2), ~ > -1. 

27T1 g-ioo 

( 1.12) 

As in formula (1.8), the right-hand side of Eq. 
(1.12) is indeed a representation of K", in J~, and not 
in J~l' 

Before ending this section, let us sketch the content 
of the following ones. 

Section 2 is devoted to the mathematical study of 
J~ and J(,~ and their test function spaces J land J(,l' 
All of them are given the structure of topological 
linear spaces. The main result of Sec. 2 is Theorem 3, 
which gives the representation of the distributions 
in J~. Sections 3 and 4 are devoted respectively to the 
proofs of Theorems 1 and 2. Some technical points 
are deferred to four appendices. 

2. THE SPACES j~ AND J(,~ OF TEMPERED 
DISTRIBUTIONS 

Our first task will be to build our spaces J~. The 
principle of the method will consist to relate them to 
the tempered distribution space S' by means of a 
simple change of variable. To this end, we have to 
construct the appropriate spaces J A of test functions. 
We define J A as the set of all complex-valued, infinitely 
differentiable functions ffJ over fR"" such that for all 
q>O 

lim (log IxJ)q Ixl.HP+1 DPffJ(x) = 0, p = 0, 1,2," '. 
1"'1-+00 (2.1) 

The linear space J A will be endowed with the following 
topology: A sequence {ffJ.} will converge to ° in J A if 
{[log (2 + Ixl)]q(l + Ixl)A+P+1DP ffJi (x)} converges to ° 
uniformly over fR for all q, p = 0, 1, .... 

We next consider the space S of all complex-valued, 
infinitely differentiable functions <l> with fast decrease 
over fRr (in the sense of Schwartzl2) together with the 
mapping fRr ~ fR", defined by x = sinh T. S being 
equipped with the standard topology, we have the 
following. 

Lemma 1: (1) The mapping T ~ X = sinh~ T induces 
an isomorphism H: ffJ ~ <l> between J A and S defined 
by 

<l>(T) = (cosh T).HlffJ(sinh T).13 

(2) The bijection H is a homeomorphism. 

(2.2) 

Proof: Since the mapping T ~ X = sinh T is a 
COO-diffeomorphism, in order to prove (1), one only 
has to show the equivalence of the condition (2.1) with 

lim ITlq D~<l>(T) = 0, V q, P = 0, 1, .. '. (2.3) 
Irl-+oo 

But from 

D~<l>(T) = [(1 + x2)! D",Y[(l + x2)i(A+ll ffJ(x)] 

it is easily shown that 

where 

P 

ITlq D~<l>(T) = I Clpp,(x)D~'ffJ(x), 
p'=o 

Clpp'(X) = O[(1og Ixl)q IxIAW+1] 
1"'1-+ 00 

so that (2.1) => (2.2). 
In the same way, (2.2) => (2.1) because 

P 

(2.4) 

(log IxJ)Q Ixl.HP+I D~ffJ(x) = I /31J1AT)D~'<l>(T) (2.5) 

with 
p'=o 

/3pp,(T) = O[ITn 
Irl-+oo 
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Part (2) of the lemma is true if every sequence {<p,} 
converging to 0 in J;. generates (via the isomorphism 
H) a corresponding sequence {<I>i} converging to 0 in S, 
and reciprocally. But this is obvious from Eqs. (2.4) 
and (2.5). QED 

Let us now consider, together with the tempered 
distribution space S', the topological dual J~ of J;. . 

We can endow the linear spaces S' and J~ with the 
strong topology of the dual (i.e., the topology of the 
uniform convergence in the bounded sets of Sand 
J;. respectively).14 Then we have an immediate counter
part of Lemma 1. 

Lemma 2: (1) The isomorphism H induces an 
isomorphism H': ~'" ~ r T(~'" E J~, r T E S') between 
J~ and S' defined by 

(~"" rp(x» = (r" <I>(T», V rp E J;., <I> = H(rp). 

(2.6) 
(2) The bijection H' is a homeomorphism. 

The proof is trivial. 

Let us notice that, in case the considered distribu
tions actually are functions, Eq. (2.6) takes the form 

J dx~(x)rp(x) = J dTr(T)<I>(T) 

and the isomorphism H' reduces to 

H':Ll(x) ~ reT) = (cosh Tr;'Ll(sinh T), 

i.e., a simple change of variable when A = O. 
Lemmas 1 and 2 allow us to transfer the well-known 

algebraic and topological properties of S (resp. S') to 
J;. (resp. J~). Thus, each J;. is a locally convex, sepa
rated, complete, bornological space. Moreover, J;. is a 
denumerably normed space. Therefore, it is a Frechet 
space. A denumerable basis of neighborhoods can be 
defined as 

V;.(Q, P, e) 

= {rp I rp E J;., Ilog (2 + IxI)Q(1 + Ixl);'+1'+1 D1' rpl 

::s;; E, V X E IR, P ::s;; P}, Q, P = 0, 1,2, .... 

(2.7) 

On the other hand, each J~ is a locally convex, 
separated, complete space. Its topology is defined by 
a nondenumerable basis of neighborhoods. Further
more, the sets {J;.} and {J~} are ordered by the follow
ing obvious inclusion relations (with the same 
"variable" x in all spaces J;. and S): 

S c J;.. c J).l' J~, C J~2 C S', A1 < A2 • (2.8) 

Here, X c Y means 

(i) X is a linear subspace of Y, 
(ii) the topology of X is stronger than the topology 

induced on X by that of Y. 

Finally, we see that the family {J~} is a covering of the 
tempered distribution space S': 

S = n J)., S' = U J~. 
-00<).<00 -00<).<00 

We now turn to the construction of concrete repre
sentations for the distributions belonging to J~. Such 
representations are easily deduced from the known 
representations of general tempered distributions by 
using the isomorphism H'. As we are especially 
interested in distributions with support bounded at 
the left (which for convenience we suppose to be 
contained in [a, 00] with a> 1), we include this 
restriction in our statement. 

Theorem 3: (l) Every distribution ~'" E J~ with 
supp ~'" c [a, 00] has the representation 

~'" = XH1 D1'[(log x)qx1'-1&(x)], (2.9) 

where p and q are some integers ~ 0 and &(x) is a 
complex-valued, bounded, continuous function over 
IR with supp &(x) c [a, 00]. Conversely, every dis
tribution ~'" having the representation (2.9) belongs to 
J~ with supp ~'" c [a, 00]. 

(2) If A ~ -1, the representation (2.9) can be 
written in the alternative way: 

Ll", = D1'[(log x)Qx).+1'K(x)], (2.10) 

where &(x) has the same properties as &(x). 
(3) The functions &(x) and K(x) are univocally 

determined by the distribution ~",. 
(4) If ~'" is a positive distribution (i.e., a positive 

measure), one can put p = 2 in formulas (2.9) and 
(2.10). Then both brackets are convex functions 
over IR. 

Proof' We first consider the case A ~ -1. If ~'" 
has the form (2.10), we get 

(~"" rp(x» _ 

= (-1)1'1
00 

dx ~(x) 2 [(log x)Q+2x H1'+1D1'rp(x)] 
a x(log X) 

SO that, according to Eq. (2.1), 

(~""rp(x»<Croo (ldX )2<00, VrpEJ)., a>l, Ja X og x 
Moreover 

supp rp c qa, 00] => (~"" rp(x» = 0, 

{rp,} ~ 0 => {(~"" rp.(x»} ~ 0. 
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Thus 

D.r< E j; and supp D.., c [a, co]. 

Conversely, let ~., be a distribution satisfying these 
conditions. As we are concerned only with the positive 
values of x, we can replace at this stage the C"'
diffeomorphism IRr --+ IR., of the Lemma 1 by the 
Coo-diffeomorphism IRr --+ 1Rr<+ defined by x = e

T 

and the isomorphism H by 

Cl>(T) = e(Hllr1p(eT
). (2.11) 

Then, clearly, the Lemmas 1 and 2 are still true with 
some obvious supplementary conditions on the 
various spaces involved. Thus 

H':~x--+ r T with rr E S', supp r T c [loga,co]. 

Now we can use for r T the well-known representation 
of tempered distributions,l5 

(2.12) 

where p and q are some integers ~ ° and reT) a 
complex-valued, bounded, continuous function over 
IR. Furthermore, from the support property of r" 
it may be assumed [by adding a polynomial of degree 
< p to Tqr(T) if needed] that supp rer) c [log a, co]. 
Hence,.according to Eqs. (2.6), (2.11), and (2.12), 

P 

~x = 2 (-ty'ypp,D P'[(Iog x)QxHp'r(1og x)]. 
,,'=0 

But, for A ~ -1, we have 

DP'[(log x)QxH!>'r(1og x)] = DP[(log xtxA+Pr(x)], 

p':::;; p, 

with rex) a bounded, continuous function with sup
port in [a, co]. Indeed, this relation is easily obtained 
by recurrence if we remark that 

DP'-l[(log x)QXHp'-lGp'_l(X)] 

= DP'[(log X)Q+lXA+P'Gp'(x)] 
with - 5x X'A+P'-l (log x')· Q 

G ,x = dx' --- -, p ( ) H . +1 Gp'_l(X ). 
a X P (log x)q 

Then G p,(x) has the properties required for rex) if 
Gp'_l(X) does (the condition A ~ -1 is crucial at this 
point). 

Finally we see that ~., has the form (2.10), and the 
proof of (2) is complete. 

Now we can turn to the general case (1). From the 
first definitions, it is clear that D.x E j~ if and only if 
X-;'-l~r< E j~1 . As the representation (2.10) is valid for 
A = -1, the proof of (1) reduces to that of (2). 

In order to show that ii(x) is unique, it suffices to 
write (2.9) with two functions ii(x) and ii'(x) in the 
form 

Hence 
b(p) * (p - p') = 0. 

But b(P), p, p' E 1>~ and, since the convolution 
algebra in 1>~ has no divisor of 0,16 we conclude that 

p - p' = ° and ii(x) = ii'(x). 
The unicity of K(x) fol1ows from the same argument, 

and (3) is proved. 
Final1y, if D.x is a positive distribution, the property 

(4) arises from the fact that any positive measure is 
the second derivative of some convex functionY The 
details are given in Appendix A. {Some care is 
required at this point, because one cannot be sure 
"a priori" that the general representation (2.9) [or 
(2.10)] real1y coincides with that one for which p = 2.} 

QED 

Let us remark that parts (1), (2), and (4) of the 
theorem still hold if one removes al1 conditions 
involving the supports [of ~x, ii(x), and K(x)] and 
replaces Eqs. (2.9) and (2.10) by 

~x = (1 + Ixl)Hl DP{[1og (2 + IxI)F(1 + Ixl)p-1ii(x)}, 

~., = DP{[log (2 + Ix\)]Q(l + IxI)HPK(x)}. 

This folIows from the fact that every distribution 
~x E j~ can be written as the sum of two distributions 
belonging to J~ (with support bounded at the left, 
resp. the right) for which the theorem applies. 

It could be expected that the distributions ~x 

belonging to j~, besides their representations, are 
characterized as well by their asymptotic behavior 
after regularization (Le., after convolution of ~x with 
a COO function oc with compact support). In fact, such 
a characterization does not exist: Of course, as the 
~., are tempered distributions, the functions aD.(x) = 
~x * oc(x), oc E 1>, are polynomially bounded at infinity, 
but there is no connection between A and the degree 
of that polynomial. This feature appears clearly on 
the following example: 

with 
00 

D2~(X) = 2 (-ltb(x - n). 
n~l 
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Then Llx E J~, V p, but 

abo(x) = ~ (- !tOC(p-2)(X - n)n P
• 

n~2 

Since oc has a compact support, the best bound for 
the regularized distribution is 

I abo (x) I < expo 

Again, this example shows that the (minimum) value 
of p appearing in the representation of a distribution 
box is connected not only to the local structure of box 
(i.e., its order) but also to the oscillatory character of 
its asymptotic behavior. 

However, in the case of positive measures in J~, 
a A-dependent asymptotic bound can be derived after 
regularization (see Appendix A), namely, 

abo(x) = o [(log X)qX)dl], VOCE~, for some a > 0. 
X_a) 

(2.13) 

Such a bound actually can be saturated. For example, 

a) 

box = L nQ2nU·+l)b(x - 2") 
n~1 

is a positive measure belonging to J~ {it can be written 
in the form box = XHI D2p(X) with 

p(x) = o [(log X)H2X ]} 
X_a) 

and 

For the needs of the following sections, it is con
venient to introduce new spaces of distributions 
involving families of spaces J~, in such a way that the 
inessential logarithms occurring in the latter disappear. 

We first consider new spaces of test functions, J(,;" 

algebraically defined by 

J(,.l. = U J". 
#>.l. 

By virtue of the inclusion relations (2.8), we can 
write as well 

a) 

J(,.l. = U J;'+1ln (2.14) 
n=l 

or equivalently 

J(,). = {cp I cp E CO°, lim IxlMn;pl +pH DPcp = 0, V P ~ 0, 
'x,'" 00 

for some integer n,!,}, 

We wish to endow J(, .. with the topology of the 
inductive limit,18 Indeed this is the strongest locally 
convex topology over J(,;, allowing us to construct the 

topological dual J(,~ in a canonical way. Thus there 
will be no difficulty in characterizing the distributions 
of J(,~ by means of explicit representations deduced 
from Eqs. (2.9) and (2.10). 

Two equivalent bases of neighborhoods for J(,), 

can be built starting from the neighborhoods (2.7)18.19: 

(2.15) 

<U;.({P}, {e}) = gl (~IVMl/m(O, Pm' em»), (2.16) 

where {P} design any sequence of nonnegative integers 
and {e} any sequence of positive numbers. We have 
used the notation Ec = convex envelope, and 

~ Em = {rp I rp = ~ rpm' rpm E Em}. 

It should be emphasized that J(,), is not a strict 
inductive limit of the spaces J ).+1/n , for the topology 
of JM1/(n-0 is strictly stronger than the topology 
induced on J Ml/(n-l) by that of 3 Ml/n' In other words, 
there exists a neighborhood of 0 in JM1 /(n-l) which 
does not contain any intersection VM1 /n n J).+1/(n-O. 

In fact, it turns out that 

V.l.+1f{n-I)(Q,P,IO) $ VM1/n(Q',P', €O') 

n 3)'+1/(n-l) , V Q, Q', P, P', €O, (;' 

for simple functions can be exhibited, which enter in 
V M1/n n 3),+1/(n-l) but not in V),+1/(n-l)' 

According to Eqs. (2.15) or (2.16), each J(,), is a 
locally convex, separated space having a nondenumer
able basis of neighborhoods. Moreover, J(,). is a 
bomological space, as an inductive limit of Fn!chet 
spaces. 

On the other hand, J(,), seems to be neither complete 
nor semi reflexive (this latter property, which would 
imply the former, does not follow from the reflexivity 
of the J.l.+ 1/n because we do not have a strict induc
tive limit). J(,), does not seem even to be a quasi
complete space, though we have not been able to 
produce a full proof of this fact. 

Now we can assert that the topological dual of 
J(,). is given by 

a) 

J(,~ = n 3~+1ln . (2.17) 
n~1 

As a matter of fact, every distribution contained in 
the intersection (2.17) being continuous over each 
3).+I/n (equipped with its own topology) is continuous 
over their inductive limit, too. Conversely, every 
continuous linear functional over J(,). has to be 
continuous over each J Ml/n, and consequently 
belongs to n:~1 J~+1/n' 
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The space J{,~, endowed with the strong topology 
of the dual, is a locally convex, separated space having. 
a nondenumerable basis of neighborhoods. It is a 
complete space since J{,,, is a bornological space. 

Let us notice the following inclusion relations 
[which have the same meaning as in Eq. (2.8)]: 

J "3 C J{,A. C J{,Al C J AI' J~1 C J{,~1 C J{,~2 C J~3' 

Al < A2 < A3 • (2.18) 

That J~ is strictly contained in J{,~ is exhibited by the 
distribution 

2 
Ll", = O(x - e)x"e(lOg log "') , 

whIch belongs to J{,~ but not to J~. 

(2.19) 

Considering finally the representation problem, 
''Ie see from Eq. (2.17) that every Ll", E J{,~ has a 
representation of the type (2.9) or (2.10) when it 
operates on JIl , f.1, > A. However, as it was already 
pointed out in the Introduction, nothing prevents the 
parameters p and q from being dependent on f.1, in Eqs. 
(2.9) and (2.10) (in fact, the parameter q is irrelevant 
here since the logarithmic factor is removable when 
f.1, is varying). Clearly p can always be chosen as a 
nonincreasing, integer-valued function of f.1, which is 
allowed to grow indefinitely when f.1, -+ A. 

To summarize, Theorem 3 becomes a representa
tion theorem valid for distributions Ll", E J{,~ if we 
replace Eqs. (2.9) and (2.10) by 

(2.9') 

Ll", = Dlln[xA+Pn+1lnLin(x)], A ~ -1. (2.10') 

Here, {Pn} is a nondecreasing (eventually unbounded) 
sequence of positive integers, the index n = 1,2, ... 
referring to the test function space J A+1/(n-l) where Ll", 
is operating. 

For the sake of clarity, we shall give an example 
where the use of an unbounded sequence {Pn} is 
unavoidable. The distribution 

00 Xl/n 2 

Ll", = O(X) !-2 sin (Xl In ) 
n~l n 

(2.20) 

obviously belongs to J~ [the right-hand side is O(x)]. 
Actually, it is possible to show that Ll", E J;/4.V, 
N = 1, 2, ... , Ll", t/= J~, and that Llx, as an element of 
J~/4N' has for "best" representation (i.e., with 
minimal p) 

(2.21) 

with KN(x) a bounded, continuous function with 
support [0, co], such that lim sup IKx(x)1 > ° as 
x -+ co. 

In order to prove Eq. (2.21), let us write the distri-

bution (2.20) in the form 

(2.22) 

Then it can be shown by successive integrations that 
Lln(x) has the family of representations 

Lln(x) = Dll[x1'+(1/nl-p/n23.n,p(x)], p = 0, 1, ... , 

(2.23) 

where the functions Lin,p(x) have the properties re
quired above for 3..v(x). 

Now, for given N, the formula (2.21) will follow 
from Eqs. (2.22) and (2.23) if one can find a p = peN) 
such that 

p + (l/n) - p/n2 ::::;; p + 1/4N, n = 1,2, .... 

This leads us to the optimal choice 

peN) = max n(1 - n/4N) = N. 
n>l 

Then 

with 

lim sup l3.n •• v(x)1 

= {li~!UP 13.2X . .v(x)1 > 0, 

0, 

n =2N, 

n =;6 2N, 
so that 

lim sup ILiN(x)1 > 0. 
x'" 00 

Moreover, it is easy to convince oneself of the uniform 
convergence over IR+ of the various series involved. 

As a result, Llx E J(,~ and the representation (2.10') 
applies with Pn = n/4, n = 4, 8, ... , but it does not 
apply with Pn < n/4. 

Needless to say, such a peculiar behavior has no 
character of generality: It did not occur in our 
previous example (2.12), for which, however, we had 
Llx E J{,~ and Llx t/= J~. In fact, the case Pn -+ co never 
happens for positive measures, according to part (4) 
of Theorem 3. 

As a conclusion to this section, let us turn to the 
problem of the convolution in the spaces J" and J~. 
Some useful properties of this operation are contained 
in the following two lemmas, the proof of which will 
be given in Appendix B. 

Lemma 3: Let {Ll~)} be a (finite) set of distributions 
Ll~) E J~i' A, + 1 ~ 0, all their supports being 
bounded on the same side. Define A by 
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Then the convolution product (*i ~(;)'" exists and 
belongs to J~. It is commutative and associative, and 
has its support bounded on the same side as the ~~i). 

Lemma 4: Let {~~i)} be a (finite) set of distributions 
~~) E J~i' A, + 1 ~ 0, all their supports being 
bounded on the right. Let <p(x) be a test function E JIl , 

with a support bounded on the left, and cx:(x) a bounded 
Coo function, also with a support bounded on the 
left and equal to 1 for x larger than a given number. If 

y + I == f-l + 1 - .L (A; + 1) ~ 0, 
i 

then the convolution product (*, ~~il * <p)(x) exists 
and is commutative and associative, and cx:(x) X 

(*, ~(;) * <p)(x) belongs to Jv ' 

As an immediate consequence of Lemma 4, one 
has the following. 

Corollary: Let {~~)} be a (finite) set of distributions 
~~) E J~, Ai + 1 ~ 0, and <p(x) a test function be
longing to J

Il
, all these objects with supports bounded 

on the same side. If f-l + 1 ~ L, (A, + 1), then 

I(Z ~(i)), <p(x)\ = I( Z ~(i)), (.&(1) * tp)(x)\ 
\ i=1 '" I \ i=2 '" I 

(2.24) 

where ~~1) is deduced from ~~l) by changing x into -x. 

3. DISPERSION RELATIONS 

We now are in a position to put our distributions 
~'" in correspondence with analytic functions by means 
of Cauchy integrals. Let us first remark that for 
z E C, Imz ¢ 0, 

cx:(x)Jxm(x - z) E J). for any integer m ~ [A + 1], 

cx:(x) being Coo function with support [a, 00], such 
that cx:(x) = I for x ~ b > a, a > 0. 

Thus, expressions like (~"" cx:(x)Jxm(x - z» are 
meaningful as long as ~'" E J~. Moreover, if 

supp ~'" c [zo, 00], 

we can always choose b < Zo, so that the previous 
expressions do not depend on the function cx:(x). In 
this way, taking for m the smallest admissible value, 
we are led to the natural generalization of the Cauchy 
integral for distributions: 

F(z) = 'IT-lzn<~"" cx:(x)/xn(x - z», n = [A. + I]. 

(3.1) 

This equation is nothing but a dispersion relation with 
n subtractions (at the origin) for the function F(z), if 

we identify the distribution 2i~", E J~ with the "dis
continuity" of F(z) through the (positive) real axis. 
On the other hand, n is the minimum number of 
necessary subtractions if ~'" ¢ J~-l' In the following, 
these considerations will be given a precise meaning 
when A. ~ -1. Of course, the results will apply (and 
are of interest only) if the support of ~'" is not compact 
(otherwise). = -00). 

Let us notice that, given z in C[zo, + 00], supp cx:(x) 
can always be chosen in such a way that Eq. (3.1) 
makes sense. As F(z) does not depend on the accessory 
function cx:(x) , this latter will be omitted in the 
following. 

Furthermore, as the proofs of the subsequent 
propositions are almost straightforward (and often 
modified versions of standard proofs; cf., for example, 
Ref. 4), we shall generally be content with only sketch
ing them. 

Theorem 4: Let ~'" be a distribution which belongs 
to J~, A. ~ -I, and such that supp ~'" c [zo, 00], 
zo> 1. It has the representation (2.10) with 

supp Li(x) c [zo, 00]. 

Then, the function F(z) defined by Eq. (3.1) is 
holomorphic in C [zo, 00] and bounded by 

IF(z)1 < C(I + Izl}I.[log (2 + Izl)]Hl 

X {IOrp
, p ~ 1, 

log (4/101), p = 0, (3.2) 
where 

z = Izl eiB
, -'IT < 0 ~ 'IT. 

Proof: The holomorphy of F(z) for z E C[zo, 00] is 
a direct consequence of the continuity of the linear 
functional ~'" and of the holomorphy in z of the test 
function considered. In order to prove the bound 
(3.2), we insert the representation (2.10) into Eq. 
(3.1). This gives 

p 

F(z) = ! CpmF m(z), 
m=O 

where 

1
00 x).+m-n 

F m(Z) = zn dx3.(x)(log x)q m+1 • 
Zo (x - z) 

Then, splitting up the integration path in three parts, 
(zo, Izl/2), (lzI/2, Izl), and (lzl, 00), we easily find 
suitable bounds in Izl for the three corresponding 
pieces. We finally obtain 

IF m(z)1 < C Izl). [log (2 + Izl)jHl 

(2 dt 
X J! [(t _ cos 0)2 + sin 2 0] (m+1)/2 ' 

m = 0, 1,"', p. 
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Now, it is an elementary task to show that the Jast 
integral is o(o-m) for m;;:: I and O(log IOj) for 
m = 0. This leads to Eq. (3.2). QED 

Let us notice that, as long as one only looks for a 
bound of F(z) in Izl free from logarithmic factors and 
for fixed 0 #: 0, it suffices to show that the set of test 
functions Izln-;'-<jxn(x - Izi eiO

) is a bounded set in 
J;. when Izl goes from ° to 00. Would we not have the 
explicit representation of ~'" at our disposal, it would 
be much less trivial to obtain a bound of the type (3.2) 
where some kind of "uniformity" in 0 is preserved. 

We now want to derive a reciprocal of Theorem 4. 
It is well known that the boundary value for 1m z --+ 

0+ (or 1m z --+ 0-) of a function F(z) holomorphic 
in C [ - 00, 00], polynomially bounded at infinity, and 
regular enough in the vicinity of the real axis, gener
ates a tempered distribution. More precisely, the dis
continuity of F(z) through the real axis can be defined 
as the distribution 2iA", E S' such that 

(A"" cp(x» 

= ~ lim roo dx[F(x + iy) - F(x - iy)]cp(x), 
21 y .... O+ J-oo 

V cp E S. 

In the case we are interested in, as we insist on 
recovering distributions which belong to our spaces 
J~, we have to adopt a somewhat different definition 
of the discontinuity 2iA"" which indeed is in the very 
nature of the problem. 

Let F(z) be given by Eq. (3.1) with ~",EJ~, 
supp ~'" c [zo, 00]. We define its discontinuity 2iA", 
through the real axis by 

(A"" cp(x» = ~ lim roo dr[F(reiO
) - F(re-i~]cp(r), 

210 .... 0+ Jo 
V cp E J;.. (3.3) 

That the integral of the right-hand side exists V 0 #: ° 
is an immediate consequence of the bound (3.2). 
That it generates a distribution A", E J~ when 0 --+ 0+ 
is ensured by the following proposition. 

Lemma 5: The discontinuity 2iA", of the function 
F(z) is nothing but the distribution 2i~",. 

Proof: From Eqs. (3.1)-(3.3), we get 

where 

(A"" cp(x» = ..!. lim (00 dr(~"", "Pr.o(x'», (3.4) 
TT 0 .... 0+ Jo 

(
') x' sin (nO) - r sin [(n - 1)0] 

ljJ 0 x = 
r. x,n(x,2 _ 2x'r cos 0 + r2) 

X rncp(r) E In_< c J;., V r, 0> O. 

Let us put 

<l>o(x') = 100 

dr"Pr.O(X') 

lood sin (nO) - t sin [en - 1)OJ ( ') = t cp tx . 
o t2 

- 2t cos 0 + 1 
(3.5) 

Then, using Eq. (2.1) in order to get bounds on 
D~.cp(tx'), we easily see that 

DP<I>o(x') = O[(log Ix' I)-a Ix'r;'-p-l], V 0 > 0, 
1""1 .... 00 

q, p = 0, 1,···. 

Since now <l>oCx') E J;., the continuity of ~"" allows 
us to write Eq. (3.4) in the form 

(A"" cp(x» = TT-
1 lim (~"'" <l>o(x'». 
0 .... 0+ 

Next, it can be shown from Eq. (3.5) that <l>o(x') 
converges to TTcp(X') in the topology of J;. when 
0--+0+. This implies, again via the continuity of 

~"'" 
(A"" cp(x» = (~"'" cp(x'», V cp E J;., 

and the proof is complete. QED 

We can now state our main theorem. 

Theorem 5: Let F(z) be a holomorphic function in 
C[zo, 00] which satisfies the bound (3.2). Then its 
discontinuity through the real axis [in the "ense of 
Eq. (3.3)] is a distribution 2iA", E J~, and supp A", c 
[zo, 00]. 

To establish it, we need the following lemma, the 
proof of which is postponed to Appendix C. 

Lemma 6: Let F(m)(z) be a primitive of order m of 
the function F(z) and per) the function over fR+ 
defined by 

per) = (2i)-llim [F(p+ll(rei~ - F(p+l)(re-i~]. (3.6) 
0 .... 0+ 

Then [with F(O)(z) = F(z)] 

(1) IF(m)(z)1 < C(1 + Izll+m[log (2 + Izl)]H2 

m = 0, ... , p - 1 and p ;;::: 1 

{

IOI-p+m, 

X log (4/101), m = p 

1, m = p + 1 

(2) per) is continuous over fR+, 

(3) supp per) c [zo, 00], 

(4) p(r) = O[r.i.+P+1(log r)a+2]. 
r .... oo 
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Proof of the theorem: We start from the identity 
valid V q; E J;.: 

L'" dr[F(reiO
) - F(re-i8)]q;(r) 

= ( -l)P+1 L" dr[F(p+1) (reiO
) - F(p+1)(re- iO

)] DP+lq;(r). 

(3.7) 

It results from (p + I) integrations by parts, taking 
into account the bounds (I) of Lemma 6 at each step. 

According to Eqs. (3.3) and (3.7), 

(-W+1 100 

(A"" q;(x» = . lim dr 
21 0 .... 0+ 0 

X [F(p f-1)(re iO
) - F(p f-1)(re- iO

)] DP+1q;(r). 

Now, it suffices to use Eq. (3.6) together with the 
properties (3) and (4). Because of the absolute con
vergence of integrals, we can reverse the order of limit 
and integration, so that 

(Ax, q;(x» = (-l)pf1i~ drp(r)DJllq:(r). 

Hence 

(3.8) 

and the conclusion follows from the properties 
(2)-(4) of Lemma 6 together with Theorem 3. 

Collecting Theorems 4 and 5, Lemma 3, and the 
definition of the spaces J{,~ given in Sec. 2, we are led 
immediately to Theorem I of Sec. I. 

Let us remark that in Eq. (3.8), there is one more 
differentiation than in Eq. (2.10). This means that in 
case the function F(z) in the hypothesis of Theorem 5 
actually is generated by a distribution ~x E J~ [and 
consequently satisfies the bound (3.3)], something 
has been lost in the above construction of Ax (= ~x)' 
Thus, in a sense, we have not complete reciprocity. 
This is unavoidable unless we refine the bound (3.2). 
But this seems to be properly feasible only if we 
simultaneously add some regularity properties to the 
function K(x) of Eq. (2.10) (such as Holder conti
nuity), which is beyond the scope of this paper. 

To conclude this section, let us quote a consequence 
of previous results, which is by no means surprising 
but yet demands to be proved because of our par
ticular definition of the "discontinuity." 

Corollary: Any function F(z) which is holomorphic 
in [zo, OCJ], has a given discontinuity 2i~x E J{,~ through 
the real axis, and satisfies the bound (82) of Theorem 
1 is determined up to an arbitrary polynomial of 
degree [A]. 

Proof: It is sufficient to show that if ~'" = 0, then 
F(z) is such a polynomial. 

Take a fixed E in the bound (82). From Eq. (3.8) 
and the unicity property (3) of Theorem 3, 

~x = 0 => p(x) = O. 
Now, since 

lim F(p+l)(reiO
) and lim F(p+1)(reiO

) 
0 .... 0+ 0 .... 0-

are continuous functions over IR+ [see Appendix C, 
Eq. (C4)ff.], F(p+l)(z) is an entire function (see Ref. 3). 
But then, according to property (I) of Lemma 6, it is a 
polynomial of degree ~ A + P + I + E. Thus F(z) = 
Dp+IF(p+1)(z) is a polynomial of degree [A] since E is 
arbitrarily small. QED 

4. THE FROISSART-GRIBOV 
TRANSFORMATION 

To prove Theorem 2, use could be made of an 
auxiliary function F(z) as defined by Theorem I in 
terms of ~'" and related to fU) by its Legendre poly
nomial expansion F(z) = 7T-1 ~l (21 + l)f(l)PI(z). 
Then one would be led to perform a Sommerfeld
Watson transformation20 on that expansion, in order 
to make full use of Theorem I. 

Here we shall rather follow another line of reason
ing: we shall use a trick already proposed by 
Froissart,1 which is to get rid of the Legendre func
tion of the second kind QI(X) by expressing it as an 
Abel transform (see Appendix 0)21: 

QI(X) = ql(X) * O( -x)/J -x. (4.1) 

ql(X) is the following function: 

{
D, x ~ I, 

qt(x) = 1/[2(x2 _ I)]t[x + (x2 - l)t]l+t, x> 1. 

(4.2) 

Now consider a distribution ~'" E J~, with a 
support contained in [zo, + OCJ]. We first notice that 
O(x)/Jx E J~t and that ql(X) E JRe l+!-f> V E > O. 
Then by virtue of Eq. (2.24), under the condition 
-I ~ f-l ~ Re 1- E, one has 

f(l) = (~x, [O( -x)/J -x] * ql(X» 

= (~x * [0 (x)IJx] , ql(X», 

and the distribution 

A~x == ~x * O(x)/Jx (4.3) 

belongs to J~+!. Let us define the distribution r T such 
that; for any test function q;(x) E JI'+!' 

(A~,", q;(x» = (r" sinh-rq;(cosh-r». (4.4) 
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According to Lemma 2 (here, the mapping 
z = cosh 'T is not the one of Lemma 2, but the result 
still holds), e-(,,+!lTr r is a tempered distribution. 
Furthermore, from the expression (4.2) of ql(X), one 
obtains 

First of all, the inverse Laplace transform of f(1) is22 

(4.8) 

We already know that, because of the bound C2 on 
(4.5) f(l), the support of r T is contained in 

which makes f(l) the Laplace transform of r T' Thus 
we have decomposed the Froissart-Gribov transfor
mation into a product of three transformations: 

(1) the Abel transformation (4.3), 
(2) the isomorphism A~x ---+ r T defined by (4.4), 
(3) the Laplace transformation (4.5). 

As e-(,,+!lrr T is tempered, f(l) is holomorphic in 
Re I > f-l.22 Moreover, from the support property 
(A2) of ~x, one easily deduces that supp r T C 

[arg cosh zo, + 00]. Consequently, f(l) is bounded 
by23 

If(1)1 < P,,(lll)exp [-(argcosh zo)Re I] 

< P,,(lll)[zo + (z~ - l)!rRC
!, (4.6) 

where P,,(Il1) is a polynomial in Ill, the degree of 
which is precisely the number of derivations in the 
representation of ~x in J~. 

Reciprocally, let f(l) be holomorphic in Re I > f-l 

and bounded by (4.6). Then it is the Laplace transform 
(4.5) of a distribution r T such that e-(,,+!+<lr r is 
tempered V E, and with a support contained in 
[arg cosh zo, + ex) ].23 Equation (4.4) defines in terms 
of r T a distribution A ~x, the support of which is 
contained in [zo, + 00] and which by virtue of Lemma 
2 belongs to J~+t+ .. V E > 0. Now Eq. (4.3), con
sidered as a convolution equation in ~x' has a unique 
solution given by21.24 

~x = 7T-lb~ * [r9(x)/Jx] *A~x' (4.7) 

According to Lemma 3, [r9(x)/Jx] * A~x belongs to 
J~+H" Then ~x E J~+<, V E > 0, and by using Eq. 
(2.24) one easily shows that f(l) is the Froissart
Gribov transform of ~x' 

Now suppose that ~x [always with the same 
support property (A2)] belongs to J{,~, that is to say 
to J~, V f-l > A. Then, from the above arguments, 
f(l) obviously enjoys properties (CI) and (C2). 
Reciprocally, such a function f(l) is the Froissart
Gribov transform of a distribution ~x which belongs 
to J~, V ft > A, and thus also to J{,~, with a support 
contained in [zo, + 00]. 

To complete the proof of Theorem 2, we have to 
prove Eq. (1.2). It will not be difficult, because each 
one of the three transformations which compose the 
Froissart-Gribov transformation can be easily in
verted. 

[arg cosh zo, + ex)]. 

Then for positive 'T 

This enables us to give r T a new expression which 
will be useful in the following: 

J2iHiOO rr = -. dl sinh (l + t}rf(l), ~ > A. (4.9) 
7T1 ;-ioo 

Equations (4.7), (4.4), and (4.9) define ~x in terms 
of f(l). More precisely, let fP(x) be a test function 
belonging to JI" f-l > A: 

(~x' fP(x» = -7T-\[r9(X)/Jx] * A~"" fP'(x» 

= _7T-l(A~x, [O( -x)/J -x] * fP'(x» 

by virtue of Eq. (2.24)25 

= - 7T -l(r r , sinh 'T1p( cosh T» 
by virtue of Eq. (4.4), 

where, according to Lemma 4, the test function 
1p(x) == [r9(-x)/J-x] * fP'(x) belongs to J,,+!. Next, 
by definition of the integral (4.9), 

- 1. (r" sinh 'T1p( cosh T» 
7T 

1 i;HOO = -. dlf(l) 
27T1 ;-ioo 

X < -:J2 sinh (l + t)T, sinh T1p(cosh T». 

Coming back to the variable x, we can write the 
scalar product in the right-hand side as (-w!(x), 1p(x», 
where 

w!(x) = (2!/7T){[X + (x2 - 1)!]'+! 
- [x - (x2 - l)lr+l}. 

From the definition of 1p(x) and according to Eq. 
(2.24), 

-(wz(x), 1p(x» = «J~ * [O(x)/Jx] * wt(x), fP(x» 

= ([O(x)/Jx] * Dwb), fP(x». 
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The last equality comes from the associativity of 
the above double convolution product. Now 

()~x) * Dw!(x) = (21 + 1) ../2 
yX Tr 

[x + (x2 
- l)!]!+! + [x - (x 2 - 1)!r+! ()(x) 

x *--
(x2 

- 1)! ./x ' 

and the right-hand side of this equation is nothing 
but (21 + l)P!(x), where PI (x) is the Legendre 
function of the first kind (see Appendix D). Finally, 
collecting all these results, we get 

1 iHi<Xl (A"" q;(x» = -. dl(21 + 1)f(l)(P!(x), q;(x», 
2Trl g-i<Xl 

~ > A.. (4.10) 

Let us note that PI(X) belongs to J~e!' Thus 
(Pl(x), q;(x» is meaningful ifand onlyif,u ~ Re/=~, 
that is to say, q;(x) E Js' Furthermore, 

(21 + 1)(P!(x), q;(x» 
= _(2!jTr)(e(l+!IT - e-U+!IT, sinh Ttp(cosh T». 

(4.11) 

The right-hand side is the sum of two terms (coming 
from e±u+!lr) which, considered as functions of 
1m (I + t), are, within constant factors, the Fourier 
transforms of 

X±(T) = e±(H!IT sinh Ttp(cosh T). 

But with tp(x) belonging to Jp+!, it results from 
Lemma 1 that X±(T) are fastly decreasing in T when 
,u ~ ~. As a consequence (Pl(x), q;(x» is also fastly 
decreasing in the variable26 1m 1 and, due to the poly
nomial bound ofj(l) in 1m I, the integral over I in Eq. 
(4.10) converges absolutely (and exponentially). 

The formula (4.10) realizes the inversion of the 
Froissart-Gribov transformation. It can be written 

1 iHi<Xl 
l!i", = -. dl(21 + 1)f(l)PI(x), ~ > A.. (4.12) 

2m g-i<Xl 

The right-hand side can be applied only on test 
functions belonging to Js: It is indeed a representation 
of l!i" in J~. As ~ can approach A. as close as one wants, 
Eq. (4.12) provides us with a set of representations of 
l!i", in J\,~ . 
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APPENDIX A 

We give here (i) a detailed proof of the part (4) of 
Theorem 3 and (ii) the derivation of the asymptotic 
bound (2.13). 

(i) Let l!i", be a positive measure E J~, A. ~ -1, 
with supp l!i", C [a, 00]. We have 

H':l!i", - rr 
with 

rTES'n+e', supprTc[loga,oo), (AI) 

+e' = space of positive measures over IRT. 

Then, according to a theorem of Schwartz,l? r T = 
Dp(T), where p(T) is a nondecreasing function with 
support contained in [log a, 00]. 

Thus, for q,(T) E S, 

(r" q,(T» = - r<Xl dTp(T) Dq,(T). (A2) 
Jroga 

Since rr E e', we have also, for q,(T) E e, 

Moreover, according to another theorem27 of 
Schwartz, property (AI) implies that ,u is a tempered 
positive measure, i.e., such that 

rT 

d,u(T) < C'J"l for some integer q. (A4) 
Jroga 

Now, let X(T) be a nonnegative C<xl function bounded 
by 1 such that 

( {
I for T E [log a, T] 

X T) = o for T E C[log a - l!i, T + l!i]. 
As X(T) E S n e, Eqs. (A2) and (A3) apply, giving 
respectively 

(THo 
(r"X(T» = JT dTp(T)[-DX(T)] ~ peT), 

(r" X(T» = (THo d,u{T)X(T) :::;; (THo d,u(T) , 
Jroga Jroga 

so that, from Eq. (A4), 

peT) < CTq
• 

Then, using Eqs. (2.6), (2.11), and (A2), we get 

(l!i"" q;(x» = - L<XldXa(X) Dq;(x) V q;EJ .. , (AS) 

where 

a(x) = p(log X)XA+l + L" dx' p(log x')x'" 

= O[(log X)q+lX A+l]. (A6) 
"--+<xl 
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We finally obtain the desired result by a further 
integration by parts in Eq. (AS). 

(ii) Let us take ~ E:O with supp ~ c [b, c]. From 
Eqs. (A5) and (A6), 

1X~(x) = ~'" * ~(x) = <~11' ~(x - y» 
= - L:bdya(y)~' (x - y), 

11X~(x)1 < b~~t~'(Y) L~~bdya(y) < C(log X)HlxHl, 

which leads to Eq. (2.13). QED 

APPENDIX B 

This appendix is devoted to the study of the con
volution product in the spaces J). and J~. Of course, 
we want to define this product in such a way that it 
coincides with the convolution product in :0 and :0'. 
We first start with the following: 

Proposition: Let ~'" be a distribution in J~, 
A + I ~ 0, with its support bounded on the right 
(say contained in [- 00, -a], a > 1) and ~(x) a 
function as defined in Lemma 4. Then the trans
formation tp(x) ~ ~(X)(~lI' tp(x - y» is a continuous 
linear mapping of Jil into JIl-('Hl)' if fl ~ A. 

Proof' Let tp(x) E Jil . The scalar product 1p(x) == 
(~11' tp(x - y» exists if " ~ A, and the support of 
1p(x) is the whole real axis. We want first to prove 
that 1p(x) is a eX) function which behaves like the 
functions belonging to Jv [with v = fl - (A + 1)] 
when x tends to + 00. When x goes to - 00, 1p(X) is 
not well behaved. Then, if one multiplies 1p(x) by 
~(x), the result will belong to Jv ' 

From Theorem 3, ~'" has the representation (note 
the change of notation): 

~'" = DP LS,(x) , 

where Li(x) is a continuous function with its support 
contained in [- 00, -a] and 

Then 
ILi(x)1 S C IxlHP (log IxDq

• 

1p(x) = f:~dYLS,(y)tp(P)(X - y). 

(Bl) 

Let us differentiate r times with respect to x under 
the integral sign the right-hand side of this equation. 
An elementary calculation shows that the resulting 
integral is absolutely convergent, which proves that 
1p(x) E Coo. More precisely, using for LS,(x) the bound 
(Bl) and for tp(k)(X) the bound 

I tp(k)(X) I ~ C/O + Ix/)/+k+l[log (2 + Ix!)]' for any s, 

one easily finds that for x sufficiently large 

11p(r)(x)1 S C (00 ~. 
xll-Hr(log x)"-a-2 Ja y log2 y 

This inequality proves the announced behavior of 
1p(x). 

To prove the continuity of the mapping tp(x) ~ 
~(x)1p(x), it is sufficient to consider a sequence {tpn(x)} 
converging to zero in JIl , that is to say, such that 

Itp~)(x)1 S En.k .,/(1 + Ixl)ll+k+l[log (2 + Ix!)]", V s, 

with, for any fixed k and s, En •k •s ~ ° when n --'>- 00. 

Then, as previously, one easily shows that 

11p~)(x)1 S CEn,p+r.s/(1 + IxW-Hr[log (2 + IxI)Js-a- 2 

from which it is not difficult to deduce that the 
sequence {1pn(x)} converges to zero in JIl-(Hl)' QED 

When tp(x) E:O, 1p(x) coincides with the usual 
convolution product: 1p(x) = (~ * tp)(x) (regularized 
distribution). So, when tp E JIl , we will still call 1p(x) 
the convolution product (~ * tp)(x). 

We now prove Lemma 3. We first define the con
volution product (*f':1 ~(;)'" by 

1(: ~(i)), tp(x)\ 
\ i=1 '" I 
= <~~~), <~~~), ... , <~~~), tp(x1 + X2 + ... + XN»' .• » 

(B2) 

From the above proposition, the right-hand side of 
this equation is defined when" + 1 ~ I, (A, + 1), 
through a succession of continuous linear mappings 

Jil ~ JIl-(;.N+1) ~ ••• ~ J
Il

-1:;':.I().t+1) ~ C, 

which proves that (*f':1 ~ (i)", is a distribution in J~ 
with 

N 

A + 1 = Z (Ai + 1). 
i=1 

By (B2), the product (*f':1 ~(i)", is not obviously 
commutative and associative. That it is indeed com
mutative and associative results from the following 
facts: 

(1) It coincides with the usual convolution product 
when tp(x) E:O; 

(2) the convolution product in :0' is commutative 
and associative28 ; 

(3) :0 is dense in :Ill' 
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Property (1) is obvious, and the proof of the third 
one is left to the reader. Finally, the support property 
of the product trivially results from its definition (B2). 

Now Lemma 4 appears as an immediate conse
quence of the above proposition and Lemma 3. The 
proposition is indeed nothing but Lemma 4 in the 
case where there is only one distribution ~~). 

The proof of corollary (2.24) goes as follows: 
Consider the set of N distributions ~~i) E J~i' A. + 
1 ;;::: 0, and the test function <p(x) E JJl' all these 
objects having their supports contained, say, in 

[a, + 00]. Define the distributions ~~) deduced from 
~~) by changing x into -x. Under the condition 

N 

fl + 1 ;;::: I (Ai + 1), 
i=1 

one has successively 

1(: ~(i)), <p(x)\ = (~&w * <p)(0) 
\ i=1 '" / i=1 

= [(E~(i)) * (&(1) * <p)JO) 

by virtue of Lemma 4 

= 1(: ~(i)) ,(.i(1) * <p)(X)\ 
\ i=2 '" / 

APPENDIX C: PROOF OF LEMMA 6 

For m = 0, the property (1) is nothing but the 
bound (3.2) (with q --+ q + 1). 

Suppose now that this property holds for some 
m < p, p ;;::: 1, and choose 00 > 0. We have 

F(m+1)(ri8) = F(m+1)(O) + iT dr' ei6oF(m)(r' eiOO) 

+ (8 dO' rei8'F(m)(rei8'), 
Joo 

But 

\F(m)(r' eiOO) I < C(l + r')Hm[log (2 + r')]H2, 

r' E [0, 00[, 

IF(m)(reiO')1 < C(1 + ri+m[log (2 + r)]H20'-p-m, 

e' E ]0, 7T]. 
Thus, V r ;;::: 0, ° < 0 :::;; 7T, we get 

iF(m+1)(rei6)1 :$; IF(m+1)(O)1 + f dr' iF(m)(r' eiOO) I 

+ r {O dO' iF(m)(reiO,)1 
Jo o 

< C(l + r)Hm+l(Iog (2 + r)]H2 

X {fJ - p + m + 1, m + 1 < p, 
log (4jfJ), m + 1 = p, 

(Cl) 

and a similar result for -7T < 0 < 0, so that the 
property (1) is true also for (m + 1) and, by induction, 
for all m = 0, 1, ... ,po Next, 

F(p+1)(rei6) = F(p+1)(reiOO) + (O dfJ' rei6'F(p)(rei8 ), (C2) Joo 
which implies, as above, 

Hence 

which concludes the proof of property (1). 
Now, from the absolute convergence of the integral 

appearing in the left-hand side of Eq. (C2) for all 0, 
we deduce that both limits 

exist V r ;;::: ° and generate two functions over fR+ 
verifying the bound (C3). Inserting this bound into 
Eq. (3.6), one obtains the property (4). 

The continuity of per) follows from a similar 
argument. According to Eqs. (C2) and (Cl), we have, 
for fixed r1 ;;::: 0, r2 = r1 + ~r, and 0< 0 < 00 , 

IF(p+l)(r2e
i8) - F(p+1)(rle

iO)I 
:::;; IF(:P+l)(r2e

i.80
) - F(:P+l) (r1e

i80
) I 

+ fOdO' Ir2F(p)(r2eiO') - rlF(p)(rleiO') I 

[

00, 4 
< o(rl' fJo; ~r) + a(rl) dO log-; 

.8 fJ 

4 < o(rl' 00; ~r) + b(r1)(}0 log - , (C4) 
00 

where 

limo(rl' Oo;~r) = 0, V r1 , 00 , (C5) 
<1.-+0 

As the last member of Eq. (C4) no longer depends 
on e, this inequality remains true in the limit 0 --+ 0+ . 
Therefore, 

Ip(r + ~r) - p(r)1 < oCr, eo; ~r) + b(r)(}o log (4/00), 

V r ;;::: 0, (Jo > 0. (C6) 

Since 00 is arbitrarily small, the continuity property 
(2) results from Eqs. (C5) and (C6). 

Finally, the support property (3) is an immediate 
consequence of the holomorphy of F(p+1)(z) in 
C[zo, co]. QED 
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APPENDIX D: INTEGRAL REPRESENTATIONS 

OF PtCx) AND Q,(x) 

When T > ° and Re (/ + \) > 0, one has29 

J2lf , cosh (l + t)T' 
P1(coshT) = - dT ,1' 

7T 0 (cosh T - cosh T )2 

1 foo
, e-cl+hr' 

QI(cosh'T) = - dT !-' J2 r (cosh T' - cosh T) 

By the change of variable x = cosh T, these 
representations become 

1x dx' , 
P/(X) = , ~ PI (x ), 

1 (x - x) 
(01) 

1
00 dx' , 

Qz(x) = '" (x' _ x)! qb ), (D2) 

where 

x ~ 1, 

x> I, 

x ~ 1, 

{

O' 

ql(X) = 1 
x>1. 

[2(x 2 - l)]t[x + (x 2 _ 1)!]l+! ' 

In Eqs. (Dl) and (D2), PI(X) and QI(X) appear as 
Abel transforms. Precisely, one can write 

PI(X) = PI(X) * [e(x)IJx], (D3) 

Ql(X) = ql(X) * [e( -x)IJ -x). (D4) 
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Harrison's 40 space-time metrics have been checked to see if they represent vacuum solutions. Four 
of them are found to be nonvacuum. The Petrov classification is found for all the metrics, and those of 
type D are placed in their (invariantly defined) Kinnersley classes. 

I. INTRODUCTION 

In 1959 Harrison published 30 exact solutions of 
the Einstein vacuum field equations. l Twenty of these 
solutions are nondegenerate in the sense that they 
appear to depend on three variables. Since these 
metrics are exceedingly complicated, very little work 
has been done with them. 

One of the present authors has developed a com
puter system called ALAM for carrying out algebraic 
manipulation.2•3 ALAM was used to carry out all the 
calculations described in Sees. II and IV. In Sec. II 
Harrison's solutions are outlined and the results of a 
direct check to see whether they correspond to vacuum 
solutions are given. Section III describes an algorithm 
for determining the Petro v type of a metric, and Sec. 
IV gives the Petrov classification of Harrison's metrics. 
In Sec. V, the type D metrics are placed in their 
invariantly defined Kinnersley4 classes. 

II. HARRISON'S SOLUTIONS OF THE 
VACUUM FIELD EQUATIONS 

In his paperl Harrison seeks exact three variable 
solutions of the Einstein vacuum field equations 
Rllv = 0, for a diagonal metric of the "linked-pair" 
form 

gllv = bllvevA;(xO, xl)B!(xO, x3) (1) 

(where Greek indices run from 0 to 3 and eo = 1 and 
e1 = e2 = e3 = -1, which is the opposite signature 
to that used by Harrison). He calls solutions which 
apparently cannot be reduced to functions of two 
variables "nondegenerate," and those which can 
"degenerate." 5 We shall adhere to this terminology 
in this paper. He finds 18 nondegenerate solutions 
which he labels 

I-B-! to I-B-4, 

II-A-I to II-A-7, 

I1-B-! to I1-B-3, 

II-C-I to II-C-4, 

where I and II refer to the functional form of the 
metrics and not to their Petrov type. He also includes 

12 degenerate solutions labeled 

III-I to III-I 2. 

We have relabeled I-A-I and I-A-2 by III-ll and 
111-12, respectively, since they are degenerate (see 
Appendix A). 

The solutions contain parameters which are either 
arbitrary (A and l) or which can independently take 
on the values ± 1 (the E'S), and eight of them contain 
functions each of which is a solution of a first-order 
ordinary differential equation. However, we have 
found that, if a particular metric tensor is to remain 
real, then, since all factors raised to nonintegral 
powers must be positive, the E'S may have to satisfy 
certain restrictions: 

(i) II-A-2, I1-A-3, II-B-l, II-C-2; no solutions 
exist for E2 = -1; 

(ii) I1-A-4, I1-A-5, II-C-3; X3 ~ 0 requires that 
E1 = ± 1; 

(iii) 11-B-2; X o ~ 0 requires that E2 = ± 1. 

For convenience, we have omitted the parameter I 
which, in each case, merely multiplies the metric by 
a constant conformal factor which does not affect any 
of the analysis. 

Harrison points out that ten additional metrics 
may be obtained by replacing any appearance of 
sinh (), where () is a function of the coordinates, by 
cosh () or eO. The three possibilities sinh (), cosh (), and 
eO are labeled (a), (b), and (c), respectively in this 
paper. 

ALAM was used to calculate the Ricci tensor in 
order to check directly whether these 40 metrics 
actually represent vacuum solutions. In fact, four 
metrics, I-B-l(b), I-B-I(c), I-B-2, and III-6, were 
found to be nonvacuum, whereas the remainder are 
indeed vacuum (see Table II, Sec. IV). The mixed 
components of the energy-momentum tensors for the 
nonvacuum metrics are given in Appendix B. Harrison 
obtained sixteen of the metrics directly by solving the 
vacuum field equations, and thirteen others were 
generated from these by complex coordinate trans
formations. In his thesis6 Harrison claims that I-B-2 

1258 
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was obtained in this manner, but, since I-B-2 is not a TABLE I. The case 'Yo == 'Ye == 0, where D == 9'Y: - 16'1"1'1" •• 

vacuum metric, no such transformation can exist. 

ID. AN ALGORITHM FOR DETERMINING 
PETROV TYPE 

The Weyl tensor C/lVPt1 defines a symmetric spinor 
'Y ABOD by the equivalence 

C/lVPt1~ 'YABODEWXEyZ + 1f"WXYZEABECD (2) 

where EAB is the Levi-Civita alternating symbol in 
two dimensions.7 Every symmetric spinor can be 
decomposed canonically into a symmetrized product 
of principal I-spinors 

'YABCD = (X(Af3BYc6D) say, (3) 

the (X A , f3 A' Y A , and 6 A thus determining the principal 
null directions of C/lVPt1 • The necessary and sufficient 
condition for an arbitrary spinor ~A to be a principal 
spinor of'Y ABCD is 

(4) 

The Petrov classification is given by the multiplicity 
of the roots of this equation. 

Expanding (4) out into components and, provided 
that 'Yo ~ 0, dividing by a1)4, we obtain 

'Yoz4 + 4'Y1Z
3 + 6'Y2Z

2 + 41f"az + 'Y4 = 0, (5) 

FIG. 1. Flow diagram for determining the Petrov type 
from the'l"·s. 

'fa == 0 0 
'1". == 0 

'l"a ¢ 0 III 
'1"1 == 0 

'fa == 0 D 
'Yo ¢ 0 

'fa ¢ 0 II 

'fa == 0 III 
'Yo == 0 

'l"a ¢ 0 I 
'Y1 ~ 0 

'l"a == 0 II 

'Ya ¢ 0 D==O II 
'l"a ¢ 0 

D ¢O I 

where Z = ~Ogl and 'Yo, 'Y1 , 'Y2, 'Y3, and 'Y4 are the 
Newman-Penrose scalars8 defined in terms of the 
Weyl tensor and a null tetrad (/", n", m", m") by 

'Yo = -C"pY61"mP[Ym~, 

1f"1 = -C"py61"nPFmiJ
, 

'Y2 = -iC"pyil"nPFn~ - l"nPmYmiJ
), 

'Y3 = Ca.PYd1"nPnYm iJ
, 

HI' C "-P y-6 
T , = - "PyiJn m n m . 

Equation (5) is a quartic with algebraic expressions 
as coefficients. 

Defining 

I == 1f"o'Y, - 4'YI'Y3 + 3'Y~, 
'Yo 'Yl 'Y2 

J == 'YI 'Y2 'Ya , 
'Y2 'Ya 'Y, 

G == 'I1'Y3 - 3'YO'Y1'Y2 + 2~, 

H == I 'Yo 'YII, 
'YI 'Y2 

we see that the necessary and sufficient conditions for 
(5) to have 

(i) at least two equal roots is l a == 27]2, 
(ii) at least three equal roots is I == J == 0, 

(iii) four equal roots is G == H == I == 0, 
(iv) two pairs of equal roots is 

G =='Y~1 - 12H2 == 0. 

The algorithm for determining the Petrov type can 
be conveniently displayed in the form of a flow 
diagram (Fig. 1). 

If 'Yo == 0, but 'Y4 ¢: 0, we divide the expanded 
form of (4) by aO)4 instead to obtain a quartic in 
(~lnO). We then interchange 'Yo with 'Y, and 'Yl with 

1f" a in the definitions of I, J, G, and H and in condition 
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(iv) , and the algorithm proceeds as before. If, how
ever, both 'Yo and 'Y4 vanish identically, then, 
although the above algorithm still applies, the work 
may be simplified considerably; the classification for 
this case is summarized in Table I. 

IV. THE PETROV CLASSIFICATION OF 
HARRISON'S METRICS 

In the last section we presented an algorithm for 
determining the Petrov type of a metric. Since an 
algorithm is an unambiguous procedure for a mechan
izable solution of a problem, it is susceptible to being 
programmed for a computer. Such a program was 
written in ALAM. The program evaluates the Weyl 
tensor and, for a given null tetrad, the Newman
Penrose scalars, and then proceeds to apply the 
algorithm. Since the metrics are diagonal, it is straight
forward to construct an orthonormal tetrad (we 
chose unit vectors along the coordinates lines) and 
hence to construct a null tetrad in the usual way. 

By this procedure, we determined the Petrov type, 
at every point, of all the algebraically special Harrison 
metrics. However, the calculation for the remaining 
metrics in many cases proved to be too complicated 
for ALAM. We therefore proceeded in the following 
manner. From Sec. III, the condition for a metric to 
be algebraically special is 

[3 == 27f2. (6) 

This relationship is an identity, and, if we can find 

some value or values of the coordinates for which the 
left-hand side is different from the right-hand side, 
then we may conclude that the corresponding metric 
is of Petrov type I since the identity is violated. A 
metric cannot change to a higher type on a closed 
subset, but may change to a lower type. It is therefore 
possible that these metrics become algebraically 
special on some subspaces of lower dimension.9 For 
some metrics it was sufficient to test for violation of 
the identity (6) on a subspace, whereas for the more 
complicated metrics it was necessary to test at a point. 
Of course, care had to be taken to choose values of 
the coordinates for which the expressions in (6) were 
real and finite. With this technique, all the remaining 
metrics were classified. The results are given in 
Table II. 

V. THE TYPE D METRICS 

Fourteen of Harrison's metrics are of type D. 
Kinnersley4 has recently found all type D vacuum 
solutions and classified them invariantly, and so it is 
of interest to find the Kinnersley class to which each 
of these Harrison metrics belong. Kinnersley chooses 
coordinates (u, r, x, y) such that one of the principal 
null directions is [I' = r5f, and he makes r' an affine 
parameter along [I'. To find the required coordinate 
transformation, we choose one of the principal null 
directions of each Harrison metric and found the 
corresponding transformation to [I'. This, coupled 
with the fact that gO! = 1 in Kinnersley's form of 
the metrics, gives the complete r-dependence of the 

TABLE II. Classification of the Harrison metrics. 

Nondegenerate metrics Degenerate metrics 

Vacuum? Vacuum? 

Metric Yes No Petrov type Metric Yes No Petrov type 

I-B-I (a) v I III-I v D 
I-B-1(b) v I III-2 v D 
I-B-I (c) v I I1I-3 v D 
I-B-2 v I I1I-4(a) v D 
I-B-3 v I III-4(b) v D 
I-B-4 v I III-4(c) v 0 
II-A-1 v I I1I-S v I 
II-A-2 vi 1 111-6 vi 1 
II-A-3 vi I m-7(a) v D 
II-A-4 v I III-7(b) v D 
II-A-S v I III-7(c) v D 
I1-A-6 v I III-S v D 
I1-A-7 v I 111-9 (a) v D 
II-B-l v I m-9(b) v D 
I1-B-2 v I III-9(c) v D 
II-B-3 v 1 lII-lO v D 
I1-C-l v I III-II v 1 
I1-C-2 v I I1I-12(a) v 1 
I1-C-3 v I I1I-12(b) v I 
I1-C-4 v I 1II-12(c) v D 
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TABLE III. The Kinnersley classification of the type D metrics. 

Metric Transformation to Kinnersley's form Kinnersley class 

III-I XO = r, Xl = X, x. = iro - u, X. =y. I (NUTS; Po = po = 0) 

III-2 XO = In u2, Xl = (AOrlx") - (2Mlu), X2 = In (xl).u'), X3 =y IV.B (C = 0) 

III-3 XO = (2rlx') + u, Xl = (1 + Y'x,)t/4y, X2 = (2rlx2) - u, Xs = tan-l (yx2), IV.B (C = 0) 
y = [4(1 _ y)]-l 

III-4(a) Xo = u[(r2/2u) + 1]t, Xl == 2x, X2 == 2y, X3 == In [(r'/2u) + 1]l I (NUT&; Po = po = 0) 

III-4(b) Xo = u[(r2/2u) - 1]t, Xl = 2x, x, = 2y, Xs = In [(r2/2u) - 1]1 I (NUT&; Po = po =0) 

III-7(a) Xo = cosh-l [(urlx2) + 1], Xl = i In tanh i cosh-l [(urlx2) + 1] - In ut , 
x, = y, X3 = [1 - (2X)-1]t 

IV.B (C = i) 

II1-7(b) Xo = sinh-l [(ral2x2) + p], 
Xs = [1 - (2X)-1]' 

Xl = tan-l (e"o) - tan-l p, X. =y, IV.B (C = t) 

(a = 3u2 + 2!u + 3, p = 3u + 21) 

III-7(c) Xo = In (rI2x2), Xl = -(x2Ir) - u, X2 ==y, Xs == [1 - (2X)-1]1 IV.B (C == i) 

II1-8 Xo == cos-l [1 - (urlx2)], Xl == ! In tan t cos-l [1 - (urlx2)] + In ut , x. =y, IV.B (C == -t) 
Xa = [(2X)-1 - I]t 

II1-9(a) Xo = -u + r + ! In (1 - 2r), Xl = ty, X2 = X, Xa == [(2r)-1 - 1]1 n.B (a == I = 0) 

III-9(b) same as for III-9(a) n.c (a = I = 0) 

III-9(c) same as for 1II-9(a) II.D (a = I = 0) 

III-I 0 . Xo = t, Xl == t4>, x, = 0, X. = [1 - (2r)-1]f I (Schwarzschild) 

III-I2(c) Yo = A'U" Yt = xl(Ariu2), Y2 ==y, Y3 == (rlx') - (2xIAu) IV.B (C == 0) 

a NUT refers to the metrics of E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4,915(963). 

transformation. Finally, we used the remainder of the 
tensor transformation law on the metric together with 
inspection of possible candidates at each stage of the 
integration. 

The results are given in Table III. Of the 14 metrics 
only eight were found to be distinct. In Appendix C 
we give the corresponding Kinnersley metrics with 
their principal null directions and Killing solutions. 

VI. SUMMARY 

The 40 Harrison metrics include four nonvacuum 
solutions of which three are nondegenerate and one 
is degenerate. All the nondegenerate metrics and five 
degenerate metrics (including the nonvacuum one) 
are type I. The remaining fifteen consist of one type 
o solution and the rest type D. Of the 14 type D 
metrics one is Schwarzschild, three are NUT (with 
Po = Po = 0), seven cover the three cases of Kinnersley 
class IV.B, and the remaining three are Kinnersley 
class II.B, II.C, and n.D (all with a = I = 0). 
Altogether there are 21 vacuum solutions which are 

type I and are thus candidates for physically realistic 
exact radiative solutions. 

Of course, with the exception of Schwarzschild 
and possibly NUT, there still remains the task of 
obtaining a physical realization of the Harrison 
metrics. It is hoped that, with the arrival of computing 
systems for help in routine algebra, this task may 
soon be accomplished. 
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APPENDIX A 

Presented below are (i) the transformations which 
reduce III-ll, III-12(a), III-12(b), and III-12(c) to 
functions of two variables, together with (ii) the 
transformed metric. The first three are type I, but 
they become algebraically special on the hypersurfaces 



                                                                                                                                    

1262 R. A. D'INVERNO AND R. A. RUSSELL-CLARK 

given in (iii). 

1)1-11 : 

(i) Yo = xo, YI = Xl sin Xa, 

Y2 = X2, Ya = Xl cos Xa; 

(ii) ds2 = ;'2yoY~ dy~ - Yh~ dy~ 

APPENDIX B 

With our sign conventions, from the nonvacuum 
field equations T: = KG~, the mixed components of 
the energy-momentum tensor T: for the four non
vacuum metrics are 

-1 -1 d 2 J 2 d 2 - Yl Yo Y2 - YiYo Ya; 
T'\ = diag K(p, PI' P2' Pa), 

where we have the following: 
(iii) 675;'4y~ + 432YI - 652;.2Yoyt = O. 

1II-12(a): 

(i) Yo = Xo cosh Xa, YI = Xl' 

Y2 = X2' Ya = Xo sinh Xa; 

( .. ) d 2 2 ! d 2 ,2 2 d 2 
11 S = YIYa Yo - 1\ YIYa Yl 

I-B-l(b): P = 2P2 = -2Pa = 4(cosh Xa)-l 

X (Xl + XO)-2-,,(XO - xl)"-2, PI = 0; 

I-B-l(c): P = 2P2 = -2Pa = 2e-"'a(xl + XO)-2-" 

X (xo - xly-2, PI = 0; 

Y-1y-1 dy2 y2y~ dy2. - 1 a 2 - 1 a a, 
I-B-2: P = 0, 2Pa = -2P2 = -PI 

= 4(sin Xa)-I(XI + xoy-2 

X (Xl - XO)-2-,,; 
(iii) 675;'4y~ + 432Ya + 652;.2ylyt = O. 

III-12(b): 

(i) Yo = Xo cosh Xa, Yl = Xl, 

Y2 = X2' Ya = Xo sinh Xa; 

(") d 2 2 i d 2 ,2 a d 2 
11 S = YIYO Yo - 1\ YIYO YI 

111-6: P = :h-O[2(P + 7) - 6x;+lP 

- E2Xa(3 + 4P»), 

PI = -12"0[(7 + P) - 3xi+1P ], 

-I -1 2 2~· d 2. - Yl Yo dY2 - YIYo Ya, 
P2 = i4"0[E2Xa(25 + 14P) 

- 2xi+1P(4P + 7)], 
(iii) 675;'4y~ + 432yo - 652;.2yly! = O. 

1II-12(c): Here 

(i) Yo = xoe"'3, YI = Xl, Y2 = X2' Ya = xoe-"'a; o = xtp(Xa - E2)-1(xa + E2)-!-P(xo + 1.J3xI)-a-p, 

CI. = ±.J"2, P = ±.J3, E2 = ±1. (") d 2 2 ! d d ,2 ad 2 -1 -1 d 2 
11 S = YIYO Yo Ya - 1\ YIYO Y1 - Yl Yo Y2' 

TABLE IV. Kinnersley's metrics for Harrison's type D solutions. 

I (NUT; 110 = po = 0) 

H.B (a = I = 0) 

II.C (a = I = 0) 

II.D (a = I = 0) 

IV (C = H,O) 

ds' = (m/r) duo + 2 du dr - r' dx" - r" dy' 

III = (0,1,0,0), nil = (l,m/r,O,O) 

;Il = (IX., 0, -1X.y + lXa, IX.X + IXc) 

ds' = -(1 + 2m/r) du' + 2 du dr - r" dx' - r" sinh" x dy' 

III = (0, 1,0,0), nil = (1, HI + 2m/r), 0, 0) 

~Il = (IX 1 , 0, IX. cosy - lXasiny, -IX, siny cothx 

- IX, cos Y coth x + IXt) 

ds' = -(1 + 2m/r) duo + 2 du dr - r'dx' - r2 cosh' x dy' 

III = (0,1,0,0), nil = (1, HI + 2m/r), 0, 0) 

~Il = (IX., 0, 1X.e-v - 1X3ev, lX.e-v tanh x + lXaev tanh x + IXc) 

ds' = -(1 + 2m/r) du' + 2 du dr - r'dx' - r2e'z dy' 

III = (0, 1,0,0), nil = (1, HI + 2m/r), 0, 0) 

~Il = (IX 1 , 0, -IX, - ocay, oc.y + oca(ly' - le-2Z) + OCc) 

ds' = -(2Cr'/x') du' + 2 du dr - (4r/x) du dx 

- H-' dx' - 2~' dy", ~ = [C + (m/x)]l 

III = (0,1,0,0), nil = (1, Cr'/x', 0, 0) 

C = ±l, ~Il = (-loc,u' - oc,u + OC3, 
oc,(ur + x'/2C) + oc,r, 0, occ) 

C = 0, t;1l = (-OC,U + ·oc" 1X,r + 1X3X', 0, IX.) 
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APPENDIX C 

We present in Table IV the Kinnersley metrics 
found in Sec. V together with their principal null 
directions III and nil and four-parameter group of 
motions ~Il (where ~l' ~2' ~3' and ~4 are the param
eters). 
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This paper deals with the representation of states of infinite systems in classical statistical mechanics 
in terms of probability densities, correlation functions, and zero-density correlation functions. The 
class of states considered includes equilibrium states treated previously by Ruelle, and is believed to 
contain low-density nonequilibrium states as well. The theory is based on Carter's exponential con
struction for measure spaces, the representations being in terms of functions on the exponential (i.e., 
union of symmetrized direct powers) of one-particle phase space. The main result, which establishes the 
connections between these three representations, essentially extends a result of Ruelle, but is based on 
1:1-convergence rather than uniform convergence on compacts. 

1. INTRODUCTION 

Consider a mechanical system consisting of variably 
many indistinguishable particles in a phase space 
R x £3. By a finite system we mean one in which the 
region R of configuration space is bounded and at 
most finitely many particles are present. An infinite 
system is one in which R has infinite measure and 
infinitely many particles are present, but with only 
finitely many in each bounded subregion. As pointed 
out by several authors, l the mechanical state of a 
finite system is most appropriately represented by a 
finite unordered sequence in X, an unordered sequence 
being an equivalence class of ordered sequences under 
rearrangement. A special sequence 0 is included, to 
represent the state in which no particles are present. 
As explained in Sec. 2 below, these unordered sequences 
form a measure space Xe , aptly called the "expo
nential" of X, whose measure ~. is the "exponential" of 
Lebesgue measure ~. The instantaneous statistical 
state of a finite system is thus represented by a 
probability measure for X •. Similarly,2 the statistical 
state of an infinite system corresponds to a probability 
measure for the space X. of unordered infinite se-

quences in X having only finitely many components 
in each bounded subregion of R. 

Most states considered in statistical mechanics have 
simpler representations in terms of functions on X •. 
A function f(x) on X. is equivalent to a sequence of 
functions/o(0),j;,(x1),h(x1 , x 2),'" , where/o(O) is a 
constant and, for n > 0, fn(x1 , ••• ,xn) is a sym
metric function of n variables Xi E X. Integration on 
X. is characterized by 

For a finite system, a probability measure on X. which 
is absolutely continuous with respect to ~. is repre
sented by a probability density w, satisfying f w d~. = 
1. The corresponding zero-density correlation func
tion3.4 

'l}(X) = w(x)/w(O) (1.2) 

is defined whenever there is a positive probability that 
no particles are present [w(O) ¥: 0]. It also serves to 
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finite system is most appropriately represented by a 
finite unordered sequence in X, an unordered sequence 
being an equivalence class of ordered sequences under 
rearrangement. A special sequence 0 is included, to 
represent the state in which no particles are present. 
As explained in Sec. 2 below, these unordered sequences 
form a measure space Xe , aptly called the "expo
nential" of X, whose measure ~. is the "exponential" of 
Lebesgue measure ~. The instantaneous statistical 
state of a finite system is thus represented by a 
probability measure for X •. Similarly,2 the statistical 
state of an infinite system corresponds to a probability 
measure for the space X. of unordered infinite se-

quences in X having only finitely many components 
in each bounded subregion of R. 

Most states considered in statistical mechanics have 
simpler representations in terms of functions on X •. 
A function f(x) on X. is equivalent to a sequence of 
functions/o(0),j;,(x1),h(x1 , x 2),'" , where/o(O) is a 
constant and, for n > 0, fn(x1 , ••• ,xn) is a sym
metric function of n variables Xi E X. Integration on 
X. is characterized by 

For a finite system, a probability measure on X. which 
is absolutely continuous with respect to ~. is repre
sented by a probability density w, satisfying f w d~. = 
1. The corresponding zero-density correlation func
tion3.4 

'l}(X) = w(x)/w(O) (1.2) 

is defined whenever there is a positive probability that 
no particles are present [w(O) ¥: 0]. It also serves to 
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represent the state, since 

w(x) = 1](x) / I 1] d~e· «(3) 

The grand canonical equilibrium state, for example, is 
given by 

1](x) = e-OH<xl-Tz(xl, (1.4) 

where H is the system Hamiltonian with H(O) = 0 
and lex) is the "length" of X. Often the correlation 
function P may be used to represent the state, being 
related to W by 

p(x) = I w(xy) d~e(Y)' (1.5) 

w(x) = I( _1)z(lI)p(xy) d~e(Y)· (1.6) 

Equations (1.5) and (1.6) are compact forms of 

Pn(x1 , ••• , xn) 

= wn(x1 ,···, xn) 

00 1 I + ~ k' Wn+iXl'···' Xn , Yl'···' Yk) 
k-O • 

X dYl· .. dYk, 

wn(x1 , ••• , xn) 

= Pn(Xl> ... , xn) 

00 (-I)kI + k~O k! Pn+k(x1 ,···, Xn, Yl' ... , Yk) 

X dYl··· dYk. 

To. represent the state S of an infinite system by 
functIons on Xe , let {Rn} be an increasing sequence of 
bounded measurable subregions with limit R, and let 
X n = Rn X E3 be the corresponding seq uence of 
phase spaces. It is known5 that the state S is deter
mined by the corresponding sequence of induced 
states on the finite systems occupying the R n , ob
tained by observing only those particles in Rn. The 
induced state for Rn may be represented by a prob
ability measure P n for Xe , rather than (Xn )., obtained 
by (arbitrarily) removing all the particles outside X n . 

If each Pn is absolutely continuous, the state S is 
represented by the corresponding sequence of prob
ability densities W n • The only condition on the Wn is 
compatibility (see Sec. 4 below). If the induced states 
on Rn have correlation functions p defined on (X ) 
the compatibility condition ensur~~ that these fu~~~ 
tions may be chosen so as to have a common extension 
P to X.; In this case S is represented by the single 
"correlation function" p. 

The most common way of representing equilibrium 
states is by the "zero-density correlation function" 
(1.4). Ruelle6 has shown, for a class of infinite systems 

in sufficiently low-density equilibrium states that this 
function determines S as follows: The function 

1](nl(X) = {1](X) if x E (Xn). 
o otherwise 

(1.7) 

is the zero-density correlation function of a state 
having no particles outside X n . Let Pn be the corre
sponding correlation function, given by (1.3) and (1.5). 
Then Pn(x) converges (uniformly on compacts) to the 
correlation function p(x) of a state S. Our main result, 
Theorem 5.1, establishes a similar representation for 
a class of zero-density correlation functions, which 
contains Ruelle's as a subclass but which is not limited 
to the equilibrium case. It is also shown that each of 
thes~ ~tates is represented by a sequence of probability 
densIties W n as above. Further connections between 
these representations are established, including the 
fact that the functions W n determine 1] through 

1](X) = lim [wn(x)/wn(O)]. (1.8) 
n--> 00 

2. SOME MATHEMATICAL PRELIMINARIES 

We denote the set of all nonnegative integers by N. 
For each n EN, let rn be the nth direct power of X. 
When n = 0, rn is the singleton set {0} = {O}. The 
union of x· n for all n E N is denoted by X;. 

Two ordered sequences x, yare equivalent if they 
have the same length an\f one is a rearrangement of 
the other. The equivalence classes are called unordered 
sequences in X. Each unordered sequence x has a 
length lex), equal to the common length of its members. 
The set of all unordered sequences in X is denoted by 
X. or exp X. 

An unordered sequence of length n in X may be 
written as a formal product 

where the order of factors is irrelevant.7 When n = 0, 
we write x = O. By collecting equal factors, the 
product can also be written in the form 

x = til. .. t';;:', 

where 11'·· . ,1m are the distinct factors of x and 
'1, ... , , m are the corresponding multiplicities. 

There is a natural binary operation on X. defined 
as follows: If x = Xl··· Xm and y = Yl ... Yn' then 

xY = Xl·· ·XmYl· ··Yn· 

This in turn induces an operation on the class of all 
subsets of X., called the symmetric product, given by 

AB = {xy: x E A,y E B}. 
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Let .:It be the family of all complex-valued functions 
defined on Xe' On .:It we introduce a "star product" 
corresponding to a similar product used by RueIle8 

and Schwartz.9 To this end we first define partitions of 
an unordered sequence, and their indices: Let x E Xe 
and let n be a positive integer. An n partition of x is 
an n-tuple of unordered sequences (Xl' ... , xn) such 
that x = Xl ... Xn . The set of all n partitions X will be 
denoted by Pn(x). The index of an unordered sequence 
x = 1[1 ••• t!;.m is 

lex) = r l !'" rm! 

and the index of an n partition (Xl, ... , x n) of x is 

l(xl , ••• , x n ) = l(x)/I(x1) ... l(x,,). 

Now the star product ~ * 'Y, with~, 'Y E it, is defined 
by 

~ * 'Y(x) = .2 {l(xl , X2)~(X1)'Y(X2) : (Xl , x2) E P2(x)}. 

This product is clearly commutative, associative, 
distributive over addition, and homogeneous in the 
sense that 

c(~ * 'Y) = (c~) * 'Y = ~ * (c'Y). 

Also, there is an identity I * given by 

l*(x)={l if x=o 
o otherwise' 

Each member ~ of it has a unique inverse if ~(O) ;I: 0, 
since the equation ~ * 'Y(x) = 1 *(x) can be solved by 
recursion for 'Y(x), with increasing values of l(x).10 

For each x E Xe , we define a linear operator 
Doo:.:It ---+ .:It by the equation 

Doo~(Y) = ~(xy). 

This corresponds to a similar operator used by RueIle. 8 

Notice that DOODy = DOOlI for all x, y E Xe' When X = 
0, Doo is the identity. 

We shall foIlow the terminology of Ref. 2 in the 
treatment of exponential measure spaces. Thus, a 
measurable space for a set X is a a-algebra X of 
subsets of X; a measure space for X is a a-finite 
measure ~ defined on such a a-algebra. The subspaces 
of X are the a-algebras X (') A induced on the 
measurable sets A EX; the subspaces of ; are 
the restrictions of ; to the subspaces of X. Thus the 
subspaces are in one-to-one correspondence with the 
measurable sets, and all relations and operations 
(disjointness, unions, etc.) for measurable sets carry 
over to the corresponding relations on the subspaces 
of X or ;. 

For each positive integer n, x·n denotes the nth 
direct power of X, and fn denotes the nth direct 
power of ;. When n = 0, x·n = {0, {O}} and ~·o is 

the measure defined on X'o by to({O}) = 1. The 
"measure-theoretic union" of direct powers of X, 

X; = {~oAn:An E X'n for each n}, 
is a a-algebra of subsets of X;. The set function ~~ 

defined on X~ by 

;~(E) = I 1.. ;.n(E (') xn) 
n~O n! 

is a a-finite measure. The quotient spaces of X~ and 
;~ under the natural projection p: X; ---+ X. are called 
the exponentials of X and ~, written exp X and exp ~, 
or alternatively X. and ;e' The following theorem,11 
which motivates the exponential terminology, is 
central to the development of our theory. 

Theorem 2.1 (Exponential decomposition law): Let 
ex, {3 be a disjoint pair of subspaces of ~. Then the 
concatenation function (x, y) ---+ xy is an isomorphism 
of the product space exp IX X exp {3 onto exp (ex + (3). 

As a corollary to this result, we have the following. 

Theorem 2.2: Let IX, {3 be a disjoint pair of subspaces 
of ~ corresponding to A, BE X, respectively, and let 
y = IX + (3. Then, for every y.-integrable function ~, 

r ~(z) dyiz) =f r ~(xy) dIX.(x) d{3e(Y) 
JcA+Ble A. JBe 

or, equivalently, 

r ~(z) d~.(z) =J r ~(xy) d~.(x) d~.(y). 
JcA+Ble A. JBe 

Now let uK, be the set of all Xe-measurable functions 
and L1 be the set of all ~.-integrable functions. One 
shows easily that uK, is closed under the star product, 
the corresponding inverse operation, and the Doo 
operation.4 Furthermore, we have the following 
"known" result.12 

Theorem 2.3: If ~1' ~2 are ~e-integrable, then so is 
~l * (S). Moreover, 

(i) f ~1 * ~2 d~. = (J ~l d~.) (J ~2 d~.), 
(ii) f'~1 * ~21 d;. ~ (fl~ll d~e) (fl~21 d~e). 

3. THE SUBSPACE )f AND OPERATOR T 

For a precise mathematical discussion of the 
relationship between probability densities and corre
lation functions, we introduce a special subspace )f 
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of £1 as follows: Let Zlq, denote the pointwise product 
(ZIq,)(X) = zl(~)q,(x). Then oN' is the set of all functions 
q, E .At, such that, for each complex number z and all 
x EX. , the function ZZ D ",q, belongs to 1::1 , As suggested 
by the relations (1.5) and (1.6), we define linear 
operators T and U on oN' by the equations 

Tcp(x) = f D",cp d~., (3.1) 

Ucp(x) = f( -l)I(Y)D",cp(y) d~.(y). (3.2) 

Our next theorem implies that if a probability density 
W belongs to oN', then the corresponding correlation 
function p = Tw also belongs to oN' and w = Up. 

Theorem 3.1: The operator T maps Jf one-to-one 
onto Jf, and its inverse is U. 

Proof: Since (Tq,) 0 P is ::C.-measurable, Tcp and 
D i1JTcp belong to .At,. From the construction of the 
exponential measure, the integral J IzI(Y) D~(Tq,)(y)1 d~. 

can be written as 

I IZkl,k f I I ~ f )DA) 0 P(Yl,"', Yk' 
k=O • X' k i=OJ. X 

WI" •• , Wi) d~'i I dfk. 

Rearranging and using the binomial theorem, we have 

fIZ!(Y)D~(TCP)(Y)1 d~. ~ f(1 + Izl}!(lI) I Di1Jcp(Y)1 d~., 

which implies that Tq, E Jf. Similar calculations show 
that TUq, = UTcp = cpo 

We shall need the following properties of Jf. 

Theorem 3.2: (i) If q, E .N', then D Itq, E.N' for all 
x EX •. (ii) If q" 'I" E.N', then q, * 'I" EJf. 

Proof: Part (i) is trivial. To prove (ii), first show by 
induction on lex) that 

D",(cp * '1") = 2 {leu, v)D",cp * Dv'¥: (u, v) E P2(x)} , 

where cp, 'I" E A, and x EX.. Since Zl(cp * '¥) = 
(Zlq,) * (Zl,¥), the result now follows from Theorem 
2.3. 

4. INDUCED PROBABILITY DENSITIES AND THE 
EXTENSION PROPERTY OF CORRELATION 

FUNCTIONS 

Consider a random experiment whose outcomes are 
unordered sequences in a set X and whose events are 
members of a a-algebra X •. Let Y be a measurable 

subset of X and Z be its complement in X. Suppose we 
are only interested in observing what happens in Y 
without regard to what happens elsewhere. Then the 
original experiment induces a new experiment whose 
outcomes are points in Y. and whose events are 
members of the a-algebra 11., with 11 = X (\ Y. 
Each unordered sequence x E X. can be factored 
uniquely into a product yz of unordered sequences 
y E Y. and z EZ. (see Theorem 2.1). If x = yz 
represents an outcome of the original experiment, 
then y represents the corresponding outcome of the 
induced experiment. An event A E 11. occurs if and 
only if, in the above factorization, yEA. Thus: 

(1) An event A in the induced experiment has the 
same interpretation as the event AZ. in the original 
experiment. 

(2) If P x is the probability measure on ::Ce corre
sponding to the original experiment, then the prob
ability measure P y for the induced experiment is 
given by 

Py(A) = Px(AZ.). (4.1) 

In the case where P x is absolutely continuous with 
respect to the exponential measure ~., we obtain the 
following, using Theorem 2.2. 

Theorem 4.1: Let P y be an induced probability 
measure of P x as above. If P x is absolutely continuous 
with respect to ~., with probability density W x' then 
P y is absolutely continuous with respect to the 
restriction of ~. to 11., and its probability density is 
given a.e. on Y. by 

Wy(x) = r wx(xy) d~.(y). (4.2) Jz. 
The probability density Wy is called the induced 

probability density of Wx, and Eq. (4.2) is the 
"compatibility condition" between these densities. 

Now let Jf x and Jf y be the subspaces of £1(X.) 
and £1 (Y.) corresponding to the subspace oN' intro
duced in Sec. 3. Then we have the following, again 
using Theorem 2.3. 

Theorem 4.2: Let Wx be a probability density 
belonging to oN' x. Then the induced probability 
density 

Wy(y) = r DywX d~. Jz. 
belongs to .N' y . 

Consider next the correlation functions p x' P y 

corresponding to a compatible pair of densities W x' 
Wy. It is intuitively clear from the physical interpre
tation of correlation functions that p x should be 
equal to py a.e. on Y •. Indeed, taking W x' Wy to be 
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members of .N' x' .N' y, respectively, and 

Px = Txwx, py = Tywy (4.3) 

where T x and T yare the operators on .N' x and .N' y 
corresponding to the operator T of Sec. 3, we have 
the following. 

Theorem 4.3: Let Wx and Wy be probability 
densities on Xe and Ye belonging to .N' x and .N' y , 

respectively. Let Px and py be the correlation 
functions given by Eq. (4.3). Then Wx and Wy are 
related by Eq. (4.2) if and only if py is the restriction 
of Px to Yeo 

Proo!, Since Ze c Xe, the function c/> defined on Ye 
by 

c/>(y) = L,wx(YZ) d~e(z) 
satisfies c/> :::;; (T xWx) I Ye = Px I Yeo and hence c/> E 

.N' y . Applying Theorem 2.2 to the integral Txwx, we 
obtain Px I Ye = T yc/>, or equivalently 

and the theorem follows. 
Finally, if w y E .N' y is a probability density on Ye 

and py = T yWy is the corresponding correlation 
function, it is often convenient to work with the 
extensions w~ , p~ of these functions to Xe , given by 

c/>E(X) = {c/>(X) if x E.Ye • 
o otherwIse 

Clearly, w~ is a probability density belonging to .N' x' 
corresponding to an experiment in which no particles 
occur in Z, and p~ is the corresponding correlation 
function; p~ = TxwJ,-. 

5. INFINITE SYSTEMS AND THE 
LIMIT THEOREM 

The study of equilibrium statistical mechanics 
suggests that zero-density correlation functions rJ may 
be used as representatives for a more general class of 
infinite states, with probability densities and corre
lation functions determined essentially as in Sec. 1. 
We now introduce a class :re of functions rJ which do 
represent states in this way, and establish the con
nections between these various representations. As in 
Sec. 1, let {X n : n E N} be an increasing sequence of 
measurable sets, whose union is X. Throughout the 
discussion we use the following notational convention. 
For each c/> E.4:, n EN, c/>(n J denotes the product Xnc/>, 
where Xn is the characteristic function of (Xn)e' Then 

:Ie consists of all functions rJ E ..A(, such that 

(i) rJ ~ 0 and rJ(O) = I, 
(ii) for each n EN, the function rJ(1I J E.N', 

(iii) the integral J IrJ-1 * D",rJl d~e exists for all 
x E X. and is bounded above by a function g(x) such 
that g(n J E.N' for all n EN. 

It is shown in Ref. 4, Sec. 4.2, that those equilibrium 
states considered by Ruelle6 belong to :re. 

Associated with each rJ E :re, we have the following 
functions: 

(a) The sequence of probability densities 

v" = (frJ(nJ d~errJ(nJ 
which belong to .N' by condition (ii) on :re. 

(b) The corresponding sequence of correlation 
functions 

Pn = TVn 
which belong to .N' by Theorem 3.1. 

(c) The function P defined by 

p(x) = f rJ-
1 * D",rJ d~e' 

which will turn out to be the correlation function for 
the infinite system. We will show that each p(n J belongs 
to .N' (see the notational convention above). 

(d) The sequence of functions 

Wn = Up(n J , 

which will turn out to be the family of compatible 
probability densities for the infinite system. These 
functions belong to .N' by Theorem 3.1. 

(e) The probability densities Vm.n induced by vn 
when n ~ m, 

vm.n(x) = Xm(x) r D",vn d~e, J(Xn~XmJ. 
which belong to .N' by Theorem 4.2 and the remark at 
the end of Sec. 4. We will show that vm •n approaches 
the probability density Wm for the infinite system as 
n - 00. Throughout the remainder of this section, the 
symbols Vn , Pn' p, vm .n , and Wn will refer to the 
functions just defined. . 

Theorem 5.1: Let rJ E:re. Then, as n - 00, 

0) Pn converges pointwise to P, vm •n converges 
pointwise to wm' wn/wn(O) converges pointwise to rJ. 

(ii) for each mEN and x EX., 

fID",p~mJ - DIllP(mJI d~e - 0, 

f'D",Vm.n - D",wml d~e - 0, 

fID",w~mJ/Wn(O) - D",rJ(mJI d~e - 0. 
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Furthermore, the sequence of functions {w m : mEN} 
forms a family of compatible probability densities. 

The proof is contained in the following list of 
propositions: 

(1) Let cp E A and cp(O) ;I:. O. Then for each n EN, 
(cp(n»)-1 = (cp-l)(") and 

(cp(n»-l * Dxcp(n) = Xn(x)(cp-l * Dxcp)(n). 

(2) For each 11 EN, 

Pn(x) = Xn(x) J('f}-l * Dx'f})(n) d~e' 

Proof" By definition, 

pix) = (J 'f}(n) d~.rIJ Dx'f}(n) d~e' 
The second integral may be written in the form 

J 'f}(n) * ('f}(n)rl * Dx1](n) d~e 

which, by (1), is equal to 

Xn(x) J 1](n) * ('f}-l * Dx'f})(n) d~e' 

The result now follows from condition (iii) on Je and 
Theorem 2.3. 

(3) As n - 00, Pn converges pointwise to P and, for 
all mEN, x E Xe , 

JIDxp~m) - Dx/m)1 d~e - O. 

Proof" Taking n sufficiently large that Xn(x) = 1, 
we have, by (2), 

pix) - p(x) = J(Xn - 1)(1]-1 * Dx'f}) d~e' 

which approaches zero by the Lebesgue dominated 
convergence theorem. It follows that p is measurable 
and that D xPn converges pointwise to D xp. Again by 
(2), 

IDxp~m)(Y)1 ~ Xm(xy) JI'f}-1 * DXY'f} I d~e' 
whence, by condition (iii) on Je, IDxp(m)1 ~ Dxg(m). 
By Theorem 3.2, DlJ)g(m) belongs to oN' and (3) follows 
by the dominated convergence theorem. 

(4) For all m, n EN with m ~ n, Up~m) = Vm.n • 

Proof: Taking Y = Xm and Wx = Vn, we have, in 
the notation of Sec. 4, p¥r = p~m) and w¥r = vm.n . 
Thus p~m) = Tvm.n , which is equivalent to 

Up~m) = vm .n • 

(5) As n - 00, vm.n converges pointwise to Wm and, 
for each x EX., 

JIDxVm.n - Dxwml d~e - O. 

Proof' By (4), 

IVm.ix) - wm(x)1 = IJ( -l)l(Y)Dxp~m)(y) d~.(y) 

- J( -l)l(Y)Dxp(m)(y) d~e(Y)1 

~ JIDxp~m)(y) - Dxp(m)(y)1 d~.(y), 

which approaches zero by (3). Again by (4) and (2), 

IDxvm.iy)1 = IJ( -l)!(Y)p~m)(xyz) d~.(Z)1 

~ J Xm(xyz) IJ(1]-1 * Dxyz'f})(n) d~el d~e(z) 

~ J g(m)(xyz) d~.(z) = DxTg(m)(y). 

Since D xTg(m) EoN', the result follows. 

(6) The sequence {wm:m EN} forms a family of 
probability densities, which are compatible in the 
sense that if m ~ n, then 

Wm(X)=Xm(X)f Dxwnd~ •. 
(Xn-Xm). 

Proof' It follows from (5) that wm ~ O. Since 
p(m) = Twm , we have 

J Wm d~e = TWm(O) = p(m)(o) = J 1 * d~. = 1. 

Thus Wm is a probability density. By Theorem 4.3 
these densities are compatible. 

(7) As n - 00, wnlwn(O) converges pointwise to 1] 
and, for each x E Xe , 

JIDxw~m)IWn(O) - Dx'f}(m)1 d~. - O. 

Proof" By definition, 

vm.ix) = Xm(X) ( r 'f}(n) d~e)-1 r Dx'f}(n) d~e' 
J(Xn). JXn-Xm), 

By (1) and Theorem 2.3, 
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it follows that 

Vm.n<x) 1 -1 d t -- = Xm(X) 17 * D",17 ~e' 
vm.n(O) (Xn-Xm), 

In the limit n - 00, this becomes 

wm(x) I -1 -- = Xm(X) 17 * D",17 d$e· 
Wm(O) (X-Xm). 

Here (X I'-.J Xm). is decreasing with m to the set {O}; 
hence 

m-+oo 

By condition (i) on :Ie, this is 17 (x). The rest now 
follows from the inequality 

I D",w~m)(y) I ~ X m(xy)JI17- 1 * D"'II17 I d$e 
wn(O) 

~ D",g(m)(y). 
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Periodic solutions of the nonlinear differential equation x + [(x) = 0 are investigated. The qualitative 
characteristics of the solution are explored and several theorems about the basic nature of the solution 
are presented. The solution is then obtained in terms of a Fourier series and numerical calculations are 
carried out to fifth-order accuracy. The dependence of the frequency of the solution on the amplitude is 
studied. As an example, the solution is applied to the problem of obtaining the orbit of a charged particle 
moving in a radial electric field. 

I. INTRODUCTION 

The type of differential equation treated in this 
paper is a second-order, ordinary nonlinear differential 
equation (NLDE) for a one-dimensional, conservative 
system. Only periodic solutions are considered since, 
for a conservative system, these are the only bounded 
solutions. 

Before presenting the method of solution developed 
in this paper, it is useful to consider the capabilities 
and limitations of some of the well-established 
methods of solution. Closed-form solutions are not 
considered since they are very much the exception 
rather than the rule. Instead, the emphasis is placed 
on approximation methods which allow the solution 
to be determined to some desired degree of accuracy. 

The first method considered, and perhaps the most 
familiar, is that of single-parameter perturbation 
theory. This method depends on the facts that the 

solutions of a reduced form (usually linear) of the 
original NLDE are known and that the difference 
between the NLDE and the reduced form is, in some 
sense, small. This difference, the perturbation, is then 
multiplied by some parameter, say E, assumed to be 
small, if such a parameter is not initially present. By 
using this parameter and the solution to the reduced 
differential equation, a power series solution is 
obtained which approximately satisfies the original 
NLDE. When the perturbation is sufficiently small, 
one or two corrective terms usually give the solution 
to the desired accuracy. One of the limitations of the 
perturbation method is that E is required to be 
sufficiently small; otherwise the power series expan
sion does not converge. Another difficulty occurs if 
periodic solutions are desired-namely, the treatment 
of nonperiodic terms in the power series expansion 
when they occur. 1 A particular variation of the 
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for a conservative system, these are the only bounded 
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Before presenting the method of solution developed 
in this paper, it is useful to consider the capabilities 
and limitations of some of the well-established 
methods of solution. Closed-form solutions are not 
considered since they are very much the exception 
rather than the rule. Instead, the emphasis is placed 
on approximation methods which allow the solution 
to be determined to some desired degree of accuracy. 

The first method considered, and perhaps the most 
familiar, is that of single-parameter perturbation 
theory. This method depends on the facts that the 

solutions of a reduced form (usually linear) of the 
original NLDE are known and that the difference 
between the NLDE and the reduced form is, in some 
sense, small. This difference, the perturbation, is then 
multiplied by some parameter, say E, assumed to be 
small, if such a parameter is not initially present. By 
using this parameter and the solution to the reduced 
differential equation, a power series solution is 
obtained which approximately satisfies the original 
NLDE. When the perturbation is sufficiently small, 
one or two corrective terms usually give the solution 
to the desired accuracy. One of the limitations of the 
perturbation method is that E is required to be 
sufficiently small; otherwise the power series expan
sion does not converge. Another difficulty occurs if 
periodic solutions are desired-namely, the treatment 
of nonperiodic terms in the power series expansion 
when they occur. 1 A particular variation of the 
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perturbation method, due to Lindstedt,2 is sometimes 
called renormalization.3 In this approach a power 
series expansion, in terms of the perturbation pa
rameter E, is developed for the displacement and 
frequency since the frequency is generally dependent 
on the amplitude of the motion. By constraining the 
solution to be periodic, conditions are established 
from which the power series coefficients for the 
frequency are determined. 

A second method is the asymptotic method (E - 0) 
of Krylov and Bogoliubov.4.5 Similar to the perturba
tion theory described above, this method assumes that 
periodic solutions to a reduced linear form of the 
NLDE are known. The solution to the NLDE is then 
represented as a power series expansion in terms of 
the perturbation parameter. To complete the develop
ment, the amplitude and phase of the solutiol?- to the 
reduced LDE are allowed to vary in time and, along 
with the perturbing function, are represented as power 
series in terms of the perturbation parameter. By 
grouping like order terms of these expansions, a set of 
differential equations results which can be solved 
recursively to yield successively higher-order approxi
mations to the exact solution as E -'+ o. Finally, an 
appropriate constraint is imposed to assure that only 
periodic solutions are obtained. This method is 
actually a refinement, by Bogoliubov, of the original 
method which is similar to the variation of parameters 
technique applied to ordinary LDE. Because of its 
similarity to perturbation theory, the asymptotic 
method suffers from the same difficulty and cannot 
be applied for large E. 

When the perturbing function is not sufficiently 
small, a third approach is to develop the solution in 
an asymptotic series expansion instead of a power 
series expansion. Such a solution has been developed 
for the autonomous, nonlinear van der Pol differential 
equation by Dorodnitsin. 6 One difficulty with the 
method is that several solutions may need to be 
developed and joined by a type of analytic continua
tion. 

Another approach, along the same lines as those 
mentioned above, uses the Laplace transform. Again 
a constraint must be imposed to assure that only 
periodic solutions are obtained.? 

All of the above methods have a common deficiency. 
Their expansions are for a single perturbing term or 
function. If several independent perturbing functions 
occur, then the above methods must be extended to a 
muItiterm perturbation theory. Such a theory has 
been developed and applied to two problems in 
elastostatics.8 However, the solutions developed are 
nonperiodic solutions and are of no utility to us here. 

Although it is probably possible to develop a multi
term perturbation theory for periodic solutions, a 
different alternative is pursued in obtaining solutions 
to the NLDE treated in this paper. 

The approach selected for obtaining solutions to the 
NLDE involves basically two parts. First, the general 
characteristics and form of the solution are obtained 
by applying functional and dimensional arguments 
and using the fact that periodic solutions are known to 
exist. Second, by using the theoretical work as a foun
dation and guide, the NLDE is reduced to a set 
of simultaneous nonlinear algebraic equations. The 
solution to these equations, by iteration, yields the 
complete expressions for the Fourier coefficients and 
the frequency. 

In Sec. II we present the qualitative characteristics 
of the DE to be considered, the analytical form of the 
DE, and the assumed periodic solutions. 

In Sec. III we develop the quantitative characteristics 
of the solution through functional and dimensional 
arguments and state and prove several theorems 
regarding the solutions. 

In Sec. IV we obtain and solve the algebraic 
equations required to determine the numerical 
constants of the solution. 

In Sec. V we apply the solution to the motion of a 
charged particle moving in a cylindrically symmetric 
electric field; we then present the numerical results to 
illustrate the applicability and behavior of the general 
solution. 

II. QUALITATIVE CONSIDERATIONS 

This paper is confined to a consideration of differ
ential equations of the form 

x + f(x) = 0, (1) 

which can be thought of as representing the one
dimensional motion of a particle. The qualitative 
nature of the motion is made clear if a potential 
function is introduced by means of 

f(x) = dtp . 
dx 

(2) 

The system is conservative and has the first integral 

8 = !i2 + tp(x) = const. (3) 

We will examine the periodic solutions in the vicinity 
of a stable equilibrium point which, for simplicity, we 
take to be at x = O. Figure 1 illustrates a possible 
potential function. The potential function is assumed 
to possess a Taylor series expansion which we express 
as 
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FIG. 1. Typical po
tential function. 

--~--~-c~------~--.x 

The differential equation is then 

x + OCX + {3x2 + YX3 + bX4 + €X5 = O. (5) 

The end result of our calculations will be to produce 
an approximate solution which is sufficiently accurate 
to justify the inclusion of all terms in (5). The end 
result is based on the assumption that the higher terms 
in (5) are less important than the lower terms. Never
theless, the basic idea of the method really depends 
on only one assumption, namely that the solutions 
are periodic. The procedure can easily be modified to 
treat a differential equation of the form 

(6) 

where € is large and oc is small or even zero. 
Given spme energy, the particle moves back and 

forth between turning points Xl and X2 as illustrated 
in Fig. 1. Qualitatively the motion resembles Fig. 2 
where X is plotted against wt, w being the circular 
frequency of the motion. Such a motion can be 
represented by a Fourier series: 

00 

X = bo + L (b n cos nwt + an sin nwt). 
n~l 

(7) 

There is no loss in generality if it is assumed that the 
initial velocity of the particle is zero. The NLDE (5) 
has the property of invariance under time reversal, 
meaning that the solution as illustrated in Fig. 2 is 
symmetric about wt = 7T. The solution is therefore 
representable as 

00 

x = bo + L bn cos nwt. (8) 
n~l 

The restriction of zero initial velocity can be removed 

FIG.2. Periodic os
cillations of a particle 
released from rest. 

by writing, in place of (8), 

00 

x = bo + L bn cos newt - 4». (9) 
n~l 

If the potential function V'(x) is assumed to be con
tinuous, it follows that both x(t) and its first derivative 
are continuous. The Fourier series (8) therefore 
converges uniformly and absolutely for all t. 

III. GENERAL PROPERTIES OF THE 
SOLUTION 

Since in (8) we have already assumed that the initial 
velocity is zero, there is only one parameter remaining 
which must be fixed by the initial displacement. This 
parameter is chosen to be the coefficient bl of the 
leading term in the Fourier series. All other param
eters, namely the coefficients bo, b2 , ba,"', the 
frequency w, the energy, and the turning points Xl 

and x2 , must be expressible in terms of bI , and it is 
one of the goals of this paper to exhibit this functional 
dependence explicitly. 

Theorem 1: The coefficients bn(bl ) are even or odd 
functions of bi according as n is even or odd. 

Proof' Let two particles be released simultaneously, 
one at the turning point Xl, the other at X2' both 
turning points corresponding to the same energy. The 
two motions will be as illustrated in Fig. 3 and can 
be represented as 

00 

x(t) = bo(bl ) + bl cos wt + L bn(bl ) cos nwt, (10) 
n~2 

00 

x'(t) = b~(b~) + b~ cos wt + L b~(b~) cos nwt. (11) 
n~2 

From Fig. 3, one easily sees that the solutions (10) 
and (11) are related in a simple way: 

x'(wt + 7T) = x(wt). (12) 
Therefore 

00 

b~(bD - b~ cos wt + L (-l)"b~(b~) cos nwt 
n~2 

00 

= bo(b l ) + bl cos wt + L bn(bI ) cos nwt. (13) 

FIG. 3. Periodic 
oscillations of two 
particles of the same 
energy released at op
posite turning points. 

n~2 
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Term-by-term comparison shows that 

(14) 

(15) 

The functional dependence of the coefficients on bl 
must ultimately be determined by substituting the 
Fourier series into the NLDE, and, since (10) and (II) 
are identical in form, the dependence of b~ on b~ 
must be the same as the dependence of b n on bl . This 
allows us to remove the prime in (15): 

(16) 

Theorem 2: The frequency is an even function of bl . 

Proof The solutions (10) and (II) both correspond 
to the same energy and, of course, have the same 
frequency: 

Theorem 3: The turning points are functionally 
related by means of 

x 2(b l } = Xl (-bl )· (18) 

Proof The turning points are found by setting 
wt = 0 and wt = 'TI' in (10): 

Xl = bo + bl + b~ + b3 + ... , 
X2 = bo - bl + b2 - b3 + ... . (19) 

The result follows by an application of (16). 

Theorem 4: The energy of the particle is an even 
function of bl . 

Proof: The total energy is related to the turning 
points by means of 

f, = 1p[xI(bl )] = 1p[x2(b l )] = 1p[XI( -bl)]' (20) 

Thus 
(21) 

In a linear system, the energy is proportional to the 
sq uare of the amplitude which is a special case of (21). 

The coefficients bo , b2 , b3 , •• , as well as the 
frequency are assumed to be continuous, differentiable 
functions of bl . They can therefore be expanded in 
power series which are expressed as 

bn = gnO + g"lb l + gn2 bi + ... , (22) 

where the coefficients g.o can depend only on the 
parameters ~, {J, y, ... of the NLDE (5) and numer
i cal factors. 

We now prove the following theorem. 

Theorem 5: The series for bn begins with the term 
b~ when ~ "'" 0, while bo is of the order b~. The 
theorem does not hold if IX = 0 as we will show by 
an example later. 

Proof We first show that the even coefficients have 
no constant term and the odd coefficients have no 
linear term. If IX "'" 0, the solution in the limit bl -->- 0 is 

X = bl cos (Of. (23) 

If the linear and constant terms were present in the 
coefficients b n as given by (22), the solution would 
take the limiting form 

X = bl(cos wt + g31 cos 3mt + ... ) 
+ goo + g20 cos 2wt + g40 cos 4wt + . " (24) 

in violation of (23). 
We now show that the coefficients b4 , b6 , ••• have 

no second-order terms. We already know that b3 , 

bs , .•. can have no terms of order lower than b~. 
The DE accurate to second order is 

x + IXX + {JX2 = O. (25) 

If the solution (8) is substituted into (25) and all terms 
of higher order than bi are discarded, the result is 

IXbo + (IX - ( 2)bl cos wt + (IX - 4(2)b2 cos 2wt 

+ (IX - 16o})b4 cos 4wt + higher even harmonics 

+ tb;t3(l + cos 2wt) = O. (26) 

Since the coefficients of each harmonic must vanish, 
b4 , b6 , ••• are all zero to second order. 

If we now write down the DE accurate to third 
order and proceed in exactly the same manner, this 
time retaining all terms to order b~, we find that 
bs , b7 , ••• have no terms proportional to b~. What 
happens is that the nonlinear terms f3x2 and yx3 never 
contribute harmonics of any higher order than the 
order of the terms being retained. This will be true as 
we extend the proof to higher and higher orders. The 
reason is that when products of the form COST m() x 
cos' n() are expanded into harmonic series, the highest 
harmonic is always cos (rm + ns)O. Theorem 5 is 
therefore established. 

It is possible to predict what the actual dependence 
of the factors gij in (22) is on the parameters IX, {J, y, t5, 
and € of the NLDE (5). If X is assumed to have dimen
sions of length Land t dimensions of time T, then bn 

mllst also have dimensions of length for consistency. 
Since each parameter involves T-2, the same number 
of parameters (sum of exponents) must appear in the 



                                                                                                                                    

SOLUTIONS OF A NONLINEAR DIFFERENTIAL EQUATION 1273 

numerator and denominator of the gij' which are 
assumed to be algebraic functions of rx, p, y, b, and E. 

Such quantities are expressed in (27)-(30): 

L-l: P/rx, (27) 

L-2: y/rx, (32/rx2 , (28) 

L-3: b/rx, P3/ rx3, (3y/rx2, (29) 

L-4: E/rx, y2/ rx2, (34/tJ.4, (3b/rx2, P2y/tJ.3. (30) 

Quantities absent from (27), for example, are yiP, 
b/y, E/O; similar quantities are also absent from 
(28)-(30). If we require that all solutions to (5) reduce 
to that of the simple harmonic oscillator for rx ¥:- 0, 
then only terms with powers of rx in the denominator 
are acceptable since all gij must go to zero as p, y, 
b, ... -+ 0 in any manner. Thus, by using only the 
quantities (27)-(30) and the requirement of dimen
sional consistency, we obtain the following functional 
forms for the gij and the b,,: 

g02 = COIP/rx, 

g04 = C020/rx + co3(33/ rx3 + co4(3y/rx2
, 

g22 = C21(3/rx, 

g24 = C22b/rx + C23(33/ rx3 + C24{ly/rx2, 

gS3 = C31y/rx + C32(32/ rx2, 

(31) 

(32) 

(33) 

(34) 

(35) 

g35 = C33E/rx + C34y2/rx2 + C35(34/rx4 + C36(3b/rx2 

+ ca7(32y/rx3, (36) 

It is many times asserted that the linear system can be 
corrected by the inclusion of the second-order term 
{lx2 in (5). Equation (40) reveals that this is not correct 
as far as the frequency is concerned. Both (3 and y 
appear in (40) and often in practice the two terms in 
which they occur are of the same order of magnitude. 
Thus, if (5) is obtained by means of a Taylor series 
expansion of some potential function, it is really 
necessary to include the third-order term yxa in order 
that the expression (39) for the frequency be accurate 
to second order in bl • Similarly, the fifth-order term 
is required in the NLDE in order that the frequency 
be accurate to fourth order. 

IV. DETERMINATION OF THE SOLUTION 

The numerical constants Co must be found by 
formally substituting the Fourier series solution into 
the NLDE. The results of Sec. III permit this task to 
be accomplished in a simplified fashion. Since the 
expressions for gij are valid for any choices of rx., (3, 
y, ... (except rx = 0), they are valid in particular if 
(3 = y = b = O. We therefore consider the NLDE 

x + rxx + EX5 = O. (42) 

A simplification results in this case because the 
potential function is symmetric, meaning that the 
solution will be of the form 

x = bi cos wt + ba cos 3wt + b5 cos 5wt + .... 
(43) 

g44 = c41b/rx + C42(33/ rx3 + C43{ly/rx2, (37) To fifth order in b1 , 

g55 = C51E/ rx + C52y2/rx2 + C53{l4/rx4 + C54(3b/rx2 

+ C55(32y/ rx3. (38) 

The list has been extended to include terms which are 
of order b~. The constants Cij are numerical factors 
and do not depend in any way on the parameters of 
the NLDE or on the initial conditions. We therefore 
arrive at the general form which the Fourier series 
representation of the periodic solutions of (5) must 
take. All terms up to fifth order have been retained. 
It is clear how to proceed if higher-order terms are 
required. 

The frequency of the motion can be expressed as 

(39) 

where 

(40) 

g14 = C14E/rx + C15y2/rx2 + CI6(34/ rx4 + CI7(30/rx.2 

+ cIsfJ2y/rx.3. (41) 

x5 = b~ coss wt 

= b~(i cos wt + -to cos 3wt + io cos 5wt). (44) 

If (43) is substituted into (42) and the coefficients of 
like harmonics equated to zero, the result is the system 
of algebraic equations 

(rx - ( 2)bl + iEb~ = 0, (45) 

(rx - 9(2)ba + T50Eb~ = 0, (46) 

(rx. - 25(2)b5 + T\Eb~ = O. (47) 

Equation (45) is solved for the frequency to get 

(48) 

Since ba is of order b~ and bs is of order b~, the 
approximation w2 = rx is sufficient in (46) and (47). 
We find 

ba = 1 :s( E/rx)bL 

b5 = 3~4(E/rx.)b~. 
(49) 

(50) 
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Comparison of the above results with (36), (38), and 
(41) reveals that 

C33=lh, CSI=3~4' c14=i. (51) 

All of the remaining constants can be found by a 
similar consideration of the two DE 

x + (XX + fJx2 + yx3 = 0, (52) 

x + exx + fJx2 + bx4 = 0. (53) 

We recover here a kind of superposition principle for 
nonlinear DE's in the sense that the solutions of (42), 
(52), and (53) can be combined to obtain the solution 
of the more general equation (5). Equations (52) and 
(53) are admittedly more complicated than (42) but 
are quite tractable and we have succeeded in computing 
all numerical constants. These are displayed in Table 
I. In substituting the solution (8) into the NLDE, the 
various power of x are computed accurate to fifth 
order in bi and the resulting expressions are written 
out in terms of harmonic series by using appropriate 
trigonometric identities. 9 For Eq. (52) the resulting 
algebraic equations are 

rxbo + fJ(!b~ + b~ + tbi) + y(%b~bo + !b~b2) = 0, 
(54) 

bl(ex - ( 2) + fJ(2b Ibo + bIb2 + b2ba) 

+ y(!b~ + !b~ba + 3blb~ + 3b1bob2 + tblb~) = 0, 
(55) 

b2(rx - 4(2) + fJ(tb~ + 2bob2 + bIba) 

+ yC%b~bo + tb~b2) = 0, (56) 

ba(rx - 9(2) + fJ(b1b2 + b1b4 + 2boba) 

+ y(ib~ + tb;ba + 3b1bob2 + !blb~) = 0, (57) 

biex - 16(2) + fJ(ib~ + b1ba) + y!b~b2 = 0, (58) 

bs(rx - 25(2
) + fJ(b1b4 + b2b3) 

+ y(!b~b3 + !blb~) = 0. (59) 

These equations are solved by iteration by first 
considering the third-order equations obtained by 
neglecting all fourth- and fifth-order terms such as 
b~, blb~, etc. 9 

Let us consider briefly the possibility of solving (42) 
even if ex = 0. Investigation of the potential function 
shows that the solutions are periodic if € > 0. If we 
assume that b3 and bs are of decreasing magnitude, 
then (44) remains valid as the leading term in xS. 
Equations (45), (46), and (47) then remain valid, and 
their solution is 

w2 = i€bL ba = -Isbl , bs = 2 ~ ObI' (60) 

The coefficients are indeed of decreasing order of 
magnitude as one might expect from general con
siderations of the convergence of Fourier series. 
Theorem 5 is no longer valid since now b3 and bs are 
actually linear in bl . The higher coefficients b7 , bg , ••• 

are also linear in bl , and their inclusion in the calcula
tion would therefore produce modifications (hopefully 
small) in the numerical coefficients appearing in (60). 
This is not so for the Cij appearing in the solution for 
rx ¥= 0. They are precise numbers and, once found, are 
not modified by extending the calculation to higher 
orders in bl . Numerical values are summarized in 
Table I. 

V. APPLICATION 

If a charged particle moves in the space between two 
charged concentric cylindrical electrodes, the equation 
of motion for its orbit is 

(61) 

where x = llr and ro = llxo is the radius of its stable 
circular orbit assuming that the force is one of attrac
tion toward the inner electrode. The variables rand () 
are polar coordinates. If the function which appears 

TABLE I. Values of Ci;. 

S j 

2 3 4 5 6 7 8 

0 -l -t _ll k bo 72 8 

! -~ ~ 3 _llA -t llA W "'i28 8U DO 

2 ! It .D _.;t.l. b2 432 D. 

3 ~- --L • -~ ---1JL --"-
__ 1:.L 

b. 3. 48 '1i8 1020& 2304 32. 768 

4 1 4!2 .'6 b( "i2O 

5 . -'- -'- 2~~O -'- b. 3"8"4 1024- 20736 2: 304 
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in (61) is expanded in a Taylor series about x = Xo, 
the result is 

where 0 < x < 2xo is the range over which the 
expansion converges. We identify 

Thus the third-order term in the NLDE is actually 
more important than the second-order term as far as 
computing w2 correct to order b~! 

If the initial conditions are such that 'ObI = 0.5, 

'olr = 1 + 0.0665 + 0.5000 cos w(j 

- 0.0220 cos 2w(j + 0.0026 cos 3w(j 

- 0.0001 cos 4wf) + 0.0001 cos 5wf), (67) 

w2 = 2.0887. (68) 

IX = 2, fJ = - '0' r = r~, d = - rg, E = r~. The minimum value of r (inner turning point) results 
(63) if (j = O. This gives the maximum value of x: 

The following solution is easily constructed: 

ro/r = 1 + 0.2500(robl)2 + 0.064 25(robl)4 

+ (rOb l ) cos wO 

- [0.083 33(robl)2 + 0.019 68(robl)4] cos 2w(J 

+ [0.010 42('obl)3 + 0.021 20(robl)5] cos 3wO 

- 0.001 85(robl )4 cos 4wf) 

+ 0.002 79(robl)5 cos 5w(J, (64) 

Here, w is not the frequency but we = 7T gives the 
angular displacement between the turning points of 
the orbit. In computing the second term in (65) note 
that 

= lr~ - 254r~. (66) 

xmax = 1. 547xo . (69) 

For values of x much larger than this, the Taylor 
series in (62) does not converge very rapidly; in fact 
it becomes divergent at x = 2xo. We see, however, 
that the Fourier series (67) is rapidly convergent and 
gives a good representation of the orbit. 
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Fredholm integral equations with displacement kernels playa significant role in such areas as radiative 
transfer and optimal filtering. Frequently, these equations are studied by using the fact that their solu
tions minimize certain quadratic functionals, which opens the way to the employment of the Rayleigh
Ritz method. The aim presented in this paper is radically different. It is shown that the minimizer of the 
quadratic functional satisfies a Cauchy problem, no use being made of the integral equation. This notion 
is of analytic interest and computational utility. 

I. INTRODUCTION 

Consider the quadratic functional in v, 

Q(v) = f'V2(t) dt -flOlk('t - YI)v(t)v(y) dt dy, 

x> 0, (1) 
where 

k(r) = fe-rlzw(z) dz, r > O. (2) 

Further assume that Q(v) is positive definite. We wish 
to find the (unction v = u, 0 $;; t $;; x, which mini
mizes the functional 

F = Q(v) - 2 LOl g(t)v(t) dt. (3) 

The traditional approach! is to introduce the 
variation E'f)(t), 

v = u + E'f), (4) 

substitute in Eq. (3), and conclude that the first 
variation vanishes: 

0= iOl1)(t) (U(t) - iOlk('t - yl)u(y) dy - get») dt. 

(5) 

Use of the fundamental lemma of the calculus of 
variations then provides the Euler equation 

u(t) - i\('t - yl)u(y) dy - get) = 0, (6) 

which is a Fredholm integral equation of the second 
kind. (It occurs in the theories of radiative transfer, 2 

optimal filtering,3 and elsewhere.) Our aim is quite 
different. We wish to derive a Cauchy problem for 
the optimizer u, without using the Euler equation (6). 
In Ref. 4, Eq. (6) was used. This is of analytic interest 
and of computational utility. Presumably our method 
can be extended to give a new treatment of a much 
larger class of variational problems than is treated 
here. 

II. DERIVATION 

Observe that the optimizer depends upon x and 
write 

u = u(t, x), 0 $;; t ~ x. (7) 

Bellman5 has used this imbedding to study the 
resolvent kernel using dynamic programming. Differ
entiate both sides of Eq. (5) with respect to x to obtain 

0= 1)(x) ( u(x, x) - LOlk(X - y)u(y, x) dy - g(X») 

+ lOl1)(t) ( uOl(t, x) - k(x - t)u(x, x) 

- LOl k(lt - yi)u.,(y, x) dy ) dt. (8) 

In view of the arbitrariness of the function 1), it follows 
that the optimizer u satisfies the two equations 

u(x, x) = g(x) + f'k(X - y)u(y, x) dy, x > 0 (9) 

and 

u.,(t, x) = k(x - t)u(x, x) + iOlk('t - yl)u.,(y, x) dy, 

o $;; t ~ x, (10) 

for x sufficiently small. These are the equations with 
which we shall work. 

Introduce the function <I> as, the solution of the 
integral equation 

<I>(t, x) = k(x - t) + LOlk('t - yi)<I>(y, x) dy, 

o ~ t $;; x. (11) 
It follows that 

uOl(t, x) = <1>(1, x)u(x, x), 0 $;; I $;; x, (12) 

which is one of the basic differential equations. The 
representation for the kernel k given in Eq. (2) suggests 
introducing the function 

J = J(t, x, z), (13) 

1276 
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as the solution of the integral equation 

J(t, x, z) = e-<x-t)/z + iXk(lt - yj)J(y, x, z) dy, 

° :5: t :5: x, 0:5: z :5: 1. (14) 

It is seen directly that 

<!let, x) = {J(t, x, z)w(z) dz. (15) 

Differentiation of both sides of Eq. (14) with respect 
to x yields the relation 

Ja;(t, x, z) = _z-le-(x-t)/z + k(x - t)J(x, x, z) 

+ iXk(,t - yl)Jx(Y, x, z) dy. (16) 

This is viewed as an integral equation for the function 
Jx • According to Eqs. (II) and (4) its solution is 

J,,(t, x, z) = -z-IJ(t, x, z) + J(x, x, z)<!l(t, x), 

t:5: x. (17) 

In view of Eq. (15), Eq. (17) is a differential equation 
for the function J; x is the independent variable, and 
t and z are parameters. The function J(x, x, z) must 
now be considered. 

In Eq. (14) replace t by x - t to obtain the equation 

J(x - t,x,z) = e-t1z + iXk(/X - t - yj)J(y, x, z) dy. 

(18) 

Then introduce a new variable of integration by 
replacing y by x - y, which yields the integral equa
tion 

J(x - t,x,z) = e-t1z + iXk('t - yl)J(x - y,x,z)dy. 

(19) 

Through differentiation with respect to x, it is seen 
that 

d 
- J(x - t, x, z) = k(x - I)J(O, x, z) 
dx 

+lilJ k(lt - yl)!!... J(x - y, x, z) dy. 
o dx 

(20) 

According to Eq. (I I) the solution of this integral 
equation for the function (d/dx)J(x - t, x, z) is 

d 
- J(x - t, x, z) = J(O, x, z)<fI(t, x). (21) 
dx 

Introduce the functions X and Y by means of the 
definitions 

X(x, z) = J(x, x, z), 

Y(x, z) = J(O, x, z). 

(22) 

(23) 

By putting t = 0 in Eqs. (21) and (17) and using Eq. 
(15), it is seen that the differential equations for the 
functions X and Yare 

XXCx, z) = Y(x, z) L\(X, z')w(z') dz', (24) 

Yix, z) = -z-ly(x, z) + X(x, z) f Y(x,z')w(z')dz', 

x> 0. (25) 

From the definitions of the functions X and Yand the 
integral equation (14) for the function J, it follows 
that the initial conditions at x = 0 are 

X(O, z) = 1, 

Y(x, z) = 1. 

(26) 

(27) 

The functions X and Yare determined from the 
Cauchy problem in Eqs. (24)-(27). For a fixed value 
of t and x> t, the function J(t, x, z) is determined 
by the differential equation (17), the relation (IS), 
and the initial condition at x = t, 

J(t, x, z)I,,=1 = X(t, z), 0:5: z :5: 1. (28) 

Next we return to the second factor in the right side 
of Eq. (12), u(x, x). According to Eq. (9) this may be 
written 

u(x, x) = g(x) + iXk(X - y)u(y, x) dy 

= g(x) + iXl1e-<x-II)/zW(Z) dz u(y, x) dy 

= g(x) + fW(Z) dz iXe-<x-II)/zU(y, x) dy. 

By introducing the function e, 
(29) 

e(z, x) = i Xe-<"-lI)/ZU(y, x) dy, 0:5: v :5: 1, 0:5: x, 

we see that 
(30) 

u(x, x) = g(x) + L1e(z, x)w(z) dz. (31) 

Now a differential equation for the function e is to be 
obtained. Differentiation of both sides of Eq. (30) 
yields 

e,,(z, x) = u(x, x) - z-le(z, x) 

+ iXe-<x-lI)/zuiY, x) dy 

= -z-le(z, x) + u(x, x) 

X (1 + iXe-<x-Y)!z<!l(y, x) dy ). (32) 
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It remains to evaluate the integral in the last equation. 
Through cross multiplication of Eqs. (11) and (14), 
integration, and cancellation of the double integrals, it 
follows that 

l"'e-<"'-V,!z<I>(Y, x) dy = l"'J(Y, x, z)k(x - y) dy. (33) 

From Eq. (14) it is seen that 

f' J(y, x, z)k(x - y) dy = J(x, x, z) - 1, (34) 

or 

i"'e-<"'-lIl!Z<l>(Y, x) dy = X(x, z) - 1. (35) 

Equation (32) becomes the desired differential equa

tion 

e",(z, x) = -z-le(z, x) + X(x, z) 

X (g(X) + fe(Zf, x)w(z') dZ} (36) 

The initial condition on e at x = ° is 

e(z,O) = 0, (37) 

which follows from Eq. (30). The derivation of the 
Cauchy problem is now complete. 

III. THE CAUCHY METHOD4 

The method for determining the value of u(t, c) for 
a given value of t and for c sufficiently small is as 
follows. The functions X, Y, and e are determined on 
the interval ° ~ x ~ t by means of the Cauchy 
problem 

X",(x, z) = Y(x, z) f Y(x, v)w(v) dv, X(O, z) = 1, 

(38) 
Y.,(x, z) = -z-ly(x, z) + X(x, z) 

for 

X f Y(x, v)w(v) dv, YeO, z) = 1, (39) 

e",(z, x) = -z-le(z, x) + X(x, z) 

X (g(X) + fe(V,X)W(V)dV), 

e(z,O) = 0, (40) 

O~z::;;1. (41) 

At x = t the differential equations for the functions J 
and u are adjoined: 

Jit, x, z) = -z-lJ(t, x, z) + X(x, z) 

X fJ(t, x, v)w(v) dv, 0::;; z S; 1, (42) 

and 

u",(t, x) = (g(X) + fe(v, x)w(v) dV) 

X fJ(t, x, v)w(v) dv. (43) 

The initial conditions on these functions at x = tare 

J(t, t, z) = X(t, z) (44) 
and 

u(t, t) = get) + fe(v, t)w(v) dv. (45) 

The integration of the equations for the functions X, 
Y, e, J, and u is carried out from x = t to x = c, at 
which point the value of u(t, c) is determined. 

In effect, the function u is determined at a fixed 
value of t for all x for which c ~ x ~ t. In view of the 
nonlinear nature of the differential equations, the 
solution may become infinite for a finite value of x, 
which necessitates the restriction on the size of x. 

IV. DISCUSSION 

The numerical integration of the initial value 
problem described in the previous section can be 
carried out by replacing the integrals by finite sums 
using Gaussian quadrature formulas. This reduces the 
differential-integral equations to a system of ordinary 
differential equations. In practice this has worked 
extremely well.6 •7 

It would be highly desirable to prove that the 
function u, produced as the solution of the initial 
value problem, does satisfy the Euler equation (6) 
and, further, that it does minimize the quadratic 
functional F. 

Traditionally, approximate solutions of the Fred
holm integral equation (6) are obtained by applying 
the Rayleigh-Ritz method to the minimization of the 
functional F. The analysis presented here opens up 
many new interesting possibilities by using combina
tions of the two. 
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In re~nt years, the. need to allow for the effect of curvature on the formation of spectral lines has been 
recognized not on~y In th~ fields of plane~ary and .stell~r atmospheric physics but also in the field of 
neutron transport In sphencal reactors. This paper IS of Interest in these and related fields. Initial value 
systems are ?btaine.d for the sca!tering an.d trans~ission functions and emergent intensities for inhomo
geneous, amsotroplcally scattenng sphencal media both with internal and external sources and with 
various types of cores. 

1. INTRODUCTION 

In recent years, the need to allow for the effect of 
curvature on the formation of spectral lines has been 
recognized, not only in the fields of planetary and 
stellar atmospheric physics, but also in the field of 
neutron transport in spherical reactors. I- 3 

The approximate solution of the transfer equation 
in spherical geometry has been discussed by several 
authors.4-I7 Invariant imbedding equations govern
ing the reflection functions in spherical homogeneous 
shell atmospheres with isotropic scattering were 
obtained rigorously from the transfer equations 
without referring to the symbolic delta function of 
Dirac in the formulation of the problem. Is .I9 Heaslet 
and Warming20 have reduced the exact solution of the 
spherical transport equation to that of the transport 
equation in slab geometry; this approach is valid in 
the homogeneous isotropic case. 

By extension of the numerical approach used in the 
radiative transfer theory in slab geometry, 21.22 the 
numerical solution of the spherical shell and cylindri
cal transport problems has been obtained.23.24 Also, 
the particle-counting technique has been applied to the 
diffuse reflection from homogeneous cylindrical 
regions.25 Recently this approach has been extended 
to the diffuse transmission of light from a central 
source through an inhomogeneous spherical shell with 
isotropic scattering.26 

This paper, making use of the invariant imbedding 
technique, derives rigorously the integro-differential 
equations for the scattering and transmission functions 
and intensity in inhomogeneous, anisotropically 
scattering media from the transfer equations in the 
following problems: 

(i) an externally illuminated spherical shell atmos
phere with a reflecting inner surface; 

(ii) a spherical shell atmosphere surrounding a 
perfect black core; 

(iii) a spherical shell atmosphere surrounding a 
vacuum core with a central point source; 

(iv) a spherical shell atmosphere with internal 
sources of radiation. 

In astrophysical contexts, the above problems 
correspond to 

(i) Chandrasekhar's radia'don problem in spherical 
geometry, 

(ii) Schuster's problem in the theory of line forma
tion by a scattering spherical shell atmosphere, 

(iii) the diffuse transmission of light from a central 
star by a spherical nebula in the field of ultraviolet 
radiation, 

(iv) the formation of absorption lines by an ab
sorbing and scattering spherical shell atmosphere. 

These problems will be treated in Secs. 2-5, respec
tively. The equations obtained in this paper are 
exact and, we believe, new. Some' of them were 
obtained with the aid of the probabilistic method.27 

2. AN EXTERNALLY ILLUMINATED SPHERICAL 
SHELL ATMOSPHERE WITH A REFLECTING 

INNER SURFACE 

The Equation of Transfer and the 
Boundary Value Problem 

Consider an inhomogeneous, anisotropically scat
tering, source-free spherical shell atmosphere bounded 
by the concentric spherical surfaces with radii x and y, 
o < y < x. The inner surface reflects radiation 
isotropically according to the Lambert law with a 
constant surface albedo A. Radiation which is not 
reflected at the surface is absorbed there. 

Let conical flux of radiation of TTF per unit area 
normal to itself be uniformly incident on the outer 
surface at inclination cos-I U, 0 < u :::;; I, to the 
inward - directed radius vector. Assume that the 
radiation field is radially symmetric; then the intensity 

1279 
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and source function are independent of the azimuth. 
We shall consider the intensity in the total radiation 
field, where 

total intensity = diffuse intensity 

+ intensity of reduced 

incident radiation. 

Let r be the radial coordinate, y S r S x. The inten
sity in the total radiation field at r directed toward the 
outer surface is denoted I(r, +v) and the intensity of 
the inward-directed radiation is I(r, -v), where 
o < v S 1. As usual, v is the cosine of the angle 
measured from the outward-directed radius vector if 
the radiation is propagating in an outgoing direction, 
or from the inward-directed radius vector if the 
radiation is propagating inwards. 

The equation of transfer for the total radiation 
field is 

aI 1 - v2 aI 
v -(r, v) + -- - + /X(r)I ar r av 

= ta(r) L:lp(r; v, v')I(r, v') dv', (1) 

where /X(r) and a(r) are, respectively, the volume 
attenuation and scattering coefficients and the azimuth 
independent phase function per; v, v') is given in 
terms of the standard phase function for single scat
tering p(r; v, q;; v', g/) by the relation 

per; v, v') = (27Trlf"p(r; v, q;; v', q;') dq;'. (2) 

The local reciprocity principle is satisfied. The func
tion per, v, v') is normalized to 2 on the unit sphere. 
The boundary conditions satisfied by the total intensity 
are 

I(x, -v) = tFb(v - u) (3) 
and 

I(y, +v) = 2A fI(Y, -v')v' dv' 

+ !Fe-re",.II.u)b(v) d(u, uc)' (4) 

where 0 S v S I, d(u, uc) is the Kronecker delta 
function, and Uc = [1 - (y/x)2]i. 

Refer to Fig. 1 and define the distance 

Xl = x(1 - u2)i. (5) 

In the case y < Xl, the length Xl is the shortest 
distance OC between the photon path AD and the 
center O. It is noted that, at some general point B 
along AD at radial distance r, the path makes an 
angle whose cosine is u* with the radius vector, 
where u* is given by the formula 

u* = u*(r) = [1 - (x/r)2(1 - u2)]i. (6) 

o 
FIG. 1. 

r=y 

o 

The optical distance along the path AB is 

i"'U 
T(X, r, u) = ./X(z) ds(z), 

ru 
(7) 

where 

s(z) = [Z2 - x2(1 - u2)]i. (8) 

The intensity of the reduced incident radiation in the 
ingoing direction BC at point B is therefore 

- - - e-rC",.r.tt)b(v - u*), F U (X)2 
2 u* r 

(9) 

for r ~ Xl ~ y, and u* > 0, because of the deter
ministic change in state. 

We now introduce the new intensity function 
I*(r, v) as follows: 

I(r, -v) = I*(r, -v) 

F U (X)2 + 2" u* ~ e-rC",.r,u)b(v - u*)h(r - Xl), 

(10) 

I(r, +v) = I*(r, +v), (11) 
where 

h(q) = 0, q < 0, 

= 1, q ~ 0, (12) 

for 0 < v S 1, Y S r S x. Note that, when r < Xl, 

the total radiation field contains only the diffuse 
contribution. Then I(r, v) = 1* (r, v) for all v, -1 S 
v S 1. When r ~ Xl' however, reduced incident 
radiation is present. It is included in the definition of 
the outgoing intensity I*(r, +v), but it is not included 
in the ingoing intensity function I*(r, -v), where 
o < v S 1. This definition of the function I*(r, v) is 
made so that the scattering and transmission functions 
soon to be introduced give, respectively, the total 
intensity of radiation emerging from the outer surface 

I*(x, +v) = (F/4v)S(x,y; v, u), (13) 
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and the ingoing diffuse intensity at the inner surface 

l*(y, -v) = (F/4v)T(x, y; v, u). (14) 

This is not unlike the convention in the plane-parallel 
case. 

From the above equations it is readily seen that the 
function l*(r, v) satisfies the equation 

a1* 1 - v2 a1* 
v - (r, v) + --- + rx(r)l* = J(r, v), (15) 

ar r av 

where 

J(r, v) = la(r) L~~(r; v, v')I*(r, v') dv' 

+ iFa(r) .!:!....(~)2 
u* r 

X e-r<",r,u)p(r; v, -u)h(r - Xl), 

+ iFe-d",v,u)(j(v) d(u, uc) (16) 

and it satisfies the boundary conditions 

1*(x, -v) = 0, 

1*(y, +v) = 2Af1*(Y, -v')v' dv' 

(17) 

+ FA u
2 

(~)2 e-r(",y,u)h(y _ Xl)' (18) 
u* y 

The Initial Value Problem for the Intensity of the 
Reflected Radiation 

In a manner similar to that used in slab geometry, 1 

it is assumed that the law of reflection of radiation by 
a spherical shell is given by the equation 

I(r, +v) = 1.. tS(r, y; v, v')I(r, -v') dv'. (19) 
2v Jo 

This defines the scattering function S(r, y; v, v'), 
o ~ v, v' ~ 1. On inserting Eqs. (10) and (11) into 
Eq. (19), we find 

Fll(X)2 ( ) 1*(r, +v) = -4 ----; - e-r X,r,u S(r, y; v, u*)h(r - Xl) 
v U' r 

+ 1.. (lS(r, y; v, v' )I*(r, -v') dV'. (20) 
2v Jo 

Equation (20) corresponds to the first law of diffuse 
reflection in slab geometry [Ref. 1, Sec. 50, Eq. (5)]. 

In the limit r = x, Eq. (20) becomes 

lex, +v) = l*(x, +v) = (F/4v)S(x, y; v, u), (21) 

with the use of Eqs. (6), (7), and (17). The angular 
distribution of the total radiation emerging from the 
outer surface is directly expressed in terms of the 
scattering function. 

Differentiate Eq. (20) with respect to r, use Eqs. 
(6)-(8), pass to the limit r = X, and make use of the 
boundary condition of EQ. (17) to obtain 

[dI* (r, +V)] 
dr r=" 

F ( 1 - u2 1 + v2 rx(x) = - - -- Sex, y; v, u) - -- s + - S 
4v u2x v2x U 

+ as + 1 - v
2 
as + 1 - u

2 
as) 

ax vx av ux au 

+ 1.. tS(x, y; v, V,)[d1* (r, -VI)J dv'. (22) 
2v Jo dr r=" 

Equation (15) yields 

-(r, +v) [
d1* J 
dr r=" 

= !(-rx(X).£ Sex, y; v, u) + J(x, +V»), (23) 
v 4v 

[d1* (r, -v)J = - ! J(x, -v), 
dr r=" v 

(24) 

where, by Eq. (16), 

J(x, v) = lFa(x)p(x; v, -u) 

i l dv' 
+ UtFa(x)] p(x; v, V')S(X, y; v', u) -. 

o v' 

(25) 

Substitution of Eqs. (23)-(25) in Eq. (22) provides 
us with the desired functional equation 

as 1 - v
2 

as (1 1) - (x, y; v, u) + --- + rx(x) - + - s 
ax vx aLl v u 

1 - u2 as v2 +u2 

+------s 
ux au V2

U
2X 

= a(x) p(x; v, -u) + t p(x; V, V')S(X, y; v', u)--.£.. ( i1 d ' 

o v' 

11 d I 

l . I • I ~ + 2 sex, y, v, u )p(x, -u , -u) 
o u' 

+ tffS(X, y; v, u')p(x; -u' , v') 

du ' dVI) x S(x,y;v',u)-- , 
u' v' 

(26) 

The boundary condition of Eq. (18) leads to the 
initial condition on the function S when the thickness 
of the atmosphere is zero, i.e., when X = y: 

S(x, y; v, u)I,,=u = 4Avu 

+ 2vb(v - u) d(u, uc)I,,-+v' (27) 
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In the case of an inhomogeneous shell with iso
tropic . scattering, Eq. (26) reduces to that given in 
Ref. 26. 

The Initial Value Problem for the Intensity of the 
Diffusely Transmitted Radiation 

The next task shall be to determine the intensity 
I(y, -v) of the radiation diffu~ely transmitted to the 
inner surface in the direction -v due to the incident 
rays. An initial value problem for the transmission 
function T(x, y; v, u) is to be derived. 

Let the intensity of the total transmitted radiation 
be expressed as 

I(y, -v) = I(r, -v*) ;(~re-r(T'II'V)h(Y - r l ) 

+ .l e T(r, y; v, v')I(r, -Vi) dv ', (28) 
2v Jo 

where I(r, -v) is given by Eq. (10); the optical path 
length is 

where 

and 

i
TV' 

7'(r, y, v) = Q(Z) ds(z), 
!IV 

v* = v*(r) = [l - (y/r)2(l - V2)]!, 

s(z) = [Z2 - f(l - V2)]!, 

(29) 

(30) 

(31) 

(32) 

The first term on the right-hand side of Eq. (28) 
represents the direct transmission of the total intensity 
of radiation in the direction -v, 0 < v ~ I, and the 
second term arises from the diffuse transmission of 
the inward-directed radiation by the spherical shell 
atmosphere of thickness (r - y) below. 

By combining Eq. (28) with Eq. (10), the law of 
diffuse transmission may be written 

I*(y, -v) + £ E-(~)2e-T(""!I''')r5(V - uO)h(y - Xl) 
2 UO y 

= [1*(r, -v*) + f.. ~(~)2 
2 u* r 

x e-dX.T,U)b(v - u*)h(r - Xl)] 

X ~ (;Ye-T(T.1/.V)h(y - r l ) 

+ 4F u*(~)2e-T(""T'U)T(r, y; v, u*)h(r - Xl) 
v u r 

+ .1 eT(r, y; v, v')I*(r, -Vi) dv' , (33) 
2v Jo 

where 

The intensity of the diffusely transmitted radiation is 

I*(y, -v) = (F/4v)T(x,y; v, u). (35) 

Differentiation of Eq. (33) with respect to r, use of 
Eqs. (29)-(31), passage to the limit r = x, and use of 
Eq. (24) lead to the integra-differential equation for 
the transmission function 

aT 1 - v2 aT 1 - u2 aT 
-(x,y;v, u) + --- + ---
ax vx av ux au 

Q(x} v2 + u2 

+-T---T 
U V

2
U

2
X 

[ 
V*(X)2 = a(x) e-dlt.!I.v) -; ; p(x; -v*, -u) 

+ e-r<x.lI.v) - - t p(x; -v*, V')S(X, y; Vi, u)-; v*(x)21l dv ' 

V y ° v 

+ t (1T(x, y; v, u'}p(x; -U', -u) du' 
Jo u' 

+ ! ffT(X, y; v, u')p(x; -U', Vi} 

xS(x,Y;V,u)-- , I du ' aVI] 
ti' Vi 

where 

i
X

" T(X, y, v} = Q(z) ds(z), 
!IV 

v* = v*(x) = [1 - (Y/X)2(l - V2)]!. 

The initial condition is 

T(x, y; V, u)\x=!I = O. 

(36) 

(37) 

(38) 

(39) 

3. A SPHERICAL SHELL ATMOSPHERE 
SURROUNDING A PERFECT BLACK CORE 

The Boundary Value Problem 

Consider an inhomogeneous, anisotropically scat
tering, source-free spherical shell atmosphere bounded 
by the surfaces r = x and r = y, 0 < y < x, with a 
perfect black core which is an emitter and a perfect 
absorber. In the terminology of astrophysics, an 
anisotropically scattering spherical shell atmosphere 
surrounds the spherical photospheric surface which 
emits radiation in the outward direction in a known 
manner. In the plane-parallel perfectly scattering 
atmosphere, this problem is called the Schuster 
problem of the theory of line formation. 

Let conical flux of radiation of TTF per unit area 
normal to itself be incident uniformly on the inner 
surface in the outgoing direction +u, 0 < u ~ 1. 
The boundary value problem for the total intensity, 
appropriate to this case, is given by the equation of 
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transfer, Eq. (1), together with the boundary condi-
tions 

I(x, -v) = 0, (40) 

I(y, +v) = tF<'J(v - u), (41) 

where 0 < v ~ 1. 
The function I*(r, v) is introduced by means of the 

relations 

I(r, -v) = I*(r, -v), (42) 

I(r, +v) = I*(r, +v) + ~ u: (;Ye-rClI
•
r,u)b(V - u*), 

(43) 
where 0 < v ~ 1, 

11* = 1I*(r) = [1 - (yjr)2(1 - u2)]!, 

i
ru• 

r(y, r, u) = oc(z) ds(z), 
1/U 

s(z) = [Z2 - l(1 - u2)]!. 

(44) 

(45) 

(46) 

The boundary value problem for I*(r, v) is given by 
Eq. (15), where the source function is 

f
+1 

J(r, v) = ia{r) -1 per; v, v')I*(r, v') dv' 

+ tFO'(r) - - e-rCv.r.u)p(r; v, u*), (47) U (y)2 
u* r 

and the boundary conditions are 

for 0 < v ~ 1. 

I*(x, -v) = 0, 

I*(y, +v) = 0, 

The Initial Value Problem for the Intensity of 
Emergent Radiation Due to a Uniformly 

Emitting Core 

(48) 

(49) 

We shall find an invariant imbedding equation 
governing the transmission function Te(y, x; v, u) for 
this case. The outgoing diffuse intensity at r is ex
pressed as the sum of the diffuse transmission of the 
incident radiation and the reflection by the spherical 
shell atmosphere of thickness (r - y) of the ingoing 
radiation at r: 

I*(r, +v) = (Fj4v)T.(y, r; v, u) 

+ (2V)-lfSe(r, y; v, u')J*(r, -u') du '. (50) 

This transmission function gives the diffuse intensity 
of the radiation emerging from the outer surface of 
the shell due to multiple scattering of radiation 
emitted by the blackbody source: 

I*(x, +v) = (F/4v)T.(y, x; v, u). (51) 

Equation for function S. is the same as that discussed 
previously. In fact, one of the reasons we considered 
the problem of diffuse reflection due to external 
conical flux of radiation is that the scattering function 
is needed in the functional equations for the problems 
of the blackbody core and internal radiation sources. 

On differentiating Eq. (50) with respect to r, passage 
to the limit r = x, and use of Eq. (48), we have 

aTe 1 - v2 aT. T. 1 - v2 

-(y, x; v, u) + ---+ oc(x)- - -- T. 
ax vx av v v2x 

where 

= O'(x{:* (;YP(x; v, u*)e-r(lI.ro.u) 

111 dv' + - p(x; v, v')T.(y, x; Vi, u)-
2 0 Vi 

+ ! ~(:!:)2e-r(1/'''''u) 
2 u* x 

11 du' 
X sex, y; v, u')p(x; -u' , u*)-

o u' 

11111 + - sex, y; v, u')p(x; -U', Vi) 
4 0 0 

X T.(y, x; v , u) - - , I du ' dV'J 
u' Vi 

(52) 

which is the required integro-differential equation. 
The function Se satisfies Eq. (26), and the initial 
conditions are 

s.(x, y; v, u)I.,=y = 2vb(v - u) d(u, uc)I.,~y, (54) 

T.(y, x; v, u)I"=lI = O. (55) 

Equation (55) is a consequence of the boundary con
dition (49). Equation (54) is the result of putting 
A = 0 in Eq. (27). 

Intensity of Emergent Radiation Due to an Angular 
Distribution of Sources at the Core 

The intensity of radiation emerging from the outer 
surface of the spherical shell atmosphere due to 
multiple scattering of radiation emitted by the black 
core, when the intensity of the emitted radiation 
depends on the direction, can be readily expressed in 
terms of the function Te(y, x; v, u). Let [<8)(y, +w) 
be the intensity distribution of light emitted at the 
radiating surface at r = y, 0 < w ~ 1. Then the 
emergent radiation can be considered as arising from 
the direct and diffuse transmission of the emitted 
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radiation. Hence, 

lex, +v) = l(s\y, +w) ~(~re-r(lI'''''W) 
1 (1 

+ 2v Jo Te(y, x; v, w')l(')(y, w') dw', 

where 

(56) 

w = [1 - (xjy)2(1 - v2)]!. (57) 

In slab geometry, the greatest astrophysical interest 
is attached to the case of a linear function in w for 
[<a)(y, +w). An interesting inverse problem would be 
the estimation of the distribution of sources, 
[<a)(y, +w), based on observations of the emergent 
radiation. 

4. A SPHERICAL SHELL ATMOSPHERE 
SURROUNDING A VACUUM CORE WITH 

A CENTRAL POINT SOURCE 

The Boundary Value Problem 

Consider an inhomogeneous, anisotropically scat
tering, spherical shell atmosphere bounded by the 
surface r = x and r = y, 0 < y < x, surrounding a 
vacuum core with a point source of radiation at the 
center. There is no scattering or absorbing material 
in the core. It is assumed that the central point source 
emits radiation isotropically. In other words, a 
constant flux of radiation is normally incident on the 
inner surface r = y. In astrophysical contexts, this is 
the problem of the diffuse transmission of light from 
a central star through a spherical planetary nebula in 
the field of ultraviolet as well as Lyman-alpha radia
tion, allowing for the Milne boundary conditions 
(the diffuse flux across the inner surface vanishes). 

The boundary value problem for the total intensity 
is given by Eq. (1) together with the boundary 
conditions 

lex, -v) = 0, (58) 

I(y, +v) = I(y, -v) + tFt5(v - I). (59) 

The function I*(r, v) is introduced according to the 
relations [cf. Eqs. (42) and (43)] 

l(r, -v) = I*(r, -v), (60) 

I(r, +v) = I*(r, +v) + ~(;re-dy.r)t5(V - 1), (61) 

where 

T(y, r) = foc(r) dr. (62) 

The source function is expressed as 

J(r, v) = to'(r) J:1p(r; v, v')I*(r, v') dv' 

+ t Fa(r)(yjr)2p(r; v, l)e-dll .r ). (63) 

The function I*(r, v) satisfies differential Eq. (15) 
and boundary conditions 

I*(x, -v) = 0, (64) 

I*(y, +v) = I*(y, -v). (65) 

The Initial Value Problem 

We introduce the transmission and scattering 
functions appropriate to this case. The outgoing 
diffuse intensity at r is expressed as [cf. Eq. (50)] 

I*(r, +v) = (Fj4v)Tv(Y, r; v) 

+ (2V)-lfSv(r, y; v, u')l*(r, -u') du', 

(66) 

the sum of the energy diffusely transmitted from the 
central source to r, and the reflection by the spherical 
shell within radius r of the ingoing radiation at r. The 
transmission function Tv differs from Te because of 
the nature of the source as well as the type of core. 
The scattering function Sv differs from the function 
S because of the vacuum core. In other words, the 
quantity 

(Fj4v)Sv(x, y; v, u) 

gives the intensity of the total emergent radiation for 
the boundary value problem given by Eqs. (15), (17), 
and 

I*(y, +v) = I*(y, -v). (67) 

The function Sv(x, y; v, u) satisfies the same integro
differential equation as does the function Sex, y; v, u), 
namely Eq. (26). The initial condition is different: 

Sv(x, y; v, u)/",=y = 2vt5(v ~ u). (68) 

The emergent intensity due to the central source is 

I*(x, +v) = (F/4v)Tv (Y, x; v). (69) 

The function Tv(Y, x; v) satisfies the integro-differ
ential equation 

aTv 1 - v2 aTv Tv 1 - v2 
-(y,x;v) + ---+ oc(x)- - --Tv 
ax vx av v v2x 

= a(x>[ (~rp(X; v, l)e-T
(Y.x) 

1 i1 dv' + - p(x; v, v')Tv(Y, x; v') -
2 0 v' 

1( )2 (1 du' + 2 ~ e-dU,X)Jo Sv(X, y; v, u')p(x; -u', 1) ~ 

1 i1i1 + - Sv(x, y; v, u')p(x; -u', v') 
4 0 0 

du'dV'] x Tv(Y,x;v')-- . 
u' v' 

(70) 
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The initial condition on Tv is 

(71) 

In the case of isotropic scattering, Eq. (70) reduces to 
that given in Ref. 26. 

The intensity of the total radiation transmitted 
through the inhomogeneous spherical shell atmos
phere with anisotropic scattering is 

lex, +v) = (F/4v)Tv(Y, x; v) 

+ IF(Y/X)2e-r!1I'''')6(v - 1). (72) 

5. A SPHERICAL SHELL ATMOSPHERE WITH 
INTERNAL SOURCES OF RADIATION 

The Boundary Value Problem 

Consider an inhomogeneous, anisotropically scat
tering spherical shell atmosphere, whose outer and 
inner radii are x and y, respectively, 0 < y < x. 
There are internal emitting sources of radiation with 
g(r, v) dv dq; = the energy emitted at r in the direction 
cosine interval (v, v + dv) per unit volume, per unit 
time, in the element of solid angle dv dq;, -1 < 
v < 1. It is assumed that the indicatrix of scattering 
and the radiation field are independent of q;, the 
azimuth. The inner core is a Lambert reflector with 
albedo A. 

The boundary value problem for the intensity 
l(r, v) is given by Eqs. (1) with the additional term 
g(r, v) on the right-hand side, (4), and 

lex, -v) = o. (73) 

There is no distinction between the total and diffuse 
intensities in this situation. 

The Initial Value Problem for the Intensity of 
Emergent Radiation 

The principle of invariant imbedding for the out
going intensity at r is expressed in the form 

l(r, +v) = l(r, +v) + 1. (IS(r, y; v, v')l(r, -v')dv'. 
2v Jo 

(74) 

Here fer, +v) represents the outgoing intensity of 
radiation at level r that would be present if there were 
no medium from x to r. This equation relates 
l(r, +v), the outgoing radiation at r for a shell of 
outer radius x to l(r, +v), the corresponding radia
tion for a shell of outer radius r. The second term is 
due to the multiple scattering in the shell of outer 
radius r of radiation which is incident at r. The func
tion S is discussed in Sec. 2. 

By differentiation, passage to the limit r = x and 
use of the boundary condition (73), we obtain the 

desired equation for the emergent intensity lex, + v), 

01 1 - v201 IX(X) 
;- (x, +v) + -- - (x, +v) + -lex, +v) 
uX vx av v 

= ~(g(X, +v) + a~) fp(x; v, v')l(x, +v') dv') 

+ 1. (lS(X, y; v, U')(g(X, -u') 
2v Jo 
a(x) (1 ) du' + 2 Jo p(x; -u', v')l(x, +v') dv' --;;;. (75) 

The function S satisfies the integro-differential 
equation (26) and the initial condition ofEq. (27). The 
initial condition on lex, +v), when x = 0, is 

lex, +v)I"'=lI = 0, (76) 

obtained by use of the boundary condition of Eq. (4). 
For slab geometry, corresponding equations are 
found in Ref. 28. 

Note added in proof: Recently, Eq. (26) was ob
tained independently by several authors with the aid 
of the invariance principles (cf. A. Uesug( and J. 
Tsujita, Pub!. Astr. Soc. Japan 21,370 (1969); R. C. 
Allen, Jr., L. F. Shampine, and G. Milton Wing, 
DASA-2421, University of New Mexico, Albequerque, 
N. Mex. (1970)], whereas the system of equations for 
the total reflection function considered by Bellman et. 
al. 24•25 was commented on as admitting two solutions 
[cf. G. B. Rybicki, J. Computational Phys. 6, 131 
(1970)]. It was also shown that Eqs. (52) and (70) 
coincide with those given by the probabilistic method 
from the Milne-type integral equation [cf. T. K. Leong 
and K. K. Sen, Pub!. Astr. Soc. Japan 21, 167 (1969)]. 
Furthermore, when the attenuation coefficient varies 
as the inverse power of radial distance, the Milne 
integral equation of the source function in spherical 
shell atmosphere was rigorously solved by an extension 
of Pincherle-Goursat kernel method [cf. T. K. Leong 
and K. K. Sen, Pub!. Astr. Soc. Japan 23,99 (1971)]. 
In addition, Bellman's new gradient technique was 
extended to the numerical computation of the source 
functions of radiation in spherical and the spherical 
shell media [cf. J. Gruschinske and S. Ueno, Pub!. 
Astr. Soc. Japan 22, 365 (1970); J. Quant. Spectr. 
Radiative Transfer (to be published)]. 
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Contributions of baryon poles of spin J to the 7TN -+- 7TN and 7TN -+- yN amplitudes have been cal
culated using the Wigner-Bargmann formalism. An ambiguity ariSing from off-the-mass-shell continua
tion of the propagator has been discussed and a continuation which gives pure spin-J behavior of the 
propagator for timelike propagator momentum has been given. Moreover, it has been shown that 
the parts of the amplitudes (with timelike propagator momentum) containing the highest power of 
the cosine of the scattering angle are free of this ambiguity. 

I. INTRODUCTION 

In view of the interest being taken in the Van Hove 
model, the contribution of arbitrary spins to the 
scattering amplitudes have gained some importance. 
Blankenbeclerl and Sugar2 have considered boson 
poles of spin J in the scattering of bosons, and recently 
Carlitz and KislingetJ have given the term having the 
highest power in the cosine of the scattering angle (j 
coming from the baryon pole of spin J in the 7TN--+ 

7TN scattering amplitude. In the foIIowing work we 
derive complete expressions for the contributions of 
baryon poles of spin J to the TTN --+ TTN and TTN --+ yN 
scattering amplitude. For the TTN --+ TTN case we have 
considered the direct u-channel diagram [Fig. 1 (A)] 
as weII as the crossed diagram [Fig. 1 (B)] and have 
used an effective Lagrangian with ~ over the deriva
tives °,,1°,,2 .... A similar effective Lagrangian has 
been used in Ref. 2. Carlitz and Kislinger's result is 

for the pole in the u-channel and corresponds to 
calculating Fig. I (A) without the ~ over the deriva
tives in the effective Lagrangian and also replacing 
M) by _f2 in the numerators of spin-l propagators 

Ajlv(f) = (t5jlV + ~) 
which enter in the spin-J propagator and thus elimi
nating the spin-zero part from the D..jlv(j). We find 
that even after this elimination the helicity amplitudes 
in the center-of-mass frame TA(A.', A) do not contain 
a pure df.~«(j) angular dependence. The reason for 
this is that the Dirac part of the propagator for this 
amplitude containing the factor (1 ± (.JU/MJ )Y4) is 
off the mass shell and if we replace M J by .J _/2 = 
.Ju, we do obtain a pure df;.«()) behavior. However, 
for the purpose of reggeization without parity 
doubling,3 the MJ in (1 ± (.J fl/MJ)Y4) is necessary 
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In view of the interest being taken in the Van Hove 
model, the contribution of arbitrary spins to the 
scattering amplitudes have gained some importance. 
Blankenbeclerl and Sugar2 have considered boson 
poles of spin J in the scattering of bosons, and recently 
Carlitz and KislingetJ have given the term having the 
highest power in the cosine of the scattering angle (j 
coming from the baryon pole of spin J in the 7TN--+ 

7TN scattering amplitude. In the foIIowing work we 
derive complete expressions for the contributions of 
baryon poles of spin J to the TTN --+ TTN and TTN --+ yN 
scattering amplitude. For the TTN --+ TTN case we have 
considered the direct u-channel diagram [Fig. 1 (A)] 
as weII as the crossed diagram [Fig. 1 (B)] and have 
used an effective Lagrangian with ~ over the deriva
tives °,,1°,,2 .... A similar effective Lagrangian has 
been used in Ref. 2. Carlitz and Kislinger's result is 

for the pole in the u-channel and corresponds to 
calculating Fig. I (A) without the ~ over the deriva
tives in the effective Lagrangian and also replacing 
M) by _f2 in the numerators of spin-l propagators 

Ajlv(f) = (t5jlV + ~) 
which enter in the spin-J propagator and thus elimi
nating the spin-zero part from the D..jlv(j). We find 
that even after this elimination the helicity amplitudes 
in the center-of-mass frame TA(A.', A) do not contain 
a pure df.~«(j) angular dependence. The reason for 
this is that the Dirac part of the propagator for this 
amplitude containing the factor (1 ± (.JU/MJ )Y4) is 
off the mass shell and if we replace M J by .J _/2 = 
.Ju, we do obtain a pure df;.«()) behavior. However, 
for the purpose of reggeization without parity 
doubling,3 the MJ in (1 ± (.J fl/MJ)Y4) is necessary 
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FIG. 1. Feynman 
diagrams for 

1TN-1TN 

scattering process 
with the propaga
tor corresponding 
to a particle of 
spin J and mass 
MJ. Figures I(A) 
and I(B) are, re
spectively, the di
rect and the 
crossed diagrams 
for this process. 
Figure 1(e) is the 
Feynman diagram 
for 

1TN-yN 

scattering process 
with the propaga
tor corresponding 
to a particle with 
spin J and mass 
MJ. 
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and so we keep this M J as it is. A slightly different 
continuation which is equivalent to replacing M J by 
J _f2 in another factor of the Dirac part of the 
propagator does give a pure df;.«(J) behavior. These 
two ways of continuation may be said to introduce an 
ambiguity. However, the part of TA containing the 
highest power I = J - t of cos (J (used in Ref. 3) will 
be seen to be independent of this ambiguity. 

Instead of the generalized Rarita-Schwinger formal
ism used in Refs. 1-3, we have employed the Wigner
Bargmann formalism and it gives the propagator 
directly in terms of the rotation matrices. 

II. PROPAGATOR ON THE MASS SHELL 

Let Piland P~ be two arbitrary 4-vectors and III be 
a 4-vector on the shell of the spin-J particle 

(1) 

For TTN ---+ TTN scattering process through an inter
mediate particle of spin J and mass M J, we will have 

to calculate the quantity 

= Pll,Pl'2 ... P,q 

X ( C-1y Ill)P,P2( C-1y 1l2)PaP4 ... (C-1y IlI)Pal-'P2I tz 
+J 

X ~ U~P:P ... ·pJf) O~'!JI'PZ''''/~2lf) 
a~-J 

X (Yv,C)p,'P.(Yv2C)Pa'P' ... (YvlC)P21-,'P21) 

X P~,P~2 ... P~, (2a) 

where the integer I is related to J by 

J = I + t. (2b) 

The expression within the braces in (2a) is actually 
the numerator of the Rarita-Schwinger propagator 
used in Refs. 1 and 2. The propagator momentum I 
is on the mass shell and U~P~P2'''''P21(f) is the Wigner
Bargmann positive-energy wavefunction describing 
the particles with spin J and mass M J' The Rarita
Schwinger free field operator is related to the Wigner
Bargmann free field operator by4 

I'IIlZ"'lll( ) __ 1_ (C-1 ) 
VJa x - J2! Yll, PIPZ 

X (C-
1
YIl2)PaP4' .• (C-1YIl I)PZI_IP2IVJaP,Pz'''P21(x), (3) 

and a similar relation holds for the momentum wave
functions. u(al(f) is obtained by applying a 2J-fold 
Kronecker product of the Lorentz boost operators 

L(f) = eh.!,:·ttanh-' fifo (4a) 

10 + M J + Y5~ '1 
= l (4b) 

(2MA/o + M J » 
on u(al(o) which is the completely symmetrized 2J
fold Kronecker product of the Dirac spinors 

(4c) 

The normalized u(al(o), where a is the spin component 
along the third axis, is given by5 

u(a)(o) = [2JcJ _ .. r l I u1 X u2 X ... X u1 . (4d) 
P 

Ip stands for all the 2J CJ - a distinct permutations of 
the 2J Dirac spinors u1 and u2 • The four Dirac matrices 
Y

ll 
are Hermitian and we use the representation in 

which 2: = - P2 X t:J, Y4 = P3 X /. C-l is the charge 
conjugation matrix - PI X ia2 = Ysia2 • 
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The commutator [1p(x), 1Ji(x')] can be calculated by 
using the momentum space expansions of 1p(X), 1Ji(x'). 
The numerator in the momentum integral comes out 
to be 

+J L U C(1 )(f) OC(1)(f). 
t1=-J 

Following Blankenbecler and Sugar, we take this to be 
the numerator of the propagator for the pole dia
grams.6 The factors C-1yl' and YvC and PI' and P~ in 
(2a) come from the derivative coupling. The same 
numerator is obtained if we use the dispersion relation 
approach and put in a single-particle intermediate 
state of spin J in the imaginary part. 

In order to reduce the right-hand side of (2a) to the 
desired form, the Lorentz transformations are taken 
out of Ut(1 )(/) and O(t1)(f): 

U!p~"'P21(f) = La).(f)Lp,).,(f) 

X L p2).,(f) ... Lp21).Jf)Ui~)')."").d(O). (5) 

Apart from La). (f) , two consecutive Lorentz trans
formations combine with one C-Iy . P in (2a) to give 

Lp,).,(f)( C-1y . P)P,P2Lp2).2(f) 

= [e(f)C-1y' PL(f)]).').2 

= [C-1L-1(f)y . PL(f)]).,)., 

= [C-1y . P]).').2' (6a) 

PI' is the transformed 4-vector defined by 

(6b) 

where al'v(f) is the pure Lorentz transformation 
given by7 

~ ~ (fo - M J ) 
ailf) = bij + j;}j M

J 
' 

U; fa ( ) a4i(f) = - = -aiif), a44 = - . 7 
MJ MJ 

al'/I) takes Iv to its rest frame and 

L(f)Y4C1(f) = :M' f ; 
I J 

al'v(f) are orthogonal, 

al';.(f)al'iJ) = 15). v , 

and summed over the space indices give 

(8a) 

(8b) 

a;;.(f)aiv(f) = 15).. + ~v , (8c) 
J 

which is just the numerator of the spin-l propagator. 
Returning to (6), we note that 

,11,12 are contracted with the indices of the rest spinors 
of the form (4); the contribution of the second term 
on the right-hand side in (9) therefore vanishes. 
C-IYj can be written iY4C-1aj where C-I is the Dirac 
matrix 

(9b) 

Y4 gets absorbed by the rest spinors, and (9) becomes 
equivalent to (iC-1Q. ~)AIA2; P j is the transformed 
3-vector given by 

Pl'al'lf)=Pj. (lOa) 

Similarly the Lorentz transformations contracted from 

O(t1)(f) = U t(f)Y4 X Y4 X ... X Y4 (lla) 

are combined with y . P' C and are equivalently written 
as -iQ' ~'C with 

P j = P;al'lf). (lOb) 

Considering all such factors, we get 

Taa , = Laif)L;:,~,(f) 

x (C-lQ'·~h').2(C-lQ·~»).3)."·· (C-IQ·~»).21_').21 

X L ui~)').2"·).21(O)Ol~l").."·).21'(Q· ~'C»).").2 
(J 

X (Q' P'Cha'A.' ... (Q' P'C)A.l-").2!" (11b) 

The scattering process will be considered to take 
place in the X 1X 3 plane, P and p' and I will depend 
linearly on the two ingoing and two outgoing momenta, 
and so we may assume E, E', and [to lie in the X 1X 3 

plane. The transformed momenta ~ and f' are then 
easily shown to lie in the X1Xa plane. Let ~ and~' make 
angles f(! and f(!' with the Xa axis, respectively; then 

(C-1Q' ~);.').2 = [C-1R(f(!)aaPR\f(!)l").2 

= P[R tT( f(!)C-1a3R \ f(!)]). ,).2 

= P( C-
1
aa)TIT2R;').I( f(!( R~I).2 

= P(C-1a3)TIT.[Rt (f(!) X Rt (f(!)]r,T2,).').2' 

(12a) 

The rotation matrix R(f(!) has the usual form e-it12lfJ/2. 
Similarly 

(Q. r'Ch,').2 = [R(f(!') x R(f(!')]Al').2,Tl'T2(a3C)TI'T2· 

(12b) 

We now apply the Fierz identity for the matrices a i 

and obtain5 

(C-1a3)T1T,( a3C)Tl'T, 

= (C-1a3)T2T,( aaC)T.Tl' 

= HbT2T.(C-la31 a3C)TIT,' + (aj)T2T2(C-la3aja3C)T,Tl'] 

(13a) 

[PpaI'V(f)C-1y.J).1).2 = }[l x 1 + a j X aj - 2a3 x a3]Tl'T2.TIT2 == QT.'T,-.T,T2' 

= [Pl'apiC-1Yi + PpaI'4C-1Y4]).1).2' (9a) (13b) 
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Taking into account all such factors and combining 
them in Kronecker products, we are able to write 
Trzrz , in the form 

T"",(P,J, P') 
pZp'z J 

= -z I Ol';.~.(O)R( q/) 
2 a~-J 

X R(q/) x ... x R(rp')Q x Q x ... x QR\rp) 

x R\rp) x ... X Rt(rp)Ul~~(O)Lrz),(f)L-I(f»)"rz" 
(14) 

In ul';.~. the dots are placed for the indices in which 
the 2/-fold Kronecker products of Rt(rp) act. The 
number of Q's is 1 and each Q contains two spinor 
indices as its rows and columns. We know that a 
2J (= 21 + I )-fold Kronecker product of Rt (rp) acting 
on the spin-J wavefunctions u(a) gives4 La' d:a< rp) u(a') . 
We therefore introduce one Rt(rp) and R(rp') by writing 

(15a) 
and 

(15b) 

and obtain the 2J-fold Kronecker product 

[ t() t() t( ) iJ ,,'" R rp x R rp x ... x R IjJ ]r .... ~ ... = er .... o... (15c) 

as a factor. The Ji are the total spin operators 

Ji = HO'i X 1 x 1 x ... x 1 + 1 X O'i xl' .. x 1 

+ ... + 1 x 1 X ••• x 1 x O'i)' (16) 

Similarly a factor e-iJ2
"" is obtained. Now, since 

J 
iJ2'" • u(a) - "" d J ( )u(a') er .. · .0'" 0'" - £.., (fa' rp r'" , 

(14) becomes 

Tarz'(P,J, P') 

a'=-J 

(PP')Z"" _( ") ( ') 
= -z- £.., U/ .. Q x Q x ... x QU/ .. 

2 aa'a" 

(17) 

. d[a'( rp)d[A rp')[L(f)R( rp)]rzT[R t (rp')L-1(f)]T'rz" 

Defining 
(18) 

Si = to x O'i + O'i x I), (19a) 
we get 

O'i X O'i = 2S2 - 3 . 1 x 1. (l9b) 

Operating between the completely symmetrical spinors 
formed from ul and 1I2, S2 has the eigenvalue 
1(1 + I) = 2 and hence O'i x O'i in each Q can be 
replaced by 1 x 1 and Q in (18) and is then given by5 

Q = 1 x 1 - 0'3 X 0'3' (20a) 

Q has the property 

QUI X ul = Qu2 X u2 = 0, 

QUI X u2 = 2uI X u2, 

Qu2 X ul = 2u2 X ul . 

(20b) 

Using these equations and referring to the form (4d) 
of u(a) (0), we easily see that in the summation over 
0" and 0''' in (18) only 0" = ± t and 0'" = ± t terms 
will survive and even from these U( H) only the parts 

X (u l X u2 + u2 X ul
) 

X ... X (ul X u2 + u2 X ul ) 

== 1 u1. 2 X V (21) 
( 2JCJ _l)! 

will give contributions, since 

and, writing8 •9 

rp - rp' = 0, 
we have 

(22) 

(23) 

L d;(rp')d[irp) = d~(rp - rp') = d~(O), (24a) 

d::T._k(O) = (-ly-kd;'k(O). (24b) 

A simple calculation shows that (18) can be written 
in the form 

Trzrz,(p, f, p') 

(PP')Z 2z2z 

= 2! (2J)! (J - !)! (J + t)! 
x [d{.l(O)L(f)R(rp)(uIii + u2ij2)Rtcrp')CI (f) 

+ d:'U(O)L(f)R( rp)(UIij2 _ u\/)R t (rp')CI(f)]. 

(25) 

To simplify this expression further, we note that 

L(j)R( rp)(UIijl + u2ij2)R t( rp')L-1(f) 

= L(f)R( rp) 1 + Y 4 R t ( rp')CI(f) 
2 

= L(f) 1 + Y4 (cos to - i0'2 sin !O)CI(f). (26) 
2 

Since a Y4 can be taken out of t(l + Y4) and attached 
to -i0'2 term in (25) and as [lies in the XIXa plane, 

L(f) commutes with 0'2Y4, giving 

L(f)0'2Y4L- I (f) = 0'2Y4' (27) 

Also, HI + Y4) transformed by L(f) gives the posi
tive-energy projection operator 

L(f)!(1 + Y4)C I (f) = !(1 + Y . f) (28a) 
2 iM j 

Hence (26) reduces to 
== A t(f). (28b) 

(28c) 
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Similarly, since 

u1ii2 - u2ii1 = icr2Y4 HI + Y4), (29) 

the second bracket in (25) reduces to 

At (f) (cos i6 - ia'2Y4 sin i6). (30) 
Therefore 

1'a.,.(P, I, P') 

= (PP'Y2!(J - i)! (J + i)! 
(2J)! 

X [d(1(6)A t (f)(cos t6 - ia'2Y4 sin t6) 

+ d~U(6)At (f)(ia'2Y4 cos t6 + sin i6)].,.". (31) 

Via the expressions9 for d;'U(6) and the following 
recursion relation for the Legendre polynomials, 

Pf+1(cOS 6) - cos 6Pz(cos 6) = (1 + I)Pz(cos 6), (32) 

a simpler form for T.,." is obtained
1o

: 

1'a.,.(P,J, P') 

= (pp')!i (l)! (l + I)! 
(21 + I)! 

[ 
t t. P;(cos 6)J 

. A (f)Pz(cos 6) + A (f)icr2Y4 sm 6 . 
1 + 1 .,.,' 

(33a) 
(31) and (32) are the forms useful for the 1TN ---+ 1TN 
scattering process. Pi and Pi are the Lorentz-trans
formed vectors given by (10). Their magnitudes and 
the angle 6 between them are given by 

p2 = PiPi = Pp,alllf)Pvavi(f) 

i[J.,(x) , cp(x) , and "P"PIP2"'P
2
,(x) are the nucleon, pion, 

and the spin-J baryon fields, respectively. The expres
sion within the braces is the Rarita-Schwinger field 
for the baryon. An effective Lagrangian similar to this 
one has been used in Ref. 2. Using (34) we obtain for 
the amplitude corresponding to the crossed diagram 
[Fig. 1 (B)] 

2 

TB = iia(P')T.,.,,(P,J, P')Ua'(p) gJ:" 2' (35) 
(p' - k) + M J 

with 
P = (p' + k), 

p' = (p + q), 

f = (p' - k) = (p - q). 

For the conservation of momentum 

p + k =p' +q 

(36) 

(37) 

and in the c.m. frame in which we calculate the 
amplitudes 

P. = -k, 

E.' = -g, 

Po = p~ = (q2 + m2)1, 

k - ( 2 2)1 0- qo = q + p. , 

(38) 

q = 11'1 is the c.m. momentum. We consider the 
scattering process to take place in the X 1X 3 plane. l!. 
is along the X3 axis and!!.' makes the scattering angle 

( ~ Illlv) = Pp, Up,v + M~ Pv, (33b) () with the X3 axis. Let us introduce the Mandelstam 
variables 

p,2 = P'(b + Illlv)P' p, p,v M~ v, (33c) u = -(p + k)2 = _(p' _ q)2, 

PP' cos 6 = pp,( bp,v + ;:;)p;. (33d) 

III. TTN -+7TN SCAITERING PROCESS 

In this section we calculate the Born terms for the 
scattering process 

1T(k) + N(p) ---+ 1T(q) + N(p'). 

k, q are the pion momenta and p, p' are the nucleon 
momenta. Let m and p. be the masses of the nucleon 
and the pion, respectively. We use the effective 
Lagrangian 

C = gJN .. [i[J.,(X)all )J1l2 ... 81l,cp(x)] 

X {J21 (C-1y Il)PIP2( C-1y Ilz)PaP, .•. (C-1y 1l,)PU-l,P2I 

x "P.,PIP2 ... piX)} + H.C. (34) 

t = -(p - q)2 = _(p' - k)2, (39) 

and also define 
(m 2 -l)2 

AJ = -'----'--'--
M~ 

(40) 

In the c.m. frame, .Ju is the energy of collision = 
(Po + ko)· Via (36) for P and P', the transformed 
quantities are obtained from (33): 

p,2 = p 2 = AJ - u + 2q2(1 - cos (), 

cos 6 = ~ P .p' . = AJ - u - 2q2(1 - cos () (41) 
p 2 " A.J - U + 2q2(1 - cos () , 

sin 6 .,;, ~ [8(AJ - u) . q2(1 - cos ()]1. 
P 

Hence TB is given explicitly in terms of the scattering 
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angle by 

TB = g~NlT • Dzu(p') 

x {!(l + Y' ~P - q») [AJ - U + 2q2(1 - cos O)r 
2 zMJ 

· pZ(AJ - U - 2q2(1 - cos 0») 
AJ - U + 2q2(1 - cos 0) 

+ !(l + Y . (p - q») ia 
2 iM

J 
2Y4 

· [AJ - U + 2q2(1 - cos O)]Z-l 

1 ,(AJ - U - 2q2(1 - cos 0») ._-p 
1 + 1 z AJ - U + 2q\1 - cos 0) 

· [S(AJ - u)q2(1 - cos O)]t}U(P) 1 2' 
-t + M J 

(42) 
where we have used the abbreviation 

D = (I)! (l + I)! 21. 
z (21 + I)! (43) 

Expanding the Legendre polynomial, we find that the 
term with the highest power of cos 0 in 

(44b) 

The second term in (42) has I - I as the highest power 
of cos 0 in the numerator. 

For the u-channel pole, i.e., Fig. I (A), we have 

P" = P~ - q", 
p~ = P" --' k", 

i" = P" + k" = P~ + q", 
[= O. 

Again we obtain from (33) 

(45a) 

p,2 = p2 = 4q2 - (Po - kO)2 + ItJ' (45b) 

and so p2, p'2 are independent of O. Also 

1 
cos 6 = "2 [4q2 cos fJ - (Po - kO)2 + AJ]' 

P 

sin 6 = -.l ([4q2(1 + cos 0) - 2(po - kO)2 + 2AJ] p2 

. 4q2(1 - cos O)}t. (46) 

With these values of p2, P'2, cos e, and sin e, the 
matrix element for the diagram [I (A)] can be written 

as 

TA = U(p'){p2!. D{H 1 + Y;iU)pz(COS 6) 

+ !(1 + Y4JU) ia2Y4 sin 6P;(cos 6) . _l_J} 
2 M J 1+1 

2 

x u(p) gJNlT 2 (47) 
-u +MJ 

Since p'2 = p2 is independent of 0, cos 0 dependence 
is contained only in Pz(cos 6) and P;(cos 6), and again 
the first term in (47) contains the lth power of cos O. 
If the external masses are equal, i.e., m = p, the spin 
zero parts in the spin-l propagators vanish, and from 
(45) and (46) we see that cos 6 = cos 0, P'2 = 
p2 = 4q2. In this case the propagator in TA should 
contain only the spin J part. 

The propagator momentum for diagram [l (A)], 
being equal to p + k, is timelike, and so the little group 
of the Poincare group is SU2 and we can associate a 
definite spin with the propagator. Via the Lagrangian 
(34) (without the arrows ~ over the a,,'s), P" = q", 
P~ = kv; since [= 0 for the diagram [leA)] with the 
c.m. system, P and P' are again free of cos fJ, and a 
result somewhat similar to (42), with p2, P'2, cos 6 
given by (41), is obtained. However, if we replace 
Mj by -/"/,, in Eq. (Sc) and thus eliminate the spin 
zero part, P, P', and cos 6 are then given by 

P' = P =q, 
cos 6 = cos fJ. (4S) 

For the exchange of natural parity sequence JP = 
t+, t-, t+, ... of fermion resonances ays should be 
introduced in the effective Lagrangian (34). This 
means that u(p') and li(p) in (47) should be replaced by 
u(p')Ys and Ysu(p), respectively. The net effect is that 
the signs of Y4 in (47) are changed. With these changes 
the result for TA is 

T = g~NlT D 2Zu( ')[!(1 - Y4JU)pz(COS fJ) 
A _ U + M~ zq P 2 M J 

- !(1 - Y4JU) ia2Y4 sin OP;(cos fJ) _1_JU(p). 
2 M J 1+1 

(49) 

This is the complete form of Carlitz and Kislinger's 
result,3 who have given only the first term in (49) with 
the factors depending on I = J = t absorbed in the 
coupling constant. 

As already mentioned, the propagator for diagram 
A of Fig. 1 should contain only spin-J parts. This 
could be true if we can show the helicity amplitude 
TA(A', It) (when It' and It are the helicities of the 
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initial and final nucleons) has the angular dependence 
of the form df.).«(). Using the form (31) for Taa' and 
the values (48) for P, P', and cos e, we obtain 

TA(A', A) 

= ii().·)(p')T(q, P + k, k) 

g~.vu D 21ii( ') !(l _ Y4.JU) 
_u2 + M~ lq P 2 M

J 

x {d{.!«()· [cos!() - ia2Y4 sin lO] 

+ d:H«()ia2Y4[coskO - ia2Y4 sin O]}uw(p). 

(50) 

The helicity spinors uW(p) and ii()")(p') are given by 

UW(p) = ehS<13 tanh-
1

(p/po), uW(O) 

ii()")(p') = ii().·)(0)e-h .<13 tanlc l (p·/PO·)e i <129/2. (51) 

The rest spinors uW are quantized along the third 
axis and were previously written as u1 and u2

• In (50) 
eia29/2 commutes with to - Y4(Ju)/MJ) and would 
cancel out th~ O-dependent operator e-

i
<12l'4

9
/
2 if it 

had not contained the Y4 matrix. The presence of the 
Y4 in e-i <12y.9/2 destroys the purely di-;.(O) form of 
angular dependence, and so we find that the present 
off-the-mass-shell continuation of the propagator 
does not give a purely spin-J contribution. We also 
note that the Y4 in (SO) cannot be absorbed in 1 -
Y4Ju/MJ since 10 = Ju = Po + ko is off the mass 
shell, i.e.,/o = Ju =;!: M J . 

However, there is a continuation of the propagator 
which gives the purely df,;.(O) behavior for TA(A', A). 
Instead of taking aY4 out of (l + Y4)/2 in (2S) and 
attaching it to the ia2 , we calculate L(j)ia2L-l(j) 
directly. Since 1 lies in the X1X3 plane, L(j) contains 

ysa1 and Y5a3 matrices which commute with ia2' and 
we have 

L(f)ia2C\f) = L2(f)ia2 = 10 +:5Q 
. 1 ia2 (52a) 

J 

(S2b) 

(S2c) 

As Y . l/iM J gets absorbed in At (j) in (31), we obtain 
the previous result if we use (S2c). On the other hand, 
if use is made of (52b) for off-the-mass-shell continua
tion, then, since for Fig. I (A)] = 0, L(j)ia2L-1(j)---+ 

ia2 and ia2Y4 in (49) should be replaced by i112 • The 

required cancellation takes place, and we obtain 

2 
gJ.Vu D 21_U.')(0) -!;osa. tallh-I(p'/po') 

2 lq U e 
-U +MJ 

x !(l _ Y4Ju) 
2 M J 

x {d!!(O) + il12 d:!.!(O) }ehS<13 tanh-
1
(p/po)u W (0), 

(53) 

from which we easily get the two independent helicity 
amplitudes 

T (1 1) = g~NlT D 21 !(l _ Ju !!!!) dJ (0) 
A 2' 2 -u + M~ lq 2 M

J 
m !.! ' 

(54a) 

1'.-t( -t, t) 

g~.\'u D 21 !(po _ .Ju) d: (0). (54b) 
- u + M~ lq 2 m M J H 

Carlitz and Kislinger's results is the P1(cos () term in 
TA given by (49). It does not contain ia2Y4 and is 
therefore independent of the ambiguity we have 
discussed above. 

IV. SPIN J POLE IN 1T + N -+N + y 

In this section we calculate the u-channel pole 
diagram C of Fig. 1 for the photon emission process 
TTN ---+ Ny. Let AI'(x) be the photon field and ~I'(q) 

be the polarization vector for the photon with 
momentum q. There are two coupling constants at 
the photon, nucleon, spin-J baryon vertex. ll The 
effective Lagrangian may be written 

[' = gJXuip~11'2"'I'I(x)"Pa(x)01'101'2 ... 0l'lrp(X) 

+ gW, 1" (X)11l1'11'21'3"'I'I(X)O 0 ... 0 A (x) J.\yra ra 1'2 1'3 1'1 1'1 

+ g~.\.y(ip(X)YI')a"P~11'2···I'I(X)0I'IOI'2 ... 0I'IAix). 

(55) 

The amplitude part containing gJNug<.Jky will be very 
similar to TA and will be written down later. The part 
involving gJNug<j].;y after being transformed to the 
Wigner-Bargmann formalism can be written as 

g g(l) {I 
T(l) = i JNu JNy ii (p') - (C-1 • ~( » 

c _ u + M~ a 2! Y q PIP. 

X (C-1y' q)P3P • •.• (C-1y . q)P21-1fJ21 

J 

X L U~P~P2"'P21(f) D~p~'p2"'P21'(Y . kC)PI'P2' 
a~-J 

X (y' kC)pa'p.' ... (y . kC)P2H'Pu'}UAP)' 
(S6) 
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Let T(~q,f, k) denote the expression within the 
braces in (56). Comparing it with T(q,f, k) given by 
(2a), we see that one q in T(q,f, k) has been replaced 
by the photon polarization vector ~(q). We proceed 
as before but do not apply the Fierz identity to the 
pair [C-IQ' ~(q)]"l"a(Q' kC)"""t" We will get an 
expression corresponding to (14) in which the 
Kronecker product of R's and Q's will not act on the 

three indices of 0;'''1').2 ... (0) and V;:;"2"'(0). To obtain 
the rotation operators eiJa6k and eiJ•6., we introduce 
three rotation operators R(Oq) and three Rt (Oa) and 
obtain 

T(~q,j, k) = ~ qHkZ-l[L(f)R(6q)]a9[Rt(Ok)Ll(f)]v~' 
2 

X [R \6k)Q • ~CR tT(Ok)]VIV. 

x [RT(6q)C-1a· ~(q)R(6q)]8182 

X ~ V- Coo) ( - iJ26k) k V'Vl'V2' .. •• e \I'Vl'v2'···. vVl\'2'" 
oo 

(57) 

The transformed vectors q, k, and I; are given by (33). 
6q and 8k are the angles which q and k make with the 
Xa axis, respectively. Before applying the rotations on 
V .. and 0 11

, we simplify the factors involving Q . ~c and 

Q'~: 

[Rtc6k )Q' ~CRtT(8k)]V1V2 = [R\Ok)Q' !R(8k )C]V1V2 

= k( O"aC)v] v, 

(58a) 
and 

[RT(8q)C-IQ' fR(6q)]818
2 

= [CR\Oq)Q' f(q)R(Oq)]8182' 

(58b) 
The Lorentz condition is 

(59a) 

For the transformed vectors q and I;(q), we have 

qll;ll(q) = q?~v(q)a"if)avif) 
= q;'~v(q)(j).v = O. (59b) 

On the other hand, 

.2' ~ = qi;M) 

= q" (6,!v + ~) ~v(q). (59c) 

For the pole diagram C,I =!!. + Is. = 0, we can also 
choose the radiation gauge and put 

~iq) = O. 
Then 

~ . ~ = q: • f = O. 

(60) 

(61) 

;(q) is thus perpendicular to q. q and q both lie in the 
;lXS plane. Let --

(62a) 

where ;11 lies in the XIXa plane and ;-1 is along the X 2 

axis asshown in Fig. 2. As ;11 is also perpendicular 
to q, the rotation which transforms Q • q to qU3 will 
transform Q • ill to e;lIo'l with e = ± 1 d~pending on 
the helicity of the photon. Hence 

[C-IRt(Oq)Q' 5(q)R(Oq)]O,8
2 
= [C-1(eu1;11 + 0"2;.1.)]8182 

= (eo}:;11 + i;.1.)811/2' 

(62b) 
Now 

Q x Q x ... x Qe+iJ6a V(oo) 88,8 ... ·.~"1" ... · "~1"2'" 

= I Q x Q x ... x Qd;A8q)U~~;~..... (63) 
oo' 

From the properties of Q [(20b)], we see that only the 
V CI1

') with 0" = ±t, ±t will give nonzero contribu
tion to (63), and it can be written 

2Z-1{[d;!(8q)(2JCJ_!)-1(Ul x ul x UI )88182 

+ d;;;(6q)eJ C J-l)-! 

x (u l x u1 X u2 + ul X u2 X u1 + u2 X u1 X u1
) 8818. 

+ dt._!(6)eJ C J+!)-! 

X (u2 
X u2 

X u1 + u2 X u1 X u2 + u1 X u2 X u2
) 88182 

+ dt._!(8q)(2JCJ +!)-!(u 2 x u2 X U
2)88

1
8.] 

X (u l x u2 + u2 X u1
) X (u l X u2 + u2 X uI

) 

X ... X (u l X u2 + u2 X uI
)}. (64) 

When the indices 01 and O2 in the above expression are 
contracted with the indices in (eu3; + i; -1)8 8 , the 
first two terms in the coefficients of d;' ±!(Oc) ~ill not 
contribute. 

On expanding, 

(65) 

and calculating (57), we find that only the 0"" = 
±!, ±! terms in (65) contribute and only that part 

FIG. 2. Indication 
of the directions of 
the mutually perpen
dicular vectors q. 1; II. 
and ~-1. - -

"2 
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which corresponds to (64) survives. Since '111'112 is in 
(65) and contracted with '111'112 in (al)" •• , only the first 
two terms in the coefficients of d;' d(6k) contribute. 
A little calculation gives 

In deriving this expression use has been made of (24a) 
and 6 = 6q - 6k • Via (24b), each term in the second 
braces can be combined with the corresponding term 
in the first braces, and, noticing that 

u~~2(E0'3;1I + ie~)9192U~~2 = ±E;II + i;~, (67) 

we obtain 

T««,(eq,j, k) 

21 ql-lkl [ (I J 
= - ! L(f)R(6q)· * dt 1(6) 

2 eJCJ_t) (2JCJ_!) . 

x [E;II(u l zi + u2a2) + i;~(ulal - u2a2)] 

I J + I d_t I(6) 
( 2JC

J
_

I
) . 

x [e;lI(ul u2 - U2Ul) + i;~(ula2 + U2U1
)] 

1 + d
J 

(6) 
eJcJ_t)t U 

x [E;II(U2U1 
- U

1
U

2
) + i;.1(U

2
U

l + u1a2
)] 

I J + I d-I i(6) 
(2JCJ _I) . 

x [E;II(u2u2 + UlUl ) + i;.1(U2U2 - UlUI)]) 

x R
t
(6k)L-I (f)1,: (68) 

For further reduction of this equation, we note that 

ulal = !(l + Y4)(1 + 0'3)/2 = At(O)(l + 0'3)/2, 

U
2U2 = A t(O)(1 - ( 3)/2, (69) 

ul a2 = (0'1 + i0'2)/2At (0), 

and so are able to write 

e;"(ul a1 + u2112) + i;.1(ulal _ u2a2) 

= At(O)(e;1I + i;~0'3) 
= -A\0)i0'20'3(E;lI al + 0'2;~)' (70) 

Also 

R(6q)0'3(e;1I0'1 + 0'2;.1)Rt(6k ) 

= R(6q)o'aR \6Q)R(6q)( E;II 0'1 + 0'2;.1)R \6q)R(6Q)R\6k ) 

= ! 0' • qo' • ;R(6). (71) 
q- -- -

Using the above relations and attaching a y" to each 
i0'2,we have 

L(f)R(6q)[E;I!(u1a1 + u2a2
) 

+ i;.1(u1al _ u2a2)Rt(Ok)rl(f) 

= - ! L(f)i0'2Y4~. qAt CO)Q.. ;e-!il2)Yt0'28L-l (f) 
q - -

= - ! L(f)io'2Y4YSY • qAt (O)y • ;Yse-(;/2)Y40'29L-1(f). 
q - - --

(72) 
Since L(f) commutes with i0'2Y4 and from (6a), 

L(f)y· qL-l(f) = Y . q, 

L(j)y· ;L-l(j) = Y' ~, (73) 

(72) reduces to 

It· -- - io'2Y4YS(Y . q - q4)A (f)(y . ~ - ;4)Yse-Ca/2)Y40'28. 
q 

The three other terms can be treated in a similar 
fashion, and we obtain on-the-mass-shell propagator 
part T~«, for the photo-emission case 

T(~q,j, k) 

= -lDzQI-2kl[{dt.i(6)i0'2Y4YS(Y· q - q4)A
t 
(f) 

X (y . ~ - ~)ys + d:H(6)i(J'2Y4YS(Y . q - Q4) 

t . } (l + 2)* x A (f)(y . ; - ;4)YsY410'2 -2-

+ dIl(6)ys(Y . q - Q4)A
t 
(f)(y . ; - ;4)YS 

+ d~M(8)ys(Y . q - Q4) 

X At (f)(y . ; - ~)Y5i(J'2Y4J e-(i/2)Y4/
7

2
8• (74) 
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q, k, and cos e are given as before by (33) and, since 

ql'ql' = qvq • .avif)aAif) 
= qVqAbVA = 0, 

q4 = iqo = iq. 

Also, since ;I'(q)ql' = 0, 

1 1 { f· U· q} ;4 = -:- q • ;(q) = -:- q' ~ + '-----':"'-'::' 
zq- - zq M~ 

=.!f·U·q 
iq M~ 

(75a) 

(75b) 

(75c) 

For the amplitude T~l), f = 0 and, since we employ 
radiation gauge ~4 = 0, ;4 will vanish. We have, 
therefore, 

(1) 

Tg) = i gJN"gJN~ u(p')T(~q, p + k, k)u(p), (76) 
-u + M J . 

with T(~q,p + k, k) given by (74), (75), and (60). 
To derive the result corresponding to (49), we 

equate q, k, cos e to q, k, cos () = z, respectively, use 
the expressions for the dJ matrices given in Ref. 9, 
and obtain 

1 g gW ql-2k1 
T(1) = _ _ IN,, JNy D -- u( ') 

a 2 -u + M~ Z 1+ 1 P 

X [r4p~ - m - q(l + 1'4)] 

X [i0"2Y4rSAt (p + k)"L' £rs{(l + 2fl) sin ()P;(z) 

+ i0"2r4[zP;(z)(1 + 2fl) - P;+1(z)]} 

+ rsAt (p + k)y . ~Y5[P;+1(Z) - zP;(z) 

(77) 

ir. . ~ = iyl!' in iy • q has been eliminated by using the 
Dirac equation. The helicity amplitudes can be ob
tained from (74) and (76) by noting that the rotation 
operator Rt«() coming from ii(A')(p') or going to the 
right of Q' §. makes it 0"1 T ;0"2' the upper and lower 
signs standing for helicities + 1 and -1 of the final 
state photon, respectively. Then, if we use the con
tinuation which gives ia2 instead of i0"2Y4 (as discussed 
at the end of Sec. III), Rt «()e-i

(J.9/2 = 1 and the four 
independent helicity amplitudes will have the respec
tive d;{;. matrices as the only ()-dependent terms. 

Further, we notice that the polynomials in degree 1 
in z = cos () in Tg) given by (77) do not contain 1'4 as 
factors of i0"2 since the 1'4 in i0"2Y4r5 commutes with 
factors on the right and removes the 1'4 in 

i0"2r4[Zpi(z)(l + 2)/2 - P;+l(Z)]. 

Therefore, as in the TTN --+- TTN case, the part con
taining the highest degree polynomials P;+l(z) and 
2Pz(z) is independent of the ambiguity coming from 
the two different continuations. 

The other term given by the Lagrangian for diagram 
C involves gJN"gj2Jvy, has the same propagator as for 
the TTN --+- TTN case, and is given by 

Tg) = gJN1tgY]..yDzq
ZkZii(p'}J: . fAt (p + k) 

X [PzCz) - ja2rl1 - Z2)!p;(Z)]u(p) 1 , 
-u+M~ 

(78) 
with 

A t(p + k) = !(l + r4.JU
). (79) 

2 M J . 
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Exact expressions are obtained for the distribution functions, in configuration and momentum space, 
for a system of bosons or spinless fermions interacting via pairwise harmonic forces. 

1. INTRODUCTION 

In a recent paperl it was shown that one could 
obtain exact expressions for the partition function and 
energy levels for a system of bosons or fermions 
interacting via pairwise harmonic oscillator forces. 
It is the purpose of this paper to show that these 
results can be extended to include an exact evaluation 
of both the spatial and momentum distribution 
functions for such a system. 

The study of this model is approached using the 
methods of quantum statistical mechanics. Because 
of the strong character of the forces involved, the 
system we are dealing with is not extensive, i.e., it 
does not fill the volume available to it but "clumps" 
together with no unbound states available. One, 
therefore, has to be careful that a literal interpretation 
is not placed on the thermodynamic quantities 
derived. However, the ground state of the system 
can be studied in detail by taking the zero temperature 
limit. 

2. THE MODEL 

The many-body system that we consider has a 
Hamiltonian 

N 02 w2 
H = - 2,-2 + - 2, (x; - Xj)2, (1) 

i~10Xi N i<j 

(with units such that /j2j2m = 1). 
The structure of a system of bosons or fermions 

at a temperature T (related to the parameter fJ via 
fJ = l/kT) is given completely by a knowledge of the 
appropriately symmetrized density matrix expressed 
in coordinate representation 

P~~!n(Xl' ... , XN; x~, ... , x~; fJ) 

- ~ ~ E p(N)(x ... x . x' ... x' . fJ) (2) - Nt f p 1, ,N, P' ,PN" 

where the sum is taken over all permutations of the 
primed variables with the sign Ep = I for bosons or 
an even permutation of fermions and Ep = -1 for 

an odd permutation of fermions. Here peN) is the N
particle un symmetrized density matrix, i.e., the solu
tion of the Bloch equation 

op(N) 
-- = Hp(N) with peN) = IT b(Xi - x~). (3) 

ofJ (J-+O 

The following expression for p(N) has been foundl : 

peN) = (41TfJ)-~[21T sinh (2wfJ)fwr~(N-l) 

x exp ( -(X - X')2[1 - 2wfJ csch (2wfJ)]f4fJ 

N 

- tw csch (2wfJ) 2, (Xi - X~)2 
i~l 

- ~ tanh (wfJ) 2, (r~j + r~;»), 
2N i<j 

(4) 

where X = 2,i x;/Nl and r ij = Xi - x j . 
Usually, in order to study the structure of an 

extensive system, we integrate the diagonal element 
of the symmetrized density matrix over all variables 
except, say, two or three. This gives the two- or 
three-particle distribution function. However, the 
particles of our model form a system of finite extent 
so it is appropriate to study the structure of this 
collection of particles by fixing the center-of-mass 
at the origin and then finding the one- and two
particle distribution functions. For example, we 
define the one-particle density as 

n(x) =...L f·· ·fp(N) (x ... X • X ... x . (3) ZN sym 1 N, 1 N, 

X b(X) 2, b(x - Xi) dX l ••• dxN , (5) 
i 

where the normalization factor ZN is the modified 
partition function 

ZN = r . J P~~!n(Xl ... XN; (3)b(X) dXl ... dXN' (6) 

It is convenient to calculate first the N-particle 
Fourier transform of the diagonal element of the 

1296 
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density matrix with the center-of-mass fixed at the 
origin, i.e., 

r . "f P~~~(X1 ... XN; P)b(X) 

x exp (i t k j • Xj) dX1 ... dXN' (7) 

We can then obtain the distribution function for an 
arbitrary number of particles by setting the appropriate 
number of the k j equal to 0 and calculating the inverse 
Fourier transform. This expression involves the sum 
over N! terms, each from a different permutation 
of the particles. The term arising from an arbitrary 
permutation which can be factorized into a product 
of cyclic permutations of M1, M 2 , ••• , Mr variables 
will have a factor of the form 

J(k1' .. kN) = r . J exp ( - t Rjkx j • Xk 

+ it k j • Xi) b(X) dX1 ... dXN, (8) 

where, from Eq. (4), the matrix R can be expressed as 

R = w tanh (wP)(lLY) - B(A')/N) 

+ tW csch (2wP)(A(1I1,) CB AU /') CB ... CB A(Mr», 

(9) 

where I(N) is the N x N unit matrix, B(N) is an N x N 
matrix in which every element is 1, and AU!) represents 
an M x M matrix of the form 

2 -1 0 -1 

-1 2 -1 0 

0 -1 2 0 
A(1I1J = for M>2, 

-1 o o ... 2 

In Appendix A, we find an explicit expression for the 
matrix W for which (W+ RW)jk = bjkAj. Thus, if we 
use the transformation Zj = Zk WjkXk, Eq. (8) 
becomes 

J = r . "f exp [ -11 (Z~Aj + i 1~1 Wzjk1 • Zj) ] 

X dZ1 ••• dZ ,V_
1 

= 7T~(N-1J rfA;~ exp (-t Z KJlk j • k l). 
j=1 jl 

(11) 

Here we have used the fact that Zs = X = Zi Xi/Nt 
with AN = 0 and have defined 

N-1 
Kjl = I WjkWzkA;;1. 

k=l 

The matrix K has the form (see Appendix B) 

K = (C(JI,) CB C(11I·J CB .•. CB C(11Ir» 

(12) 

- B(NJ/Nw tanh (wP), (13) 
where 

cjt?!) = cosh (MwP - 2wp Ii - kl)/w sinh (MwP). 

(14) 
3. ONE-PARTICLE DENSITY 

Using symmetry arguments we can replace the sum 
over delta functions in the definition [Eq. (5)] of the 
one-particle density by N times one delta function, 
i.e., let 

I b(x - Xi) = Nb(x - Xi) 

= N(27T)-3 I exp (-ik· x + ik· Xi) dk 

in the integrand. Thus 
(15) 

n(x) = N Idkeik,xI· . 'IdX .. , dx 
ZN(27T)3 1 N 

X P~1j~(X1 ... XN; P)b(X) exp (ik . Xi) 

= (47Tpr~(2 sinh WP)3 I €p IT [2 sinh (MsWpW3 
ZN(N - I)! P 8=1 

x (27T)-3 I exp (- tk2Kii - ik· x) dk. (16) 

Note that 

Kii = K11I = [coth (Mw(J) - N-1 coth (w(J)]/w 

(17) 

depends only on the number of particles, M, in the 
cycle containing i. The sum over all permutations in 
Eq. (16) can be written as a double sum by first 
summing over all permutations in which i is in a 
cycle of M particles and then summing over M. The 
number of permutations in which i is in a cycle of M 
particles is (N - 1)!/(M - I)! so that 

n(x) = _1_ ~ ZN_M8M(7TKM)-!exp (_X2), (18) 
ZN M=l KM 

where 

8 M = (±I)M+1[2sinh(Mw(J)]-3, (19) 

with the upper sign referring to the Bose case and the 
lower sign to the Fermi case. We can use the fact that 

N = fn(X) dx (20) 
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to obtain from Eq. (18) the following simple recurrence 
relation to evaluate ZN: 

In both Eqs. (18) and (21) the initial values 

Zo = [2 sinh (w,B)]3(47T~)-J, 

Z1 = (47T~)-'~-

have to be used. 

(21) 

(22) 

These recurrence relations provide a convenient 
method for the numerical evaluation of n(x) and ZN 
for relatively small N. Unfortunately, at low tem
peratures (large (3) and large N these recurrence 
relations become difficult to handle for Fermi systems 
due to the large cancellations which occur; so it has 
not been possible to carry through the calculations to 
study the ground state of Fermi systems larger than 
nine particles, although there seems to be no difficulty 
in studying larger Bose systems or Fermi systems at 
higher temperatures. For all these calculations, the 
parameter w was chosen to be 1 ; this keeps the size of 
the system of order 1. Figures 1 and 2 show the one
particle density for five bosons and fermions for 
various values of (3. When (3 > 2, the system is almost 
entirely in its ground state. The density profiles for the 
Fermi case are particularly interesting then in that 
they show the effect that the Fermi statistical repulsion 
has in lowering the central density. As the tempera
ture is raised, the higher states start to have an effect. 
Eventually the shape of both the Fermi and Bose 

',5 

-(3=3'0 

--- f3 = ,·0 
__ !>=0·5 

.0-.- f3 =D'2 

n( r) 

0·5 

r---

FlO. 1. The one-particle density n(r) for five bosons at various tem
peratures. In this and the following figures w is taken to be 1. 

0'3 

'-. 
0·2 

n (r) 

0,' ....... 0- ............ . 

. .............. "~ 

- f3 =3'0 

--- f3 = 1-0 

f3 = O' 5 
• •• o_ f3 = 0.2 

.'..~\;::::"'~;-:::;::: 
FIG. 2. The one-particle density n(r) for five fermions at various 

temperatures. Note the effect the Fermi statistical "repulsion" has 
in depressing the central density when the ground state dominates 
for large fl. 

systems reach the same classical Gaussian form at 
sufficiently high temperatures. 

The effect of varying the number of particles for 
Fermi systems near their ground states is shown in 
Fig. 3. The way in which the additional particles add 
to the central density while changing the surface only 
slightly is most striking. Already, by the time we have 
nine particles, a structure reminiscent of the nuclear 
density "oscillations" is becoming apparent. It is 
perhaps premature to draw any strict parallel between 
this and the density distribution of nuclei until the 
effects of spin and isospin are included. 

From Eq. (21) and the relation 

EN = -0 In ZNlo(3, (23) 

between the internal energy EN (neglecting the 
center-of-mass contribution) and the partition func
tion, one can obtain the following recurrence relation 
for EN: 

1 N 
EN = -- I [EN- M + 3Mwcoth(Mw(3)]ZN_M SM' 

NZN M=1 

(24) 

As an illustration the result of a calculation of E6 as 
a function of temperature is shown in Fig. 4. The 
flat portion of the graphs for low temperatures 
indicate the region where the ground state dominates. 
At high temperatures, both the Bose and Fermi 
results approach the classical expression E6 = 15 kT 
from above; however, this is not apparent on the 
scale of this figure. 
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0·5 

") 2 
r ork---

FIG. 3. The one-particle density n(r) for various numbers of 
fermions at a temperature (jJ = 2.5) large enough so that the ground 
state dominates. The curves also describe the momentum distribution 
function for these systems (see Sec. 5). 

4. TWO-PARTICLE DISTR,IBUTION FUNCTIONS 

We define the two-particle distribution function as 

n2(x, y) = ;N r . -J P~~~(Xl ... XN; {1)b(X) 

x ~' b(x - x;)t5(y - Xi) dX l •.• dXN' (25) 
i. ; 

If we replace the b functions by their Fourier integral 
representations and use Eq. (II), n2 can be written 

( ) 
(41T,Br~(2 sinh wt1)3 

n2 X, Y = 
ZNN! 

r 
X ~ Ev II [2 sinh (Msw{1)t3 L' (21T)-6 

V s~l i.; 

X ffexp [-i(Kiik~ + 2K;;ki • k j + Kjjk;) 

- iki • X - ik j • y] dki dk,. (26) 

The sum over permutations in this expression can be 
reduced, in a manner similar to that used in Sec. 3, 
by separating the two possibilities: that particles i 
and j are in two distinct cycles and that i and j are in 

Classical 

kT 

FIG. 4. A comparison between the internal energy (neglecting 
the center-of-mass contribution) of six bosons or fermions and the 
corresponding classical expression. 

the same cycle. In the first case, Kjj depends only on 
the size of the cycles containing i and j; however, if 
i and j are in the same cycle Kij depends on the 
relative position of i and j in the cycle. Thus Eq. (26) 
reduces to 

1 N-l N-M 
n2(x, y) = - L L ZN-M-LSMSLAML(X, y) 

ZN M~l L~l 

1 N 
+ -Z L ZN_MSlIIBM(X, y), (27) 

NM~2 

where SM is defined by Eq. (19). By picking the 
appropriate elements from the matrix K [defined in 
Eq. (13)], we find 

AlIfL(X, y) 

= (2rr)-6 II dk1 dk2 

X exp [- 4~ (ki coth (Mw{1) + k~ coth (Lw,B) 

- ~ (kl + k2)2 coth (W{1») - ikl • X - ik2 • yJ 
(28) 
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and 

M-l If BM(x, y) = ~l (27r)-6 • dk1 dk2 

X exp [ - }w (k~ + k~) coth (Mw,B) 

_ 2kl • k2 coth (MwfJ - 2jwfJ) 

sinh (MwfJ) 

- ~ (k1 + k2)2 coth (wfJ») 

- ikl • X - ik2 • y 1 (29) 

It is appropriate to evaluate these expressions in terms 
of the variables R = i(x + y) and r = x - y. We 
obtain then 

AML(X, y) = (W/17)3a-JL 

where 

X exp (-(w/a ML){[coth (MwfJ) 

+ coth (LwfJ)](R2 + 1r2) 

- (l/N) coth (wfJ)r2 

+ [coth (MwfJ) - coth (LwfJ)]R • rD, 
(30) 

aML = coth (MwfJ) coth (LwfJ) 

and 

- (l/N) coth (wfJ) [coth (MwfJ) + coth (LwfJ)] 

(31) 

M-l 
BM(x, y) = I (W/17)3(CM;SM;)-~ 

j~l 

X exp (-wR2/C M; - wr2/S M;), (32) 
where 

CM; = cosh (MwfJ - jwfJ) cosh (jwfJ)/sinh (MwfJ) 

- (l/N) cosh (wfJ) 
and 

SMi = 4 sinh (MwfJ - jwfJ) sinh (jwfJ)/sinh (MwfJ). 

(33) 

Inspection of these results indicates that the form of 
n2 depends on the position and orientation of the two 
particles relative to the center-of-mass of the whole 
system. Typical examples of the shape of the two
particle distribution function are shown in Fig. 5. 

A measure of the correlation between two particles 
is the quantity 

g2(X, y) = n2(x, y)/N(N - 1) - n(x)n(y)/N2. (34) 

We would expect that for large Ix - yl there would 
be little correlation between the particles, i.e., 

STORER 

0·08 

0·06 

Bose 

R = 0·0 

r_ 

Fermi 
R =0·0 

r-

0-008 

0-006 

0-004 

0·002 

r_ 

0·02 

r-

FIG. 5. The two-particle distribution function n.(R, r) for a 
system of eight bosons or fermions when the ground state dominates 
(jJ = 2.5) at the center (R = 0) and the edge (R = 1.5, R • r = 0) of 
the system. 

g2(X, y) -+ 0; this is verified by explicit calculations. 
Figure 6 shows the effect of varying fJ for an eight
fermion system. Note that the range of the correlation 
is generally less than the diameter of the system and 
decreases with increasing temperature. 

In some circumstances it is useful to know the 
average pair distribution function defined by 

(35) 

This quantity coincides with the usual definition of 
the pair distribution function for a uniform system. 
Using Eqs. (27) and (30)-(33), we find 

1 N-l N-M 
nk) = - I I ZN-M-LSMSL 

ZN M~l L~l 

x Crcoth (MwfJ)w+ coth (LWfJ)])f 

X exp ( -r
2

w ) 
[coth (Mwf3) + coth (Lwf3)] 

1 N M-l( W)f (-r2w) + - I ZN_MS M I -- exp -- . 
ZNM~2 ;~l l7SM; SM; 

(36) 
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0·001 

;,;:;:-----=-=--==...._._._._._. o __ 
2 

r or k~ 

9 (r) 

----- p = 2·5 
0'001 -- P =1-0 

-_.- f3 = 0·5 

--- f3 = 0·' 

0·002 

0·003 

FIG. 6. The two-particle correlation function g(r) for a system 
of eight fermions at various temperatures. Note the strong negative 
correlation for small r or k in the ground state. 

5. MOMENTUM DISTRmUTION FUNCTIONS 

The momentum distribution functions can be ob
tained from the momentum space representation of 
the density matrix P<N)(k i ' •• kN; k~ ... k:V; (3). This 
is the double Fourier transform of its representation 
in configuration space. A direct evaluation of the 
Fourier transform using the result of Eq. (4) gives 

P-(N)(k ... k . k' ... k' . (3) 
1 N, 1 N, 

= (h)-3N r . J P(N)(X1 ... xlv; (3) 

X exp (i t (k i • Xi - k~· X~)) dx1 ' •• dXN 

= (j(K - K')e-PK2 [27TW sinh (2w(3)r!(N-l) 

(
IN 

X exp - - csch (2w(3) I (ki - kj)2 
2w i=l 

where K = Ii kilN and kij = k; - k j • The resem
blance to the form of Eq. (4) is striking. In fact all 
the results we have derived for the configuration space 
distribution functions can be used with only minor 
alterations to obtain the momentum distribution 
functions. 

We define the one-particle momentum distribution 
function in the zero total momentum frame of refer-

ence to be 

n(k) = [(47T(3)-!/nzNJ 

X r . J P~~~(k1 ... kN; k1 ... kN; (3)(j(K) 

x I (j(k - ki ) dk1 ••• dkN , (38) 
i 

where ZN is the modified partition function defined by 
Eq. (6). In terms of p(N), ZN is 

ZN = (47T(3)-!/n 

X r . J P~~~(k1 ... kN; k1 ... kN; (3) 

X (j(K) dk1 ... dkN . (39) 

The volume factor (n) arises from the (j function 
(j(K - K') when K is set equal to K'. If we then 
follow through an analysis similar to that of Sec. 3, 
we find 

n(k) =...L f ZN_MSM(7TKMW2)-! exp ( -k
2

2
). 

ZNM=l KMw 
(40) 

By comparison with Eq. (18) we see that the shape 
of the momentum distribution function is exactly 
that of the configuration space distribution function 
shown in Figs. 1-3 with the horizontal scale measured 
in units of (klw) and the vertical scale altered by a 
factor of w3• 

In a similar manner we can show that the form of 
the two-particle momentum distribution function is 
the same as that of the two-particle configuration 
space distribution function so that Fig. 6 can be 
interpreted as showing the momentum correlation 
between two particles. This illustrates in a graphic 
fashion the phenomena that two fermions have a 
strong negative correlation when they have similar 
momenta but are almost uncorrelated when their 
momenta differ by a large amount. One could specu
late that this phenomena would apply to the momen
tum correlations of particles in a nucleus. 
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APPENDIX A 

Consider the matrix 

R = NtI(N) - tB(N) + C(A(Ml) EB ... EB A(M,»), (AI) 

where we have let t = w tanh (w(3)IN and c = 
w csch (2w(3)/2. One can diagonalize A(M) by an 
orthogonal transformation using the matrix U(M) 
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whose elements are 

U~:f) = M-l[cos (27TjkIM) + sin (27TjkIM)], 

j, k = 1, ... M, (A2) 
giving the eigenvalues 

a~M) = 2[1 - cos (27TjIM)], j = 1, ... M. (A3) 

This same unitary transformation diagonalizes B(M) 

giving the eigenvalues 

biM) = b~M) = bW~1 = 0; bW) = M. (A4) 

If we therefore apply a unitary transformation using 
U = U(M1 ) EEl ••• EEl U(M,) to R, we obtain 

Ntl(N) - tjj(N) + C[A(M1) EB •.• EB A(M,)], (A5) 

where AW) = a~M)();k and B(N) is broken up into 
blocks of size Ms X M", S, u = I, ... ,r, whose 
elements are zero except for the lower right-hand 
corner element in each block which has a value 
(MsM ,,)l. Since a<tr1l = 0 for all M, the matrix jj(N)can 
now be diagonalized by a transformation which leaves 
the matrices Am) unchanged, to give the eigenvalues 

r 

b-(N) - ••• - b-(N) - 0 b-(N) - ~ M - N (A6) 
1 - - N-l -, N - ~ s - • 

8=1 

This transformation can be defined by an orthogonal 
matrix V which has the same general structure as 
jj(N) with the elements 

Vus = (M:+1)(Mb j (~:Mt)l CtlMtr r > s ~ u, 

( 
s )!j (HI )l Y.+1s = - t~Mt ~IMt, r > s, (A7) 

Y.r = M: j CtMt)*. 
Vus = 0, U > s + 1, 

at the lower right-hand corner of each Ms x M" 
block, I on the remaining diagonal elements, and 0 
elsewhere. The matrix R is therefore diagonalized by 
the product UV = Wand has the eigenvalues A; = 
Nt + ca~M.), i = 1,···, M s , S = 1,···, r, except 
that AN = O. An additional result that we require is 

N-l 
II Ail = [2 sinh (wP)P[2 sinh (2wP)/w]!(N-l) 
;=1 

r 

X II [2 sinh (M.WP)]-3, (AS) 
s~1 

which has been shown before.1 

APPENDIX B 

The matrix K, defined by Eq. (12), can be calculated 
in two steps. We use the fact that W = UV and 
first calculate 

This transformation affects only the elements on the 
lower right-hand corner of each block. Then a canoni
cal transformation of this matrix, using U, gives 

K = u+Ru 
= (C(M1) EB C(M2) EB .•. EB CLlII,») - B(N)/N 2t, 

(Bl) 

where B(N) is, as before, an N x N matrix with every 
element unity and 

c<.:n = 1.. ! cos [27T(j - k)l/M] 
, M 1=1 Nt + 2c[1 - cos (27TI/M)] 

= sinh (2wP) ! cos [27T(j - k)l/M] 

wM 1=1 [cosh (2wfJ) - cos (27T1IM)] 

(B2) 

This sum can be evaluated by using a finite modifica
tion of the Poisson sum formula,2 i.e., 

M 00 

(11M) I cos (27T In/M)F(2rrj/M) = ! aI/M+nl' (B3) 
1=1 1=-00 

where 

1 lb an = - F(O) cos nO dO. 
27T 0 

(B4) 

Applying this to Eq. (B2), we find 

1 00 

C~:1l = - I exp (-PM + Ij - k112wP) 
w 1=-00 

cosh (MwP - 2wp Ij - kl) 
= (B5) 

w sinh (MwP) 

which is the result quoted in Eq. (14). Note that as 
M-.oo 

c~~) -.1 exp ( - 2wfJ Ii - k I). (B6) 
w 
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In potential scattering, from the transformation kernel, a function :J\,(p) is constructed whose Bessel 
transforms are the Jost functions. :J\,(p) contains the whole information on the potential V(p). There is a 
one-to-one correspondence between the two functions, and they are related, in both senses of this 
correspondence, through integral equations. Since the relation between :J\,(p) and the phase shift is 
very direct, it is a useful tool for all analyses of the relations between the information contained in 
the dynamics of the problem (viz., the potential) and the measurable information (viz., the phase shifts). 
This tool will be applied to the inverse problem in forthcoming publications. Besides, the derivation of 
X(p) makes clear that a similar study can be done in all cases to which the Gel'fand-Levitan scheme 
applies and therefore in most scattering problems in physics. 

1. INTRODUCTION 

We study the scattering of a particle obeying the 
Schrodinger equation with a spherically symmetric 
potential, at an energy E = {z2k2j2m, m being the 
reduced mass and k the linear momentum. The direct 
problem deals with obtaining the scattering amplitude, 
or, equally, the phase shifts, from the potential, which 
contains all the dynamical information on the problem. 
This is done by deriving the wavefunctions and then 
looking at their asymptotic behavior. In but one 
partial wave, known as a function of r, the whole 
dynamical information is contained, and we can 
straightforwardly derive the potential from it. How
ever, the step of taking the asymptotic behavior 
corresponds to an irreversible loss of information. 
This makes the inverse problem, viz., the construction 
of the potentials from the phase shifts, very difficult. 
In such a problem, one looks for the interaction 
potential inside a given class of functions. Even in the 
most restrictive cases, this class is an infinite set, and 
only an infinite set of phase shifts can contain a 
significant part of the required information. The 
trouble is that the set of all the phase shifts at a given 
energy, or the (continuous) set of the phase shifts at a 
fixed angular momentum, for all positive energies, do 
not always contain enough information. On the other 
hand, the set of all scattering amplitudes for all 
positive energies can correspond to a local potential if 
and only if very restrictive conditions are fulfilled, 
conditions which are broadly unknown. The giving of 
a set of scattering amplitudes, or a set of phase shifts, 
has therefore a good chance to lead us to an im
properly posed problem, either due to lack of infor
mation or due to inconsistency of the information. 
By looking at the methods currently used for solving 
the direct and the inverse problem (especially at fixed 
energy), it has appeared to the author that one of the 

reasons why the amount of information contained in a 
set of scattering results is so difficult to analyze is that 
even the formal way of going from it to the inter
action, or conversely, is very devious, and involves in 
general many intermediate steps. 

The aim of this paper is to provide a much more 
direct formal way of handling these problems. It is 
nearly hopeless to try to obtain such a method for the 
largest class of potentials, say, :r, for which phase 
shifts are well defined. :r not only includes, for instance, 
the class 'lJ of potentials1 for which (a being a length) 

J: pH !V(p)/ dp + fX'!V(p), dp < 00, (1.1) 

but it also contains the infinitely repulsive potentials 
whose singularities are very cumbersome. We have 
limited our study to a class 'lJo of potentials which is 
dense in 'lJ for the norm (1.1) and conveniently 
chosen. For a scattering problem at a given energy, 
the key of our method is the existence of a function of 
r, independent of I, which generates all the physical 
Jost functions through linear (Bessel) transforms and 
which generates the fundamental transformation 
kernel through a single integral equation. This 
function can conversely be obtained from the potential 
through an integral equation. It should be emphasized 
that this approach is not confined to the Schrodinger 
equation and can be introduced with slight modifi
cations in most scattering problems. An analogous 
method can, moreover, be devised, mutatis mutandis, 
for the scattering problem at fixed angular momentum, 
but since the information problem there is in much 
better shape and since other methods there give 
comparable result, it offers a comparatively smaller 
interest than the one described in the present paper. 

Let us now state the results obtained in this paper, 
and, for this, let us first introduce some notation. 

1303 
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For the lth partial wave, we write down the Schro- r can be put into the following form: 
dinger equation as 

[DoCr) - r 2VCr)]<I>I(r) = 1(1 + 1)<I>!Cr), (1.2) K(r, r') = cos (kr) k(r') + sin (kr) k(r') + PN(r, r'), 
where (1.7) 

(1.3) k- l :r K(r, r') 

The classes of functions of which V can be an element 
have to be defined. Let j and k be two given numbers; 
we define Ejk as the (linear) space of all the functions f 
continuous on R+ (= [0, co», such that, for any 
of them, two positive numbers e, e' and a nonnegative 
number C do exist, for which the following inequalities 
are fulfilled: 

Ir'iCr)1 ~ CCr/a)', 1 r'1Cr) \ ~ C(a/r)". (1.4) 

We also use the space Eik, obtained from Eik by 
allowing e and e' to be equal to zero. Let us now 
define E7k as the set of all the functions having con
tinuous derivatives up to order n on R+, such that the 
product by r" of the nth derivative is an element of 
Ejk . We deal in most cases with Eta, which we simply 
call E. Clearly E7k is contained in Eik' and Eik is con
tained in 8i'k' for j' :::: j and k' ~ k. Clearly all these 
spaces, forj ~ 2 and k :::: 1, can be normed with (Ll) 
and are dense in 'U' for the metric induced by this 
norm. 

For a potential V of class 'U', let us now introduce 
the Regge-Newton1.2 transformation kernel K(r, r'), 
which generates the regular solutions <I>!(r) of (1.2) 
for alII, through the formula 

<l>z(r) = uz(r) - f K(r, p)u Z(p)p-2 dp, (1.5) 

where 

u!(r) = (i7Tkr)tJl+t(kr). (1.6) 

The normalization of <l>z(r) is such that it has the 
behavior of uz(r) as r goes to zero. According to 
Loeffel,l for any potential in 'U' and any finite a, 
K(r, r') does exist and belongs to L 2(0, a). 

Throughout this paper, we call any function of r 
and r' a negligible function of rand r', and denote it 
with the subindex N-for instance,fN(r, r')-if 

(a) fN(r, r') goes to zero for any fixed r' as r goes to 
co, 

(b) J~ I/N(r, r')1 r'-l(l + kr,)-l dr' goes to zero as r 
goes to co. 

Now, our first result is the following: 

Lemma 1: For any potential V in 8, the transfor
mation kernel K(r, r') and its derivative with respect to 

= -sin (kr) k(r') + cos (kr) k(r') + QN(r, r'), (1.8) 

where P N and QN are negligible functions. 

This Lemma is proven in Sec. 5. 
Let us now differentiate both sides of (1.5), so as 

to write their Wronskian successively with cos (kr) 
and sin (kr), and then let us take r -+ 00. From (1.7) 
and (1.8), we get 

1
00 k(p) Ul(P) 

- -' - dp = cos (t/7T) - A! cos (t17T - !5!), 
o p p 

(1.9) 

100 k(p) Uz(p) . . 
- -- dp = -sm ct/7T) + A! sm (t17T - !5!), 

o p p 
(1.10) 

where Al and !5! have been defined, as usual, through 
the asymptotic behavior of <l>z(r): 

<l>z(r) = Az sin (kr - tl7T + !5z) + 0(1), r -+ co. 

(UI) 

Introducing now the complex function J\,(p) = 
p-l[k(p) + ik(p)], we can rewrite (1.9) and (1.10) in 
the compact form 

lOOJ\,(p)UI(p)p-l dp 

= exp (-til7T) - A! exp (-til7T + i!5 I ). (1.12) 

It is clear from (U2) that knowing J\,(p) straight
forwardly yields the phase shifts and the scattering 
amplitude. The function J(,(p) therefore expresses the 
whole structure of the problem so far as we are con
cerned with the scattering at energy E. Its knowledge 
as a function of E yields the whole structure of the 
collision problem. For these reasons, and also 
because the existence of these functions is not confined 
to quantum mechanics problems, we shall call it the 
scattering structure function, or, to be brief, the s.s. 
function, whereas p-lk(p) and p-lk(p) will be for us 
the real s.s. functions. 
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Let us now introduce the notation 

w = [(r - r')2 + 4rr'u2]t, (1.13) 

G(r, r', u) = cos (kw) - cos [k(r - r')], (1.14) 

Kg(r, r') = (27Tk)-lfG(r, r', u)u-2 du f'" V(s)s ds, 

(1.15) 

K 2(r, r') = K(r, r') - K~(r, r'), (1.16) 

(1.17) 

We prove in Sec. 5 that ~(r, r') can be written as (1.7) 
and (1.8), and its real s.s. functions are given by 

ko(r') = (7Tk)-lVO 

X (sin (kr') - kr' L" cos (kr' cos 0) 

x cos (to) dO), (1.18) 

ko(r') = (7Tk)-lVokr'L"sin (kr' cos 0) cos (to) dO. 

(1.19) 

The s.s. functions of K(r, r') clearly are the sum of the 
s.s. functions of ~(r, r') and K2(r, r'); we label the 
latter with the index 2. Now, our second result, 
proved in Sec. 5, is the following. 

Lemma 2: The s.s. functions p-1k 2(p) and p-1k 2(p) 
are bounded functions of L2(O, (0), going to zero as 
p-l for p -4- 00. 

This property does not hold for the functions 
p-lko(p) and p-1ko(p), which go to zero only as p-t. 
However, Lemma 2 and Formulas (1.18) and (1.19) 
give a fairly well-defined mathematical frame, in 
which the inverse problem at fixed energy can be 
thoroughly studied as a moment problem. Moreover, 
the fact that these functions belong to L2 can be very 
useful for an approximation theory in the inverse 
problem at fixed energy. These studies are the subject 
of two forthcoming papers.3 

We now have to give a way of constructing the s.s. 
functions from the potential and a way of constructing 
the potential from the s.s. functions. The s.s. functions 
can be readily obtained from the asymptotic behavior 
of K(r, r'), through Eqs. (1.7) and (1.8). On the other 
hand, VCr) is readily obtained from K(r, r) through the 
formula 

VCr) = -2r-1 ~ [r-1K(r, r)]. 
dr 

(1.20) 

We therefore attain our goal if we give ways of 
obtaining K(r, r') from the potential and from the s.s. 
functions. Besides, the transformation kernel readily 
yields all the wavefunctions, Jost functions, etc., in 
short, all the information on the problem. The two 
following lemmas, respectively proved in Secs. 2 and 
6, completely fulfill our purpose. 

Lemma 3: Given a potential V(p) in 'U', the corre
sponding transformation kernel K(r, r') is the (unique) 
solution of the (Volterra-type) integral equation 

K(r, r') = Ko(r, r') ± II D±N1(r, r', p, p') 

X p2V(p)K(p, p') dp dp', (1.21) 
where 

N1(r, r', p, p') 

= i(rr,)t(pp'r! 

x Jo( k[(rr' - PP')(f, + :; - ;, - :) r) 
(1.23) 

and the ± signs respectively correspond to the cases 
r ~ r' and r ~ r'. The domains D+ and D- are 
bounded by the straight lines p' = p and p' = pr'/r 
and the hyperbola pp' = rr' (see Figs. 1 and 2). 

(a) 

FIG. 1. (a) The inte
gration domain D+ in 
the (p, p') plane. (b) The 
integration domain D- in 
the (p, p') plane. 

(b) r' 

r (rr/)1/2 p 
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a- = r/r' + r'/r-2 
"I = 114 rr' 

FIG. 2. The integration do
mains D+ and D- in the 
(0-, fj) plane. 

Lemma 4: Given the first moment Vo [= f!:' pV(p)dp] 
of the potential and given two bounded functions of 
L2(0, (0), p-1k 2(p) and p-1k 2 (p), going to zero faster 
than p-!-£ as p goes to 00, the transformation kernel 
K(r, r') can be obtained as the sum of two functions, 
the first one, K1:(r, r'), being obtained from Vo 
through (1.15) and the second one, K2(r, r'), being 
obtained as the solution of the integro-differential 
equation 

K 2(r, r') = Kg(r, r') - 2 II N1(p, p'; r, r') 

G 

X K(p, p') .E:... [p-1K(p, p)]p dp dp', 
dp 

(1.24) 
where we set for convenience 

K(p, p') = Klp, p') + Kg(p, p'), (1.25) 

Kg(r, r') 

= (27Tr!(krr')! 

X 100 

{k2(P) sin [rp(p)] - k2(P) cos [rp(p)]}p-i dp, 

(1.26) 

q;(p) = !kp[(rr'/p2) + (r/r') + (r'/r)] + !-7T. (1.27) 

For practical purposes, other equations can be 
obtained for relating the s.s. functions to the potential, 
using the Gel'fand-Levitan symmetric function as an 
intermediate step; they will be given in a forthcoming 
paper.3 It is clear that Lemmas 1,2, 3, and 4 enable 
us to describe the scattering problem completely, at a 
given energy, by a single function. Since this function 
can readily generate the scattering amplitude and can 
be easily related to the potential, it should be a useful 
tool in potential scattering. Apart from their appli
cations to the inverse problem, which we have already 
quoted, the s.s. functions can be used for yielding 
information on the other tools used in scattering 
problems. As an example, the Jost functions can 
readily be derived from them. Actually, for any 
positive value of A, we can write, instead of (1.5), the 
formula 

'Fir, k) = vir) - EK(r, p)Vip)p-2 dp, (1.28) 

where 

v;.(r) = (!7Tkr)! J ;.(kr). (1.29) 

K(r, p) depends also on k, and 'F;.(r, k) is the regular 
solution of the SchrOdinger equation (1.2) for I = 
(A - t). The Jost function is given by4 

I(A, k) = lim e-ikr['¥~(r, k) + ik'¥;.(r, k)] (1.30) 

and is therefore equal to 

Integral Representations of the s.s. Functions 

The formulas (5.14), (5.15), (5.26), (5.27), (5.29), 
and (5.30) and (1.18) and (1.19) give integral repre
sentations for the s.s. functions, valid for any potential 
in 8. The integral representations (5.29) and (5.30), 
which correspond to the contribution of K(r, r') -
Ko(r, r'), are elegant. Unfortunately, their validity 
seems to require the double differentiability of VCr) 
and the bounds defined for its derivatives in class 8. 
It is interesting to notice that we can obtain an integral 
representation of the s.s. function from Eq. (1.21), 
which is valid for any potential of 813 , The derivation 
is done in Sec. 7. The results are the following: 

X(r') = -(27Tk)-ir'! 

where 

X (100 

exp { - ik[r' + t l(r,)-1] 

+ !i7T}pV(p) dp 

-fU-1 du 100 

pV(p)k(p, pu) 

X exp {-!ik[p2u(r,)-1 + ur' 

+ r'u-1] + !i7T} dp), (1.32) 

k(p, p') = (pp')-iK(p, p'). (1.33) 

For proving that (1.32) actually forms the scattering 
functions of the potential V, we only need in Sec. 7 
the assumptions defining the class 813 , We are there
fore led to the following. 

Generalization of the Results to the Class 813 

(I') Lemma I is valid in 813 , 

(2') Lemma 2 holds in 813 with a weaker asymp
totic behavior of Je1(r') [see (7.52)J. 

(3') Lemma 3 is valid, actually, in larger classes 
then 813 , 

(4') Lemma 4 has been proved by using bounds 
derived in 8. 
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However, it is possible to extend it to 813 , insofar as 
the integral equation (1.26) has a solution, since 
obviously Kg(r, r') can be derived from s.s. functions 
fulfilling condition (2') above. The conditions of 
existence and uniqueness of solutions of the nonlinear 
integral equation (1.26) are not studied in the present 
paper. However, since the existence proof of solutions 
of integral equations usually involve bounds on 
kernels and their integrals only, one may expect that 
going from 8 to 813 does not change these conditions. 

Generalization to Other Scattering Problems 

The generalization to the potential scattering 
problem at a fixed value of I, E being the variable 
parameter, is straightforward. Obviously all the 
results will have a formal analog in this problem. 
Generalizations are more generally possible in any 
case where a transformation kernel can be obtained 
which generates all the wavefunctions (or their 
analogs). In other words, the generalization is possible 
in any case where the Gel'fand-Levitan method applies. 
This encompasses all the scattering problems involving 
Sturm-Liouville equations, viz., almost all the linear 
scattering problems in physics. 

2. DERIVATION OF THE TRANSFORMATION 
KERNEL FROM THE POTENTIAL 

Let us be given a potential V in 821 , We use this 
class of potentials rather than 'lJ for avoiding mathe
matical intricacies. It would be easy to generalize our 
results. We know1 that the transformation kernel 
K(r, r') is a solution of the partial differential equation 

[p2(:;2 + k2
) - p'2(a~2'2 + k2

) ]K(P, p') 

= lV(p)K(p, p') (2.1) 

with the boundary conditions 

[(ppT!K(p, p')]p=o = [(ppTIK(p, p')]p'=o = 0, (2.2) 

K(p, p) = -}p I:TV(r) dT. (2.3) 

Let us now introduce the variables 

with the boundary conditions 

v(a,O) = 0, (2.8) 

v(O, 1]) = 1]-!K(21]!, 21]1). (2.9) 

Let now F be the point whose coordinates are 

0'= S, 1] = y. (2.10) 

Let E and G be the projections of F on the 1] axis and 
on the a axis, and let D be the square OEFG (Fig. 2). 
Following Riemann's method,S we obtain 

v(s, y) = v(O, y)S(O, y, s, y) 

ill a 
- v(O, 'YJ) - S(O, 'YJ, s, y) d1] 

o a1] 

+ rs 
S( 0',0, S, y) i. v( 0',0) dO' Jo aa 

+ II Sea, 'YJ, s, y)h(a, 1]) dO' d1], (2.11) 

D 

where Sea, 1], s, y) is the Riemann function, defined 
by the differential system 

( 
a2 2) -- + k Sea, 'YJ, s, y) = 0, 

aaa'YJ 

a 
- Sea, y, s, y) = 0, (2.12) 
aa 

a 
- S(s, 1], s, y) = 0, S(s, y, s, y) = 1, 
a1] 

and is therefore equalS to 

Sea, 1], s, y) = Jo(2k[(a - s)(1] - y)]!). (2.13) 

Let us now introduce the notation 

x = (rlr') + (r'lr) = S + 2, 

_ 1 ' Y - "4" , 

K(x,y) = K(r, r'), 

g(x, y) = y!h(s, y). 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

a = (pip') + (p'lp) - 2, 1] = ipp' (2.4) We can write (2.12) in the form 

and the functions 

v(a, 1'}) = r;-iK(p, p'), (2.5) 

h(a, 'Y}) = (p2 - p,2)-lp2V(p)v(a, 'YJ); (2.6) 

we obtain the normal form of the hyperbolic equation 
(2.1), 

02 
2 -- v(a, 'YJ) + k v(a, 'YJ) = h(a, 'Y}), (2.7) 

oao'YJ 

K(x, y) = K(2, y) 

- yt r (:'Y} S(O, 'Y}, x - 2, y») K(2, 'YJ)rr! d'YJ 

+ Y!rd~ 

x f S(~ - 2, 'Y}, x - 2, y)g(~, 1])1]-! d'YJ. 

(2.18) 
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Now, the continuous mapping (x,y) _ (r, r') is 
expressed by different formulas, according to the sign 
of r - r': 

for r ~ r' 

{ 
r = y![(x + 2)! + (x - 2)!] . (2.19) 
r' = yi[(x + 2)! - (x - 2)!] , 

for r ::;; r' 

{ 
r = y! [(x + 2)! - (x - 2)!] 

r' = y![(x + 2)! + (x _ 2)!] . (2.20) 

Let p, p' be the image of ~, 'Y] in the above mapping. 
Using it in (2.18) yields the relation 

K(r, r') 

= K[(rr')!, (rr')!] + I(r, r') - iCrr')! 

x L!"'{~ Jo(2k[(~ +; -2) Cirr' - 'Y])r)} 
x K(2'Y]!, 2'Y]!)'Y]-! d'Y]. (2.21) 

In (2.21), we set, for convenience, 

I(r, r') = ±(rr')! 

where 

x ffJo(k[(~ +; -; -;) 
n± 

X (rr' - pp,)r) (pp')-!f(p, p') dp dp', 

(2.22) 

f(p, p') = p2V(p)K(p, p'). (2.23) 

The domains D+ and D-, and the signs + and -, 
are to be used, respectively, for r ~ r' and for r ::;; r' 
(Fig. 1). The integral equation (1.21) follows readily 
from (2.21) by integrating by parts the third term in 
the right-hand side. It should be noticed that the 
special properties (2.23) of j(p, p') have not been 
used in the derivation. The formula (2.21) actually 
holds if any integrable function j(p, p') is the right
hand side of (2.1). 

Let us now introduce the functions 

M(r, r') = r'2(a~:2 + k2)K(r, r'), (2.24) 

N(r, r') = r2 (::2 + k2)K(r, r') 

= M(r, r') + r2V(r)K(r, r'). (2.25) 

Clearly, M(r, r') is a solution of (2.1). From (2.2) and 
(2.21), elementary but tedious differentiations enable 
one to show that if r2-EV(r) and r3-<V'(r) remain 
bounded as r _ 0, then (rr')-l-l'M(r, r') remains 
bounded when either of rand r' goes to zero, the other 
variable keeping constant. M(r, r') therefore fulfills 
the boundary condition (2.2). 

Once again, tedious operations enable us to get 
M(r, r) from (2.3) and (2.21). The result is 

where 
M(r, r) = M+(r, r) + M-(r, r), (2.26) 

M+(r, r) = -!k2r f V(p)p(r2 + p2) dp, (2.27) 

M-(r, r) = ir flV2(p) dp 

+ isr(fpV(p)dpr + irfpV(p)dp 

- tr3V(r) - ir4V'(r) 

Setting now 

Mo(r, r') 

+ ir3V(r) fpV(p) dp. 

= M[(rr')!, (rr,)l] 

- ierr')! L!"'M(2'Y]!, 2'Y]!) 

(2.28) 

x {~ Jo( 2k[ (~ + ; - 2 )urr' - 'Y])r) }'Y]-! d'Y], 

we get, as we did for (2.21), 

M(r, r') 

= Mo(r, r') 

(2.29) 

± ff N1(r, r', p, p')p2V(p)M(p, p') dp dp'. (2.30) 

n± 

These results will be of use in Sec. 4 below. 

3. PROPERTIES OF Ko(r, r') AND RELATED 
QUANTITIES 

In the following, VCr) belongs to the set E defined 
in Sec. 1, and its norm IIVII is given by (1.1). Some 
notations are to be introduced for convenience: C is 
meant as a general nonnegative constant; V a general 
nonnegative constant proportional to II VII and there
fore going to zero as IIVII goes to zero; W a general 
nonnegative constant going to zero as II VII goes to 
zero but not necessarily proportional to II VII; and 
V* and W* the products of V and W by a function of 
E, finite for E > 0, and going to 1 for E - 00. 

Bounds for Ko(r, r') 

From (1.22), since V E 8, using for Jo the upper 
bound 1 yields the absolute upper bounds 

{

V(rr')l 

IKo(r, r')1 < V(rr,)l(rr' /a2)!<+! 

V(rr,)l(rr' /a2)1<+![1 + (rr' /a 2)1<+!]-1. 

(3.1) 
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Using for Jo(z) the absolute bound Cz-! yields from 
(1.22) the inequalities 

IKo(r, r')1 

(1'1",)t [ (2 )lJ-! ~ iCrr')! Jo !Y(s) I s k Ir - r'l 1 - ;r' ds 

(3.2) 

i (rr')i _1( S2)-! ] + V s 1 - - ds 
l(rr"· rr' , 

(3.3) 

and therefore 

Further Properties of KoCr, r') 

In (1.22), we can substitute the formula6 

J{k(r - r')( 1 - ::,)!Jr( 1 - ::,) 

= ~ (00 {cos [(k2(r _ r,)2 + z2)1] 
7T Jo 

- cos [k(r - r')]} !!"'[Z-1 cos (~)J dz, (3.9) 
dz (rr') 

where r(x) is the Heaviside step function. More 
exactly, we break the right-hand side of (3.9) into two 
members, 

2 iA 2 , - {} dz + - I(s, r, r ,A), 
7T 0 7T 

(3.10) 

IKo(r, r')/ ~ V(rr')l[l + k /r - r'Ir!. (3.4) then substitute (3.10) in (1.22), which yields 

Bounds for MoCr, r') 

Using (2.27) and (2.28) inside (2.29), we can split 
Mo(r, r') into two terms, Mci(r, r') and Mo(r, r'). 
Integrating by parts (2.29) yields 

Wo(r, r') = lCrr')! frr,)tJo ( k Ir - r'l (1 - ::J) 
x E:.- [2s-1M±(s, s)] ds. (3.5) 

ds 

Now, from (2.28), it is clear that r-1(d/dr)[2,-IM-(r, 
r)] belongs to e. Since this quantity is used in (3.5) 
like VCr) in (3.2), we can readily write 

(3.6) 

Integrating by parts twice, we find that the formula 
for Mci(r, r') yields 

Mci(r, r') 

(rr"! ( (2 )!) 
= -ik

2
(rr')! Jo J1 k Ir - r'l 1 - ;r' 

( 
S2)! x [k Ir - r'lri 1 - - [3V(s) + sV'(s)]s ds. 
rr' 

(3.7) 
From (3.7) we easily derive the inequalities 

Ko(r, r') = Kt(r, r') + Rt(r, r'), (3.11) 

and show separately that both IRt(r, r')1 and the 
integral j;;' IRt(r, r')1 2 r'-2 dr' go to zero when [I + 
k 2(r - r')2]-I[1 + 2k(rr')1]-lA goes to infinity. Actu
ally, this can be shown by elementary but tedious 
operations and majorations, which we do not repro
duce her,~. Clearly, it follows from the result that, as 
long as we are interested in evaluations of Ko(r, r') or 
of its square integral, we can use Kt(r, r'), take 
advantage of the finiteness of A for proving the validity 
of changing integrations, and then make A go to 
infinity. We can therefore forget A, except when 
justification is required. On~e (3.9) has been substituted 
in (1.22), let us use instead of z the variable t equal to 
[2k(rr')!]-lz, and integrate twice by parts with 
respect to the s variable. We get 

Ko(r, r') = Kg(r, r') + K3(r, r') + K4(r, r'), (3.12) 

where 

27TkKg(r, r') = - f G(r, r', t)t-2 dt 

x s - - - [iV(s)] ds, i OO( d 1 d) 
o ds s ds 

(3.13) 

47Tk2K 3(r, r') 

= - f G(r, r', t)r2 dt 

x (00 (Sin (2kst) _ 2kS) (~! ~ [S3V(S)]) ds, 
Jo t ds s ds 

(3.14) 

47Tk2K4(r, r') = - LOO G(r, r', t)t-2 dt 

X (00 sin (2kst)(~! ~ [S3V(S)]) ds. 
Jo t ds s ds 

(3.15) 
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The formula (3.14) can also be written in the form 
(1.15), or, via well-known formulas,7 as 

Kg(r, r') = -(7Tkr1Vo( vo(r)vo(r') + 2!~ v!(r)v!(r'»), 

(3.16) 

where the VI have been defined by (1.29). Let us 
introduce the notation 

K~(r, r') = Ka(r, r') + K4(r, r'), 

cI>s(u) = _ u-
2 roo

(Sin2kSU _ 2kS) 
41Tk2 Jo U 

X - S 1 - [ssV(s)] ds, (
d _ d ) 
ds ds 

(3.17) 

(3.18) 

cI>4(U) = _ u-
2 

roo sin 2kSU(~ S-1 ~ [iV(s)]) ds. 
~~1 U ~ ~ . 

(3.19) 

From (3.18), integrating once by parts, we readily 
derive the inequality 

I cI>a(u) I < cioo 
kS2 2 2IsSV'(s) + 3s2V(s)1 ds, 

ol+ksu 
(3.20) 

and, from the properties of 8, it follows that I <l>a(u) I 
is integrable on (0,1). From (3.19), integrating 
once by parts, we readily derive the inequality 

1cI>,,(u)I < !k-3u-" 

X \100

(1 - cos 2ksu) (::2 S-1 :s SaVeS») dS\, (3.21) 

from which the properties of & enable us to get 

I <l>iu) I < Vk-1(ka)-I-·u-a-.. (3.22) 

Let us now notice that, replacing, in (1.14), the 
difference of cosines by a product of sines, we get 

IG(r, r', u)1 < {22k ' I 'I 1 2' (3.23) rr r - r - u 

Using now (3.18)-(3.23) in (3.14) and (3.15), we 
obtain the following bounds: 

IKa(r, r')1 < {vva
k 

' I '1-1 , arr r - r 
(3.24) 

K ' {Vk-1(kar1-. 
I 4(r, r )1 < V(ka)-I-.rr, Ir _ r'I-I ' (3.25) 

~(r, r') cannot be handled in the same way. Fortu
nately, it is a series of Bessel functions of a kind we 
have previously8 studied, so that we can write down 

its bounds: 

IKO(r, r')1 < {Vr(1 + kr) (3.26) ° Vr'(1 + kr') , 

IKg(r, r') - 1T-
1Vo(rr')! Jo(k(r - r'»1 ~ C. (3.27) 

Bounds for the Derivatives 

So as to get bounds for the derivatives of Ks(r, r') 
and K4(r, r'), we need bounds for, say, (ojor)G(r, r', u). 
We therefore write 

k-1 .E.... G(r r' u) 
or " 

= 2 sin [k(r - r' - w)] cos [k(r - r' + w)] 

+ (1 - 2:) sin kw, (3.28) 

where 

!w = r - r' + 2r'u2. (3.29) 

Case 1 (u2 ~ 1): It is easy to prove that (!W)2 is 
smaller than w2, so that 11 - wj2wl is smaller than 2. 
Besides, writing w as Ir - r'l [1 + 4rr'u2j(r - r')2]! 
and using elementary inequalities for r' ~ J', we get 

(r _ r') ~ (r _ r') 1 + rr u _ r r u 
( 

2 ' 2 2 2 ,2 ") 

(r - r,)2 (r - r')" 

~ w ~ (r - r') (1 + 2rr'u
2

). (3.30) 
(r - r')2 

Since 11 - w/2wl is clearly smaller than Ir - r'l x 
liw - wi, using (3.30), we can easily show that, for 
r' ~ !r, 11 - wj2wl is smaller than (4r'jr)u2• We 
summarize this result in the following formula: 

ICsinkw)(1 - w/2w) I < {!(r'jr)u2 for r' ~ !r, 
Ckr' for r' ~ !r 

(3.31) 

where the last inequality has been obtained by using 
the bound 2kr for kw. Besides, the formula (3.30) 
enables us to get a bound for Ir - r' - wi, which 
yields 

12 sin [k(r - r' - w)] cos [k(r - r' + w)]1 

~ {~kr'u2 for r' ~ ir. (3.32) 
Ckr' for r' ~ ir 

From (3.14), (3.20), (3.31), and (3.32), we get 

I :r [Ka(r, r')]\ < {~~~r'a for r' ~!i (3.33) 
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Case 2 (u2 ~ 1): Again, we have to evaluate (3.27). 
Clearly, w is positive. Therefore, 11 - iw/wl is 
smaller than 11 - (iw/w)21, so that 

11 - iwlwl < C(r'lr)u2. (3.34) 

On the other hand, for r ~ r', 2r'u2 is a majorant 
of It wi and r' is a minorant of w: We can therefore 
write 

Isin kwill - !w/wl < Cu2 
{

c(r'/r)u2 

Ckr' u2 for r' ~ ir 

(3.35) 

Besides, the following relations obviously hold for 
r' :::.;; r: 

Thus 

, _I r2 - (r' + W)21 Ir - r - wl-
r + r' + w 

< 12r' + 4rr' (u2 - 1)1 
r + r' 

12 sin [k(r - r' - w)] cos [k(r - r' + w)]1 

(3.36) 

< {2 (3.37) 
Ckr'u2 for r' ~ r' 

From (3.15), (3.22), (3.35), and (3.36), we get 

I.! Kir, r') I ~ {V(ka)-l-< 
or V(karl-<kr' for r' ~ ir' (3.38) 

Relations (3.24), (3.25) and (3.37), (3.38) can obviously 
be gathered as follows: 

IK1( ')1 < {v*a 
o r, r - V*k ' I '1-1 , arr r - r 

(3.39) 

/
.! K~(r, r') / < {V*ka 
or - V*k2r' a for r' ~ ir' (3.40) 

Owing to the symmetry of G(r, r', t), we have also 

I 
a Kl( ') I < {V*ka 

or' 0 r, r - V*k2ra for r::::;; ir" (3.41) 

4. BOUNDS FOR K(r, r') AND RELATED 
QUANTITIES 

Let us for convenience introduce the notation 

k(r, r') = (rr'r!K(r, r'), ko(r, r') = (rr')-!Ko(r, r'), 

(4.1) 
nCr, r', p, p') 

= !pV(p)(p,)-l 

( [ (
r r' p P')]!) 

X Jo k (rr' - pp') ;:; + -; - ;; - -; (4.2) 

(4.3) 

Bounds of Ik(r, r')1 for r' :::;; r 

For r' :::.;; r, (1.21) can be rewritten as 

k(r, re) = ko(r, re) 
(1 «r"BIU)! 

+ J8 du Jo pn(r, re, p, pu)k(p, pU) dp. 

(4.4) 
Let us look for an iteration series: 

ro 

k(r, re) = 1 knCr, re), (4.5) 
n=O 

(1 «r2
8Iu)1 

kn(r, re) = J8 du Jo pn(r, re, p, pu)kn_1(p, pU) dp. 

(4.6) 
For proving the convergence of (4.5) and getting an 
absolute bound of its sum, we replace the kernel and 
the free term in (4.4) by absolute majorants and solve 
the equation thus obtained. Each of the iterated terms 
of the solution of this "majorant" equation clearly is 
an . absolute bound for the corresponding term in 
(4.5). Let us first use the absolute majorants 

Iko(r, re)1 < V, (4.7) 

In(r, r(J, p, pu)1 ~ iu-1 JV(p)J (4.8) 

and extend the u integration up to 00. We thus obtain 
the majorant equation 

k(r, re) = V + if p W(p)1 dp f26IP2k(P' pu)u-1 du, 

(4.9) 

whose solution9 is equal to Vk(r) , with k(r) being 
equal to 

k(r) = 1 + fp W(p)/log (;)k(P)dP' (4.10) 

A majorant equation for (4.10) is in turn 

K(r) = 1 + fp W(p)llog (~)K(P) dp, r::::;; a, 

K(r) = K(a) + log (~) f p W(p)1 K(p) dp, r ~ a, 

(4.11) 
whose solution is 

K(r) = exp [f p W(p) I log (~) dp]. r::::;; a, (4.12) 

= x(r) + [lOg (~) ]ft(p) exp (fW(T) dT) dp, 

r ~ a, (4.13) 
where 

x(r) = K(a) + [log (r/a)] Lap W(p)1 K(p) dp, (4.14) 

w(r) = r W(r) I log (ria), 

t(r) = r W(r)1 x(r). 

(4.15) 

(4.16) 
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With the assumptions defining S, w{r) and t(r) belong 
to L 1{a, 00), so that 

Ik{r, rO)1 ~ W[l + log (l + ria)]. (4.l7) 

Starting now from (3.1) leads us to the majorant 
equation 

(r20la2)1<+1 
k(r rO) = V -----'---'---'---

, 1 + (r20la2)le+i 

i
r ir28/p2 du 

+! p !V(p)1 dp k{p, pu) -. (4.18) 
o 8 U 

Trying an iteration series for solving (4.18), let us 
assume that one of the iterated terms can be bounded 
as follows: 

(r20 I a2)!<+1 _ 
kir, rO) ~ 2 2! +1 kn{r). (4.19) 

1 + (r Ola ) < 

Then the following term is bounded by 

k n+1{r, rO) ~ 2{1 + e)-1 f p !V{p) I kn{p) 

(
1 + (r20la

2)!<+!) 
x log dp. 

1 + (p20la2)!<+! 
(4.20) 

Using now the following inequality, valid for any 
nonnegative x, with 0 < s ~ I, 

log [(1 + x)/{l + sx)] ~ [x/{l + x)] log (lis), (4.21) 

we get 
2(r20la2)l<+! 

kn+1(r, rO) ~ 1 + (r20la2)!<+1 

X fp!V(p)l1og{r/p)kn(p)dp. (4.22) 

Now, since (4.19) is valid for n = 0 and ko{r) = V, 
according to (3.1), it is valid for the (n + l)th-order 
provided that kn{r) is the nth iterated term of the 
solution of the equation 

k(r) = V + 2fp !V(p) I log (;)k{P) dp. (4.23) 

Equation (4.23) can be studied like (4.10) and yields 

(r20la2)!+l£ 
Ik(r, rei ~ W 2 2 ~ ~ [1 + log (1 + ria)]. 

1 + (r efa )2+2< 
(4.24) 

The above bounds do not depend on the energy. Let 
us now use for n the majorant 

In{r, rO, p, pu)1 ~ Ck-1u-1 I V(p)1 {r20 - p2u)-1 

x (e-1 - u-1)-1(1 - eu)-l, (4.25) 

and let us look for a majorant of Ik(r, rO) - ko(r, rO)I, 
substituting (4.25) for nand (4.24) for k in (4.4). We 

obtain the following integral: 

Ck-l f (~ -1 r\l - OU)-1U-1 du 

«r2

8/tt)! (r20 )-1 
x Jo p !V{p)1 --;; - p2 

(p
2
ul a

2
)!+l< [ (P) ] 

X 2 2 1 1 1 + log 1 + - dp. 
1 + (p ufa )"2"+2£ a 

(4.26) 

Replacing the function of p2ufa2 by an upper bound 
and using the Schwarz inequality leads us to the 
majorant 

W(ka)-! f{u/o - 1)-1{1 - Our1u-1 duo (4.27) 

It is easy to get a constant upper bound for the 
integral in (4.27), through the intermediate step 

~ iOO(~ -lrtu-1dU + [iOO(~ - 1flU-
1 dU 

x fU-1[(1 - u)-! - 1)2 du r. (4.28) 

We therefore obtain 
_! (r20/a2)l+1£ 

Ik{r, rO) - ko{r, rO)1 < W{ka) 2 2 1 1 • 
1 + (r Ola )"2"+2£ 

(4.29) 

If in (4.26) the p integral is split in two parts by the 
intermediate bound Hr20/u)1, if W(p) I is bounded by 
V p-l on the lower interval, and if the Schwarz in
equality is used for the upper interval, one gets 

1 ! (r20/a2)l+1£ 
Jk(r, rO) - koCr, rO)1 < W(krO r 2 2 1 1 • 

- 1 + (r O/a )"2"+2£ 

(4.30) 

Needless to say, since (4.29) and (4.30) are of the 
form (4.19), bounds for Ik{r, rO) - I& kn(r, rO)1 can be 
obtained by iteration and are equal to the right-hand 
side of (4.29) and (4.30), respectively, times a factor 
(ka)-h. 

MajorantslO of Ik(r, r')1 for r' ~ r 

(1.21) reduces for r' ~ r to 

k(r, rO) 

(8 «r2o/tt)· 
= ko(r, rO) - J1 du Jo nCr, rO, p, pu)k(p, pu)p dp. 

( 4.31) 
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The iteration series is now defined by 

kn+l(r, rO) 
fO f<r2o/u)t 

= - J1 du Jo nCr, rO, p, pu)kn(p, pu)p dp 

and 

In(r, rO, p, pu)1 

(4.32) 

< Ck-!u-1!y(p)1 (r20 - p2U)-!(0 - u)-!(l - 1/0u)-!. 

Assume now that, for a value of n, 

Ikn(r, rO)1 :::;:; AnBn(rO!). 

(4.33) 

(4.34) 

Inserting (4.34) in (4.32), where each factor should be 
replaced by its absolute value and Inl by (4.33), we 
obtain 

Ikn+l(r, rO)/ 

:::;:; !k-1Anfu-\0 - U)-!(l - o~r!dU 
f<r"O'U)t 

x Jo p !y(p)1 (r20 - p
2ur!Bn(pu1) dp. ( 4.35) 

Let fJ be a positive number. Using twice the Schwarz 
inequality in the p integral yields 

( 
f<r"olu)t )1 

Jo (r20 - p2u)-t dp 

{ 
[<r"o/U)! [ ( !)J}! x Jo p5V4(p) fJ2 + log2 P: 

x {fr"0'U)iB!(pu!{fJ2 + log2 (P:!) r1p- 1 dPr 

(4.36) 

Owing to the definition of the class, the following 
numbers are finite: 

a2LX> p5V4(p) dp = 2fJ-2B, 

a2i'Xl p5V4(p) log2 (~) dp = !(A - 2B). (4.37) 

From (4.37) and the inequality 

[log (put ja)]2 :::;:; 210g2 (pja) + t log2 u, (4.38) 

we easily derive 

/kn+1(r, rO)/ :::;:; Vk-!Anf u-\O - u)-!(u - 0-lr! 

X (A + Blog2u)t- du 

(l~t )! x 0 B!(X)(fJ2 + log2 X)-lX-1 dx . 

(4.39) 

inequality in the u integral, we obtain 

Ikn+l(r, rO)1 

:::;:; (ka)-! AnD (fOiB
!(X)(fJ2 + log2 X)-lX-1 dx r 

(4.40) 
where 

(4.41) 

Comparing now (4.40) and (4.34), we see that (4.34) 
is valid for any n if 

(1) it is valid for n = 0, 

(2) An = [(ka)-!D]n, (4.42) 

Bn(s) is therefore the coefficient of An in the A powers 
series expansion of B(s), defined by 

B(s) = B~(s) + A fX-1(fJ2 + log2 x)-lB(x) dx. (4.44) 

Clearly 

B(s) = B~(s) + A fp-l(fJ2 + log2 p)-l 

x exp {~[tan-l eo; s) 
- tan-1 Co; P) J}B~(P) dp. 

A larger majorant is 

R(s) = Bg(s) 

(4.45) 

+ A exp (~A) fB~(P)(fJ2 + log2 p)-lp-l dp. 

(4.46) 
Let us now put 

[Ao(s)]' =fp-l(fJ2 + log2 p)-lB~(p) dp. (4.47) 

We obtain 

(4.48) 

From (4.34), (4.42), and (4.48), provided that (4.34) 
is valid for ko(r, rO), we therefore get 

Ik(r, rO) - ko(r, rO)1 :::;:; V(ka)-1Ao(rO~l (4.49) 

More generally, if (4.34) holds for kpt1 (r, rO), it is 
possible to write 

( k(r, rO) - ~ kn(r, ro») 

[0 [<r'o/u)t 
= kp+l(r, rO) - J1 du Jo pn(r, rO, p, pu) 

X (k(p, pu) - ~ kn(p, PU») dp (4.50) 

Replacing now 0-1 by 1 and using the Schwarz and study this equation as we did (4.31). 
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Let us now apply the above results, starting from 
(3.1), which yield 

Bo(s) = V(sjay+l[1 + (s/ay+lr1 (4.51) 

and, with some algebra, 

Ao(s) = W(s/a)£+l[1 + (s/ay+lr\ (4.52) 

Ik(r, rO)1 :=:;; W(rOl/a)'+l[l + (rOl/a)'+lr1
• (4.53) 

Bounds for M(r, r') 

From (3.6) and (3.8), we get for IMo(r, r')1 the 
upper bound 

(rr' / a 2) 1<1+£) 
IMo(r, r')1 < W(1 + k2rr')(rr,)1 2 1<1+ ) . 

1 + (rr'/a ) < 

From the study done for Eq. (4.31), we easily derive 
the following inequality, valid for r' ~ r: 

IM(r, r') - Mo(r, r') - M1(r, r')1 :=:;; W(rr')l(ka)l 

X [1 + (ka)-i]. (4.60) 

Remarkll ,' The inequality (4.58) can be improved 
for large values of ka, by splitting the u integration 
interval in (4.56) into two parts, (1, 1 + ex) and 
(I + ex, 0), with 

ex = inf [(0 - 1), (ka)-l]. (4.61) 

In the lower interval, we replace 1 + kp(u - 1) by 1, 
in the upper, by kp(u - 1). We then obtain, ka > 1, 

Imt(r, rO)1 < W(ka)l(O - 1)-101. (4.62) 

(4.54) We can gather the results obtained for 0 ~ I in the 
Since (2.30) is similar to (1.21) and since (4.54) is of following formula: 
the form (4.19) or (4.34), the derivations of (4.29) 
and (4.49) apply, for VEE, and yield 

IM(r, r') - Mo(r, r')1 

(rr' /a2)1(H£) 
:=:;; W(ka)-l(1 + k2rr')(rr')1 21<1+£)' (4.55) 

1 + (rr'/a ) 

For getting better bounds, we want to use the trick 
(4.50). For this, we need to derive M1(r, r'), which is 
obtained by applying (4.2) to Mo(r, r'). We are led to 
study separately Mri(r, r') and Mo(r, r'). With 
notations implicitly defined in (4.1), we therefore 
study mt(r, rO) and ml(r, rO). 

1°0 ~ 1,' We have to study the integrals 

Imt(r, rO)1 

{9 [<r
2
9/U)l 

:=:;; Vk2J1 du Jo p3 W(p)1 [1 + kp(u - l)r~ dp, 

(4.56) 

Iml(r, rO)1 

('I [<r
2
9/u) t 

:=:;; V Jl u-1 
du Jo p W(p)1 [kp(u - 1)]-1 dp, 

(4.57) 

where we used (4.8), (3.6), and (3.8). Using now for 
[1 + kp(u - 1)]-i the majorant [kp(u - 1)]-! and 
using for the upper bound of the p integrals, in a first 
step, the majorant r2() and, in a second step, the 
majorant + 00, we obtain 

(r2()/a2)1£+1 
Imr(r, rO)1 :=:;; Wka 2 21 +1 ' (4.58) 

1 + (r O/a ) £ 

1 (r20/a2)1£+1 
Im~(r, rO)1 :s;; W(ka)- 1 + (r20/a2)1<+1' (4.59) 

IM(r, r') - Mo(r, r')1 

{
w*crr,)l ka 

< W*(rr')l(ka)l[1 + (rr')l(r' _ r)-l1' (4.63) 

2°() :=:;; 1,' From (4.25), (3.6), and (3.8), we can write 
down the following inequalities: 

Imi(r, rO)1 :=:;; Vk-l f(O-l - u-1rl(1 - u)-! du 

«r
2
B/U)' 

x Jo p W(p)1 (kp)!(r20 - p2u)-1 dp, 

(4.64) 

Iml(r, rO)1 :=:;; Vk-l f(O-l - u-1)-1(1 - u)-lu-1 du 

[<r2B/U)t 

X Jo p W(p) I [r 20 - p2u]-1 dp. 

(4.65) 

Using the Schwarz inequality in (4.65) as we did in 
(4.26), we readily obtain 

1 (r20/a2)1+1£ 
Im~(r, rO)1 :=:;; W(ka)- 1 + (r20/a2)1+1<' (4.66) 

From (4.64) we obtain in the same way 

Vk-1f(u/0 - 1)-1(1 - u)-! du 

and therefore 
( 

{<r2B/U)f )1 
x Jo p2V 2(p)k3p3 dp (4.67) 

(r20/a2)1+1< 
Imi(r, rO)1 :s;; Wka 1 + (r20/a2)1+1<' (4.68) 

The inequality (4.60) is therefore valid for any pair of 
positive rand r'. 
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Remarkll : For improving (4.68) for large values of In the same way, from (2.25), we get 
ka, we can write, instead of (4.64), 

Imi(r, rO)1 ::; Vk-t 1\0-1 
- u-lr!(1 - uri du 

(r'6Iu)t 
x Jo p W(p)1 (r20 - p2U )-! 

X k2p2[1 + kp(u - l)]-! dp (4.69) 

and split the u integration interval by the bound 
(l + 0)/2. On the lower interval, we can replace 
Imri(p, pu)1 by kpu(u - 1)-1 and use the Schwarz in
equality, which leads to the bound W(l - O)-tO!(ka)t. 
On the upper interval, we split the p integration 
interval into two parts, with the boundary t(r20lu)t, 
keeping for mri(r, rO) the majorant we used in (4.69). 
On the lower p interval, (r 20 - p2u)-! remains 
bounded, proportional to (r 20)-!. On the upper p 
interval, p21 V(p)1 can be replaced by V(pla)-i. In both 
cases, we again obtain the bound W{l - O)-lO!(ka)t. 

Gathering now the results obtained for 0 ~ 1, we 
can write, for any value of rand r', 

IM(r, r') - Mo(r, r')1 

{
w*(rr,)tka 

::; W*(rr')t(ka)t{1 + (rr')! Ir _ r'l-t}, (4.70) 

IM(r, r') - Mo(r, r') - Ml(r, r')1 ::; W*(ka)t(rr')t, 

(4.71) 
and, from (4.29) and (4.49), 

IK(r, r') - Ko(r, r')1 

< W(ka)-t(rr')t (rr'/a
2
)t+t

E 

- 1 + (rr'/a2)t+tE' (4.72) 

New Bounds of K(r, r') 

From (2.24), it is easy to derive the formula 

K(r, r') = !X(r) cos (kr') + (J(r) sin (kr') 

+11' sin k(r' - p) M(r, p) 
2 dp. (4.73) 

r k p 

!X(r) and (J(r) can be calculated by comparing 
K(r, r) and [(alar)K(r, r')]"'=r since they can be 
obtained from (1.21) through elementary and tedious 
computations, as they are readily obtained from 
(4.73). The result is 

K(r, r') = K(r, r) cos k(r - r') + fJ(r) sin k(r - r') 

+ir
' sin k(r' - p) M(r; p) dp, (4.74) 

r k p 
where 

K(r, r') = K(r', r') cos k(r' - r) + nr') sin k(r' - r) +i1 sin k(r - p) N(p, r') 
2 dp, (4.76) 

r' k p 

where 

'(r') = tk-1{r,2V(r') + k(r', r') - [k(r', r')]2}. 

(4.77) 

Let us now assume for a while that V(r) is replaced in 
(2.21) by AV(r). Since (2.21) is a Volterra equation, all 
the iterated series giving either K(r, r', A) or M(r, r', A) 
or N(r, r', A) are entire functions of A. They can be 
twice differentiated with respect to r, or to r'. It 
follows that the terms in (4.74) and (4.76) which are 
linear in VCr) are nothing but Ko(r, r'). Let us now use, 
for any quantity, the index L to denote terms which 
are linear in V. We can write 

M(r, r') = ML(r, r') + Q(r, r') (4.78) 

and, since it follows from (2.25) that the linear part of 
N(r, r') is the same as for M(r, r'), 

N(r, r') = Mdr, r') + S(r, r'). (4.79) 

Bounds for Q(r, r') can be obtained from (3.6) and 
(4.55); hence 

( 'I 2)t+tE I Q( r, r') I :$ W( rr') t ----'.r_r...:.a--=--__ 
1 + (rr' /a 2)t+tE 

x [1 + (ka)-t(1 + k2rr')]. (4.80) 

One can also use (4.71), (4.58), (4.68), (4.59), (4.66), 
and (3.6), which yield 

(rr'/a2)t+tE 
IQ(r, r')1 < W*ka(rr')t . (4.81) 

1 + (rr' / a2)t+tE 

From (2.25), (4.81), (3.1), and (4.72) since Ip2V(p)1 is 
uniformly bounded, we get 

(rr' /a2)t+tE 
IS(r, r')1 < W*kaCrr')t . (4.82) 

1 + (rr'/a 2)t+tE 

Separation of the linear and the nonlinear parts in 
(4.74) and (4.76) yields 

K(r, r') - Ko(r, r') = tk-1[k(r, r)]2 sin [k(r - r')] 

+ k-1f'sin k(r' - p)Q(r, p)p-2 dp 

and 
(4.83) 

K(r, r') - Ko(r, r') = -!k-1[k(r', r')]2 sin [k(r' - r)] 

+ k-1!rsin k(r - p)S(p, r')p-2 dp. 
r' 

(4.84) 



                                                                                                                                    

1316 PIERRE C. SABA TIER 

For obtaining upper bounds of IK(r, r') - Ko(r, r')I, 
we use (4.83) for r' ~ rand (4.84) for r' ~ r. We 
replace the sines by their majorant 1, [k]2 by a 
majorant derived from (1.20) and (4.1), and IQ(r, p)1 
and IS(p, r')1 by W*ka(rr')t, which follows readily 
from (4.81) and (4.82). Hence we get, by letting the 
upper bound of the integral go to 00, 

IK(r, r') - Ko(r, r')1 ~ aW*. (4.85) 

tions, R~)(r, r') and R~)(r, r'), such that 

ka(r') = cos (kr)Ka(r, r') 

- sin (kr)k-1 :r Kir, r') + R~l(r, r'), (5.1) 

/(a(r') = sin (kr)Ka(r, r') 

o -( + cos (kr)k-1 or Ka(r, r') + RJI(r,r'). (5.2) 

Replacing the interval (r, r') in (4.83) a,nd (4.84) by Now, let us introduce the functions 
(0, (0) and using (4.81) and (4.82) yields 

IK(r, r') - Ko(r, r')1 ~ W*r/(ka), 

IK(r, r') - Ko(r, r')1 ~ W*r'/(ka). 

Bounds for the Derivatives 

From (4.83) and (4.84) we readily derive 

o 
- [K(r, r') - Ko(r, r')] or' 

= -![k(r, rW cos [k(r - r')] 

(4.86) 

(4.87) 

+ f'cos k(r' - p)Q(r, p)p-2 dp, (4.88) 

.E.. [K(r, r') - Ko(r, r')] or 
= ![k(r', r,)]2 cos [k(r' - r)] 

+ fcos k(r - p)S(p, r')p-2 dp. (4.89) 

They can be bounded like above. The result is 

1 :r [K(r, r') - Ko(r, r')] I) 

1

1... [K(r, r') - Ko(r, r')] 1 

< W*ka, (4.90) 

or' 
I :r [K(r, r') - Ko(r, r')] 1 < W*r'/a for r ~ r', 

(4.91) 

1

1... [K(r, r') - Ko(r, r')] I < W*r/a for r' ~ r. 
ar' 

(4.92) 

5. PROOF OF LEMMAS 1 AND 2 

We successively prove these lemmas for Ks(r, r'), 
K4 (r, r'), [K(r, r') - Ko(r, r')], and Kg(r, r'). 

Proof for Kir, r') 

Since the sine and cosine are uniformly bounded 
functions, it is sufficient to prove the existence of two 
functions, ka(r') and fa(r'), and two negligible func-

R131(r, r'u) = (1 - w/2w) sin (kw) cos (kr), (5.3) 

tR~al(r, r'u) 

= sin [ik(r - r' - w)] cos [ik(r + r' - w)] 

+ sin (kr'u2) cos [kr'(1 - u2)]. (5.4) 

The two first inequalities in (3.31) obviously hold for 
IRial (r, r')I. From (3.30), we easily derive the in
equalities 

::;;;---1- . 2r'2u
2 

( r2u2 ) 
r - r' (r - r')2 

(5.5) 

From (5.5) we get, for r' ~ ir, 

and 
Ir - r' - w + 2r'u21 ::;;; C(r,2/r)u2 (5.6) 

Ir + r' - w - 2r'(1 - u2)1 < C(r,2/r)u2. (5.7) 

Referring to (5.4), we see that 

IR(al(r r' u)1 ~ {C = 4 (5.8) 
2 " Ck(r,2/r)u2 for r' ~ ir . 

Let us also introduce the functions 

R~31(r, r', u) = -(1 - w/2~) sin (kr) sin (kw), (5.9) 

iR~al(r, r', u) = -sin [ik(r + r' - w)] 

X sin [ik(r - r' - w)] 

- sin (kr'u2) sin [kr'(l - u2)]. 

(5.10) 

Therefore, according to (3.31), (5.6), and (5.7), 

RC31 r r' u {C I a (, , )1 < C(r'/r)u2 for r'::;;; ir, (5.11) 

IRC31(r r' u)1 < {C for r' "'" 1r. (5.12) 
4 " Ck(r,2jr)u2 .::. ~ 

Let us then introduce the notation 

RW(r, r', u) = R~kl(r, r', u) + R~kl(r, r', u) (5.13) 

and define ka, fa, R~l, and R~l by the following 
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relations: 

k3(r') = 2 f\in (kr'u2
) sin [kr'(1 - u2)]<I>aCu) du, 

Jo (5.14) 

1{3(r') = -2 f\in (kr'u2) cos [kr'(1 - u2)]<I>a(u) du, 
Jo (5.15) 

and therefore 

(5.24) 

Defining Ri4 )(r, r', u) as the continuation of 
Ria)(r, r', u) for u2 ~ 1, we obtain from (5.24) 

IR~4)(r, r', u)1 
R~)(r, r') = - f[Sin (kr)R~~~(r, r', u) {C = 4 

+ cos (kr)Ri~~(r, r', u)]<I>a(u) du, (5.16) ~ Ck{(4r,2/r)u2 + [2r,2u2/(r + 2r'u2)]u2} , 

i1 r' ~ r. (5.25) 
R~)(r, r') = - 0 [cos (kr)R~~~(r, r', u) 

A similar inequality holds for IR~4)(r, r', u)l. Use of 
- sin (kr)Ri~~(r, r', u)]<I>aCu) du, (5.17) these bounds and of formulas (3.15) and (3.22) leads 

which are consistent with (3.14), (5.1)-(5.10). Since us to the formulas 
<l>3(U) , according to (3.20), is integrable on (0, 1), it 
follows from (3.31), (5.8), (5.11), and (5.12) that 

IR~)(r, r')1 

(

c f'<l>a(u), du < Ca 

<, f1 
C ~ (1 + kr') Jo l<I>a(u)1 u

2 
du for r' ~ ir 

(5.18) 

Checking that R~)(r, r') fulfills axioms (a) and (b) 
of a negligible function is trivial. R~) (r, r') is therefore 
a negligible function, and similarly R~)(r, r'). Besides, 
it readily follows from (5.14) and (5.15) that r'-lka(r') 
and r'-ll{a(r') are uniformly bounded functions of r' 
on [0, 00], and go to zero like r'-l as r' goes to infinity. 
They therefore belong to L 2(0, 00). 

Proof for Kir, r') 

The derivation which has been done for Ka(r, r') 
can be reproduced, except for the following modifi
cations: 

(a) 11 - twjwl is now bounded by (3.35), so that we 
get 

(4)( , )1 {cu2 

IR1 r, r, u < C(r'/r)u2 ' 

(4)( , )1 {cu 2 

IRa r, r ,u < 2 • 
C(r'/r)u 

(b) Let us put 

(5.19) 

(5.20) 

R = r + r' - w - 2r'(1 - u2). (5.21) 

The following relations are easy to prove (for t' ~ r): 

R = ( 4r,2 + 2 w
2 

- (r + r,)2 r')(u2 _ 1), 
r + r' + w [w + r + r,]2 

(5.22) 
w2 - (r + r')2 4rr'(u2 - 1) 

(w + r + r')2 (r + r')2 + 2(r + r')w + w2 

< 2rr'(u
2 

- 1) ,(5.23) 
(r + r')2 + 2rr'(u2 - 1) 

k4(r') = 2 fD sin (kr'u2) sin [kr'(1 - u2)]<I>iu) du, 

(5.26) 

k4(r') = -2 f"sin (kr'u2) cos [kr'(l - u2)]<I>iu) du, 

(5.27) 
the inequality 

IR(4)(r r')1 < k-\ka)-l-<{C (uniformly) 
N , C(r'/r) + kC(r,2/r) 

+ kCr'(r'jr)!€ for r' ~ r, (5.28) 

and a similar inequality for R~) (r, r'). It is a matter of 
simple algebra to show on (5.28) that R~)(r, r') and 
R~)(r, r') are negligible functions. On the other hand, 
the majoration of I <l>4(U) I by Cu-a- f in (3.22) enables 
us to show readily that Ir'-lk4(r')1 is uniformly bounded 
and goes to zero like r'-l as r' goes to infinity and that 
the same property is true for 1{4(r'). 

Proof for K(r, r') - Ko(r, r') 

We use the label 1 for denoting the quantities 
related to K(r, r') - Ko(r, r'). Referring to (4.84) 
and (4.89) and comparing with (1.7) and (1.8), we can 
readily write down 

k1(r') = _k-1( Hk(r', r')]2 sin (kr') 

+ foo sin (kp)S(p, r')p-2 dp), (5.29) 

k1(r') = k-1 (Hk(r" r')]2 cos (kr') 

+ l~ cos (kp )S(p, r')p-2 dp), (5.30) 

PW(r, r') = -k-1ioosin k(r - p)S(p, r')p-2dp, 

(5.31) 

QW(r, r') = -k-1lOO 

cos k(r - p)S(p, r')p-2 dp. 

(5.32) 
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Pi:)(r, r') and Q~)(r, r') are obviously negligible if 

L" IS(p, r')1 p-2 dp 

is negligible. Using for IS(p, r')1 the bound C(rr')!, 
which is readily derived from (4.82), we obtain 

100 

(r')! r IS(p, r')1 p-2 dp < C -; , (5.33) 

and this bound is sufficient for proving the negligi
bility. 

On the other hand, using the bound (4.82) and 
taking as a new integration variable x = r' p/a2, we 
easily see that 

ioo,S(p, r')1 p-2 dp < c(~l (5.34) 

Besides, as a special case of (5.33) it is clear that 

i~ IS(p, r')1 p-2 dp < c. (5.35) 

When using these two bounds in (5.29) and (5.30), 
one sees easily that r,-1k1(r') and r'-1/(1(r') are uni
formly bounded functions on [0, co], going to zero 
like r,-1 as r' goes to infinity. 

Proof for K8(r, r') 

Again, the argument is similar to the case for 
Ks(r, r'), but we use a different way of bounding the 
remainders, starting with the following remark: We 
have essentially to get bounds for 10 - w/2w) sin kwl 
and fork Ir - r' - w + 2r'u21.Nowboththesequanti
ties are bounded by k Iw - iwl, and, by comparing the 
bound previously derived for IK3(r, r')I, are bounded 
also by a constant. Now, as we have noticed in Sec. 3, 
fcir u2 S 1 and r' S r, iw is positive and smaller than 
w. Therefore, the calculation of the remainders 
R~)(r, r') and R~)(r, r'), which is essentially the calcu
lation of 

fk Iw - !wl u-2 du, (5.36) 

reduces to the calculation of 

k f(W - iw)u-2 du + C fU-2 du, (5.37) 

where IX should be conveniently chosen. The first term 
in (5.37) can be integrated by parts, and yields 

-klX-1[W(IX) - !W(IX)] + 2kr'f(; - 1) duo (5.38) 

We need to know the result only for r' S r. Now, 
in that case, (r - w)y-1lies between -r'/w and r'/w, 
so that the second term in (5.38) is absolutely bounded 
by 2kr'21X/(r - r'). The first one is also absolutely 
bounded by the same quantity. If kr'2 < r - r', we 
can take IX = 1. If not, taking (J.. = [(r - r')/kr'2 ]! 
yields 

IR~(r, r')1 < Ck-!r'(r - r')-i, (5.39) 

which obviously holds for any r' S r. A similar result 
is obtained for IR~(r, r')I. They are therefore negligible 
functions, and we can write down the s.s. functions 

ko(r') = (17krlVofsin (kr'u2) 

X sin [kr'(1 - U2)]U-2 du, (5.40) 

/(o(r') = -C7Tk)-l Vo fSin (kr'u2) 

X cos [kr'(1 - U2)]U-2 duo (5.41) 

It is also possible to derive the S.S. functions from the 
expansion (3.16). One is led in this way to the formulas 
(1.18) and (1.19), which can easily be proved to be 
equivalent to (5.40) and (5.41). It is also of interest to 
obtain the asymptotic behavior of ko(r') and ko(r'). 
Standard methods, when applied to (5.40) and (5.41), 
lead us to 

ko(r') = -iVo(r'/17k)![cos (kr') - sin (kr')] + (217k)-1 

X Vo[cos (kr') + sin (kr')/4kr'] + O(l/k2r'2), 

(5.42) 

/(o(r') = - i Vo(r' /17k)! [cos (kr') + sin (kr')] + (217k)-1 

X Vo[sin (kr') + cos (kr ')/4kr'] + OO/k2r'2). 

(5.43) 
6. PROOF OF LEMMA 4 

Our aim is to obtain K(p, p') from its values on a 
straight line p = r, and ultimately make r -+ co. For 
convergence reasons, which will clearly appear below, 
we unfortunately cannot do this for K(p, p') but rather 
for K2(p, p'), which is defined by (1.16). Since it is 
obvious from (3.16) that Kg(p, p') is a solution of 
(2.1), with yep) replaced by 0, K2(p, p') is a solution 
of the equation 

[p2 (:;2 + k2
) - p'2 (O~~2 + k2

) ] Klp, p') 

= p2V(p)K(p, p') (6.1) 
with the boundary condition 

[K2(p, p')Jp=o = [Kip, p')]p'=o = O. (6.2) 

Let Q be the point whose coordinates are 

Q{; : ::' (6.3) 
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with Po ~ p~, this being the only useful case for our 
purpose. Clearly, the two characteristics going 
through Q, namely the straight line P' = pp~1 Po and 
the hyperbola pp' = PoP~, intersect the straight line 
p = r in two points-say D and C-Iocated as shown 
in Fig. 3. If the right-hand side of (6.1) was a known 
function, it would therefore be possibles to construct 
the solution of (2.1) and Q from its boundary values 
on DC, and (2.2) would only give constraints on the 
choice of that boundary values. So as to obtain a more 
precise result, let us now use the variables and the 
functions defined through (2.4), (2.5), and (2.6), and 
denote by the index 0 the values of these quantities 
when p = Po, P' = p~. We then obtain Eq. (2.7), and 
the domain QDC becomes a curvitriangle (Fig. 4), 
with two orthogonal straight sides QD and QC. The 
Riemann function is again 

Sea, 'YJ; ao, 'YJo) == Sea, 'YJ; Q) 

= Jo(2k[(a - ao)('YJ - 'YJo)]!), (6.4) 

and we can readily write 

v(Q) = v(C)S(C; Q) + Jf Sea, 'YJ; Q) da d'YJ 

G 

+ [ s(a''YJ;Q)(~v(a,'YJ») da JOD aa 

where G is the domain QDC. We can now come back 
to the variables p and p', through the transformation 
formulas 

P = {2'YJ[a + 2 + (a2 + 4a)!])!, 

P' = {2'YJ[a + 2 - (a2 + 4a)!])!. 

FIG. 3. The in
tegration domain 
G in the (p. p') 
plane. 

p.' o 

o E' 

(6.6) 

p '- , 
p-~~ 

p 

'I'] / 

/ 

I 
I 

I 

I 
I 

/ 0': r2/4'1'] + 4'1']lr2- 2 
/ 
I 
I 

c 

0-... 

FIG. 4. The integration domain G in the (<1, 'Y}) plane. 

After one integration by parts, we obtain in this way 

(6.7) 

and 
, 'I Po = PoPo r, , I ' PD = rpo Po, (6.8) 

{ [(
P P' Po P~) J!} Spp' = Jo k -; + -;; - p~ - ~ (pp' - Pop~) . 

(6.9) 

The brace in the second term of the right-hand side 
of (6.7) can be rewritten as 

tSr.p.r-i-p'-!K2(r, p') + (rp')-! 

x (K2(r, p') :r Sr.p' - Sr.p' :r K2(r, p,»). (6.10) 

Let us now introduce the following convenient 
notation: 

A (
r p' Po P~) = -; + - - -; - - (rp' - PoPa), 
P r Po Po 

(6.11) 

N = (~ - i)(p'r - PoPo) 
P' r2 

+ p,(~ + i _ ~ _ ~), 
P r Po Po 

(6.12) 

D = A!. (6.13) 
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Clearly, S, and its derivative, in (6.10), are equal to 

(6.14) 

:r Sr.p· = -tkND-IJikD). (6.15) 

Analysis of the behavior of A as r goes to infinity 
shows that 

kD = kr _ l.kp' (PoP~ + Po + ~) 
2 12 I 

P Po Po 

+ O(d +r
2bpl

) [1 + O(~)], (6.16) 

where d and b are quantities related to Po and p~, 
which remain constant as r goes to infinity. Besides 

lk(N/D) = k + O«d + bp'2)/r2)[1 + O(p'/r)]. (6.17) 

Formula (6.15) shows that the argument of the Bessel 
functions in S and as/or go to infinity like kr as r 
goes to infinity. We are therefore led to use the 
asymptotic forms of the Bessel functions, which are 
related to the Bessel functions by the inequalities 

IJo(x) - (2/TTX)i cos (x - iTT) I 

~ C inf {x-t + ;r!, 1 + x-i }, (6.18) 

IJ1(x) - (2/TTX)i sin (x - iTT) I 

~ C inf {x-t + x-!, 1 + x-i }. (6.19) 

Let us now introduce the functions 

q; = kr - tkp[(PopM p'2) + (Po/ p~) + (pM Po)] 

= kr - ip, (6.20) 

R = C[(d + bp'2)/r2](1 + Cp'/r). (6.21) 

As far as S and its derivative are concerned, going to 
r = 00 in (6.7) leads to replacing kD by q; in the Bessel 
functions, teN/D) by 1, and the Bessel functions by 
their asymptotic behaviors (6.18) and (6.19), and 
proving that the over-all remainder goes to zero. For 
this we use for IK2(r, p')1 the bound 

IK2(r, p')1 < Ca[p'/(p' + a)], (6.22) 

which follows readily from (3.39) for r »a, and we 
use for l(a/ar)K2(r, p')1 the bound 

I 
a I p' -Klr,p') < C--, 
or p' + a 

(6.23) 

which follows readily from (3.40) for r» a. Let us 
then notice that Ix - q;1 is OCR) and therefore 
Icos x - cos q;1 is OCR) + O(R2), whereas Ix-t - q;-il 
is O(q;-tR) provided that IRq;-11 < I, a conditionl2 

which must be checked when p' approaches p'a or p'n. 

Keeping this caution in mind, we can precisely write 
that the remainder, when either S or as/or in (6.10) 
is replaced by its asymptotic form, is given by 

:ltq> ~ Cq;-i(R + R2 + q;-IR) 

+ (1 + q;-IR)(q;-t + q;-!) (6.24) 

and, in any case, viz., even if q; is very small, 

:ltq> ~ C(1 + q;-i + x-i), (6.25) 

where x is the exact value of the argument. When 
(6.10) is used in (6.7), the contributions to the re
mainder due to the replacement of S and as/or by 
their asymptotic form are bounded, for large r, by 

(6.26) 

So as to evaluate (6.26), let us first assume that 
p~ ¥= Po and p~ ¥= O. We are led to split the integration 
path CD as shown in Fig. 5, introducing for conven
ience the following points: M is the middle-of CD, 
so that its ordinate is approximately tr(p~/ Po) for large 
r. A is the point of ordinate a, which is a fixed length. 
E and F are the points for which q; = O. Their ordi
nates, ex and f3, are approximately equal to pop~/r and 
2(po/ p~ + p~/ po)-lr for large r. Clearly EF ~ CD for 
large r. Since we assume p~ ¥= Po, we can always take 
r large enough so that DF is larger than k-l. This 
situation is the one taken into account below. Now, 
for large r, q; can be written as 

q; ---H(Po/p~) + (p~/PO)](k/pl)(p' - ex)(f3 - p') 

= Ckp'-l(p' - ex)(f3 - p'). (6.27) 

According to (6.21)-(6.24), for evaluating :1\, we have 
to calculate 

I = Ck-Pri r'D_pl_( p' )P 
p,a Jp,o a + p' (p' - ex)(f3 - p') 

(
d + bPI2)Q I-t d I 

X P p, 
r2 

(6.28) 

for p = t, t, f, t and, for each p, for q = 0, 1,2, 
except in the case p = t, where q = 0 should be 
discarded. In (6.28) we have not taken in account the 
term p'/r in (6.21), because it is bounded throughout 

E C A M 0 F 
I I I I I I I ;;0 

0 a a I (,8-Ck- l) ,8 
I rp~ 

pp' 
I , 2r 

PoP~ _0 I Po Po P., /p.,'+P.' /p., 
'2r" ~1/2r- o 0 0 0 r Po 

FIG. 5. 
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the interval. Clearly, if Ip. q goes to zero as r goes to 
infinity for some value of q, the property holds for 
larger q's. We have therefore to check (6.28) only for 
p = t, t, t, q = 0, and for p = t, q = 1. On the 
intervals AM and MD, we replace p'iCa + p') by 1, 
and, on the interval CA, we replace it by p'/a. We are 
led in this way to the following integrals. 

Interval MD, P ;;:: t, q = 0: 

I < ck-pr-1jD({J - p')-P dp' < C(kr)-l. (6.29) 
31 

Interval AM, P ;;:: t, q ;;:: 0: 

where G is the domain G for r = 00. Now for being 
allowed to replace K2(r, p') and «(}I(}r)K2(r, p') by 
their expressions in terms of the s.s. functions, we 
need only to check that the negligible functions 
associated with K 2(r, p') fulfill also the condition 

fIKW(r, p')l p'-! dp' --+ 0 as r --+ 00. (6.37) 

This is easy to check on (5.18), (5.28), and (5.33). It 
would no longer be true for IK8(r, r')I, or our major
ants for the remainder either. This is the reason why, 
unfortunately, we had to use K2(r, r') instead of 
K(r, r'). The use of the S.s. function yields the equation 

(6.30) (PoPo)-i K 2(po, Po) 

Hence, for p > t, q = 0, we get 

1< C(kr)-P(r/a)! 

and, for p = I, q = 1, we get 

{Or 
1< Ck-*r-2Ja p't dp' < C(kr)-l. 

Interval CA, p > t, q = 0: 

I < Ck-Pr-v+la- 1 {a p''P-l(p' _ IX)-P dp' 
J2a 

and, since p' /(p' - IX) is clearly bounded by 2, 

1< C(kr)-P(r!a)l, 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

p = t, q = 1. The same ansatz, combined with the 
remark that R is there smaller than Ca2/r 2, yields 

1< C(ka)-la2jr2. (6.35) 

From (6.29), (6.31), (6.32), (6.34), and (6.35) we see 
that the remainder go to zero as r goes to infinity. 
Since the first terms in the right-hand side of (6.7) go 
to zero as r goes to 00, K2 being uniformly bounded by 
(6.22), we therefore obtain 

2(popori Klpo, Po) 

= - (2k)* lim (r(po'!po) (K
2
(r, p') sin (kr - if - 1:17") 

17" r-+oo Jo 
+ k-1 ~ K 2(r, p') cos (kr - (j3 - 1:17"») p'-! dp' or 
+ffCppl)-ip2V(P)K(P, pi) 

() 

X Jo(k[(P, + pi _ p~ _ P~)(ppl - popo)]l) 
p P Po Po 

X dpdp', (6.36) 

= (2
k7J 100 

([klp') sin [!p(p')] 

- k2{p') cos [?J{p')]}p'-t dp' 

+ I ffCppl)-!p2V(P)K(P, pi) 

G 

X Jo[k[ (;, +; -;~ -;:)(ppl - popo)rJ 
X dp dp', (6.38) 

in which !p(p') is equal to if + !17" and the domain G 
is the infinite extension of QDC when r goes to + 00. 

Remarks: (1) In the case of a finite range potential, 
equal to zero for p > b, the integrated term in (6.38) 
vanishes for Po larger than h. The part of the wave
functions outside of the range can therefore be 
readily derived from the s.s. function and, by com
paring to what can be directly obtained, gives con
sistency conditions on s.s. functions for finite-range 
potentials. A similar study can yield relations between 
properties of the s.s. functions and asymptotic 
properties of V(r). 

(2) The "boundary condition" (6.2) is obviously 
fulfilled by any finite solution of (6.38). Existence and 
uniqueness of solutions of (6.38) are not studied in the 
present paper. 

7. INTEGRAL REPRESENTATION FOR THE 
S.s. FUNCTIONS 

We start from (1.22) and (1.23), which we have to 
study only in the case r ;;:: r', according to the defi
nition of the s.s. functions. We successively derive the 
contributions to the s.s. functions due to Ko(r, r') and 
to the integrated term. In both cases, we successively 
derive the corresponding equalities (1.7) and (1.8). 
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Contribution Due to Ko(r, r') 

We study (1.22). If r is allowed to go to infinity, a 
candidate for the asymptotic form of Ko(r, r') is 
obviously 

Ko(r, r') 

-1 (r')! 
= (2rr)! k 

X ioocos [k(r - r' - ~ :~) - ~J pV(p) dp. 

(7.1) 

For proving that (7.1) truly is the non negligible part 
in (1.7), we have to prove that its difference :It with 
(1.21) is a negligible function; to get absolute bounds 
for this difference, we must do the following; 

(1) Obviously, we obtain a bound for :It by just 
adding up a bound of IKo(r, r')I, as given by (3.4), 
to a bound coming from (7.1), say (r'lk)!. We 
therefore obtain 

l:ltl < C{(r'lk)f + (rr')f[1 + k Ir - r'lJ-t}. (7.2) 

(2) So as to make the comparisons easier, let us now 
introduce the functions 

KJ(r, r') 

1 (r')! 
= - (2rr)! k 

xif(rdcos [k(r - r' - ~~) - ~JpV(p)dp, 
(7.3) 

K~(r, r') 

= -iCrr')! 

X it(rdJo[k(r - r')(1 - ::JJpV(P) dp. 
(7.4) 

Since the Bessel function and the cosine function are 
uniformly bounded functions, it is easy to show that 

IKo(r, r') - KJ(r, r')1 + I Ko(r, r') - K.';(r, r')1 

< C(l + _1_) (rr')! (75) 
(kr)! 1 + (rr'/a 2)t+!< . 

and is therefore a negligible function. Hence we can 
limit our study to the comparison of K~(r, r') and 
KJ(r, r'). 

(3) Let us pupa 

X = k(r - r')[1 - p2/rr']!, (7.6) 

g; = k(r - r' - ip2/r'), (7.7) 

R = X - <p, (7.8) 

and let us assume that r' :::;; ir. It follows that X, and 
g;, remain12 larger than ikr on the integration path 
and that IRI :::;; <po Besides, R is given by 

IRI < Ckr[p2/r 2 + p4/(rr')2]. (7.9) 

We also introduce 

RI = Ig; - krl = k Ir' + !p2/r'/, (7.10) 

which is also smaller than <po Now, throughout the 
transformation of the Bessel function in (7.4) into its 
asymptotic form, remainders appear at four steps; 

(a) Jo(x) ---+ x-t cos (x - rr/4). Remainders abso
lutely bounded by C(x-! + x-i), or C<p-!(l + R/<p) + 
C<p-!(l + R/g;). 

(b) x-! cos (x - rrj4) ---+ g;-t cos (x - rr/4). Re
mainders absolutely bounded by C<p-!R. 

(c) g;-! cos (x - rr/4) ---+ g;-t cos (g; - rr/4). Re
mainders absolutely bounded by Cg;-tR/(I + R). 

(d) g;-t cos (<p - rr/4) ---+ (kr)-! cos (g; - rr/4). Re
mainders absolutely bounded by (kr)-~Rl' 

Gathering these results, and inserting them at their 
proper place, we see that the remainder :It of the 
transformation KJ(r, rl) ---+ KJ(r, rl) is absolutely 
bounded by 

(rr'l! 
l:ltl :::;; cerr')! Jo p W(p)1 R(rp) dp, (7.11) 

where 

R(rp) = <p-i + g;-i + R(<p-i + <p-~) + g;-t[R/{I + R») 

+ (kr)-iRI • (7.12) 

Clearly, our point is proved if we succeed in showing 
that the contributions to (7.11) of g;-i, R<p-i, [R/ 
(l + R»)g;-t, and (kr)-iRl are negligible functions. 
Now, since g; is larger than Ckr and since p W(p)1 
belongs to LI(O, 00), the contribution of <p-i is 
bounded by 

(7.13) 

The same is true for Rqr! since R is smaller than kr. 
So as to get a bound for g;-tR/(l + R), we split the 
integration path in (7.11) into two domains; from ° to 
(rr'/k2)!, and from (rr'/k2)! to (rr')t, or to 00. On the 
first domain we use <p-!R, on the second one we use 
C<p-t. We obtain in this way 

(r'/k)!(rr'lk2r!(1+fla1+f(1 + 1Ikr'). (7.14) 

As for the term (kr)-!, it yields 

(r'/k)t[(r'/r) + (rr l)-!(l+f)a1+E). (7.15) 

(4) Now, by using the bound (7.2) and the bound 
obtained by adding (7.13), (7.16), and (7.15), it is 
possible to prove that :R. is a negligible function. 
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Clearly, the first axiom for a negligible function is 
fulfilled by :R because if r goes to infinity, r', being 
fixed, becomes smaller than ir and then the bounds 
(7.13), (7.14), and (7.15) prove that :R goes to zero, 
at least for r' =F 0, and, according to (7.2), l:ltl is zero 
for r' = O. As for the second axiom, we have to get an 
appraisal of 

f:R(r, r')r,-I(1 + kr,)-1 dr', (7.16) 

This leads us to evaluate terms which are in any case 
bounded by (7.2) and which for r' :s; ir are bounded 
by 

Cr'~r-(l, (7.17) 

where {J is strictly positive and IX:S; 1 + {J - y, y 
being a strictly positive number. The appraisal can be 
obtained by splitting the path of integration in (7.16) 
into two parts if IX > 0, say st· and Si" and use the 
bound Cr'~,-(I on the first part, obtaining a bound in 
Cr~-fJ-l, and the bound (rr')t(r - r')-t on the second 
part, obtaining Cr-!. If IX < 0, keeping the upper 
interval, we split the lower one into S3 and H', 1] 

having to be much smaller than ir. On the lower 
interval, we use the bound Cr'-t, which is readily 
derived from (7.2) since r' « r. On the intermediate 
interval we use Cr'''r-P, and on the upper we use 
again (rr')1(r - r')-t. We then see that the bound 
goes to zero if 1] is equal to a(rjarp/(t+lap, like 

Cr-1fJ/(!+I~1l + Cr-t + Cr~-(l-l. (7.18) 

Since all the terms in:R can be included in this scheme, 
we have proved that :R(r, r') is a negligible function. 

Let us now study (ajar)Ko(r, r'). Differentiating 
(1.22) leads us to three terms. The first one, obtained 
by differentiating (rr')t, is !r-1Ko(r, r'). Using the 
bound (3.4), we readily see that this term is a negligible 
function. The second one, obtained by differentiating 
(1.22) with respect to the upper bound of the integral, 
leads us to a quantity obviously bounded (1 is a 
majorant of IJoD by C(rr') 1Y[(rr')!]1 (r'jr)t, and 
therefore by C(r'jr)t, and therefore negligible. The 
last one is 

-terr')t [(rr')ti Jo[k(r _ r')(1 _ iC)h pV(p) dp. 
Jo ar rr' I J 

Now 
(7.19) 

~ Jo[k(r - r')(1 - p2)!] 
ar rr' 

= -kJ1 [k(r - r')( 1 - ::,)tJ 
1 - tl(r + r')j(r2r') 

X t' (7.20) 
[1 -ljrr'] 

The replacement of the fraction in (7.20) by 1, as r 
goes to infinity, affords remainders of the order of 
p2jrr', which are therefore similar to remainders 
studied above in R1 • As for the Bessel function, it can 
be studied exactly as we did for Jo. The over-all 
remainder can therefore be proved to be a negligible 
function and, apart from this negligible function, 
(7.19) can be replaced by 

~(c)! [oosin [k(r _ r' _! p2) - ~JpV(p) dp, 
(271) k Jo 2 r' 4 

(7.21) 

which is nothing but (ajar)Ko(r, r'). From (7.1) and 
(7.21), we readily derive the part of the S.s. functions 
linear in V: 

kL(r') = - ~(C)t 
(27T) k 

X 100 
cos [k(r' + ~ ~:) + ~JpV(p) dp, 

(7.22) 

kL(r') = _ ~ (C)1 
(27T) k 

X 100sin 
[k(r' + ~ :~) + ~JpV(p) dp. 

(7.23) 
Contribution Due to the Integrated Term 

Since r ~ r', the integrated term (1.23) can be 
written 

5.
1 l(rr'lu)f 

1= Hrr')1 du pV(p)k(p, pu)u-1 

.' I. 0 

X Jo[k[(rr' - p2U)(~ +; -u - D rJ dp, 

(7.24) 
where the notations have been introduced in Sec. 4. ' 
Now, a candidate for its asymptotic form is 

1= (27Tkrtr'! fU-1 du 

X 100 
pV(p)k(p, pu) cos [rp' - i7T] dp, (7.25) 

where 

rp' = kr[1 - p2uj(2rr') - Hu + u-1)r'jr]. (7.26) 

Let us therefore get bounds for II -l\. For this, 
we use for k(p, pu) the following bounds, which 
follow from the combination of (3.1) and (4.29), 

Ik(p, pu)1 < C(pu!)~/[a + put]~, (7.27) 

in which O:S; 1] :s; 1 + E, and let us assume that 
r' :s; ir. A more general bound is obtained later. So 
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as to make the comparison between I and I easier, let 
us introduce the functions 

IT = lerr')! {I u-1 du 
J2r'lr 

(!Crr'lu)! 

X Jo pV(p)k(p, pu)Jo[ ] dp, 

IT = (21Tk)-!r'! {I u-1 du 
J2r'lr 

(!Crr'lu)i 

X Jo pV(p)k(p, pu) cos [ ] dp. 

(7.28) 

(7.29) 

Going from I to IT, and similarly from 1 to IT, can 
be done in two steps: 

(1) setting the p bound equal to Hrr'/u)!, but 
leaving the u bound equal to r' /r, 

(2) in the result obtained from the first step, 
shifting the u bound up to 2r' /r. 

It is not difficult to evaluate the differences intro
duced at the two steps. The result is 

Let us now put 

x' = k{(rr' - p2u)[(r/r') + (r'/r) - u - u-1]}!, 

(7.31) 

R(u) = x' - q/, (7.32) 

and let us assume that r' :::;;; lr. It follows1o that q/ is 
larger than tkr on the domain of integration, whereas 
x' is smaller than !kr. IR(u)1 is therefore smaller than 
191'1. We also introduce 

Rl(U) = 191' - krl = Hkp2(u/r') + (u + u-1)r'] , 

(7.33) 

which is also smaller than 91'. Now, throughout the 
transformation of the Bessel function from I to I, the 
same steps are involved which have been studied after 
Eq. (7.10). We can therefore write readily, for the 
difference :R,' between IT and iT' 

I:R'I :::;;; C(rr')! {I u-1 du 
J2r'lr 

(!Crr'lu)! 

X Jo p /V(p)llk(p, pu)1 Rip' dp, (7.34) 

where 

Rip' :::;;; 91'-1 + R(u)tp'-! + tp'-!{R(u)/[l + R(u)J} 

+ (kr)-fR1(u). (7.35) 

Now it is easy to see from (7.31), (7.26), and (7.32) 
that 

R(u) < Ckr[p2/r 2 + p4/(r2r'2) + r'2/r2u2]. (7.36) 

Bounds for the contributions of the various parts of 
(7.35) to :R' can be derived as we did above from 
Eq. (7.13) down. The derivation, which makes use of 
(7.27), is sometimes tedious, but not difficult. The 
result for the contributions of tp'-! and of tp'-!R(u) is 

(7.37) 
\ 

As for the term tp'-!{R(u)/[I + R(u)]}, where R(u) is 
given by (7.36), we separately evaluate the contri
bution which depends on u only and the one which 
depends on p only. The first one can be calculated 
using (7.27) with I > 1] > 0, and yields 

(7.38) 

For the second one, we use the fact that a potential of 
class e is as well bounded by C p -3+<', where we can 
take () :::;;; E' :::;;; 1. Hence we obtain a bound in 

Clog (r/r')[(r'/r)! + r'!<'r-1+1E']. (7.39) 

Using (7.27) with 1] = 0 for the first term in R1 , with 
1] = 1 for the second one, we obtain a bound in 

(7.40) 

All the bounds obtained above are valid only for 
r' :::;;; lr. So as to obtain a bound valid in any other 
case, we can add an absolute bound for (7.25), which 
Cr'! obviously is (via 1] ,.; 1 in 7.27), and a bound for 
(7.24). For getting an absolute bound for (7.24), we 
have the choice between the bounds given in Sec. 4 
in the case r ~ r'. However, let us notice that up to 
this point, throughout Sec. 7, all the bounds we have 
used for k(p, pu) and Ko(r, r') were obtained without 
making use of the differentials of V(p) or the deri
vation of the bounds for the remainders either. So as 
to keep a way of proving the validity of our result in a 
class of potentials larger than e, let us therefore use 
for III the bound (4.30). We get by this way 

III + III < Cr'! + C(rr')l. (7.41) 

Using now (7.41) for r' ~ ir and the above bounds 
for r' :::;;; ir, we can easily show on (7.16) that :R is 
negligible. The only small difficulties come from 
(7.40), for which we rather split the integration 
interval in (7.16) into three parts-from 0 to a3/ r 2 , 

which yields, via (7.41), a bound in Cr-1; from a3/r 2 

to aifr!, which yields, via (7.40), a bound whose 
dominant term is Cr-Elog Ir/al; and from ai/r! to r, 
which yields, via (7.41), a bound whose dominant 
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term is Crt. All these terms go therefore to zero as r 
goes to infinity, so that :It is negligible. 

Let us now differentiate I with respect to r, and, 
for this, let us study (7.24). Differentiating (rr')! 
obviously yields a term bounded by C(r'lr)!. Differ
entiating I with respect to the bound r'lr yields 
C(r'lr)~ which is also negligible, and so is C(r'lr)! x 
log (rlr') which comes from the differentiation of 
(rr'lu)!. We are therefore led to a term 

1 (rr'lul! 

II = -Hrr')!J. U-1 du [ pV(p)k(p, pU) 
r'lr Jo 

x :r J{k[(rr' -lu)(~ +; -u - u-
1
) rJ 

X dp. (7.42) 
A candidate for its asymptotic form is 

11 = -(27Tk)-!r'!k fU-1 du 

X fX) pV(p)k(p, pu) sin (cp' - i7T) dp. (7.43) 

That III - 111 is a negligible function can be proved 
by the ways used above. Comparing now (7.25) and 
(7.43), we readily derive their contributions to the s.s. 
functions: 

k1(r') = (27Tk)-!r,lfu-1 du L'o pV(p)k(p, pu) 

[ (
p2U r') 7TJ 

X cos tk -;:; + ur' + -;; +"4 dp, 

(7.44) 

K1(r') = (27Tk)-!r'! fU-1 du LX> pV(p)k(p, pu) 

X sin [tk(P:~ + ur' +;) + ~J dp. 

(7.45) 
Since, as we have already noticed, all the derivations 
in this section are valid provided V belongs to S13, it 
is interesting to see what can be said of the s.s. 
functions with the only assumptions of S13' This can 
be done easily. First take (7.22) and write it in the form 

kL(r') = - ~(~)!cos (kr' + t7T) [00 pV(p) dp 
(27T) k Jo 

1 (r,)l - --! - cos (kr' + i7T) 
(27T) k 

X 100 

[cos (i~;) - 1 }V(P) dp 

1 (r')! - _·-t - sin (kr' + f7T) 
(27T) k 

[00 (1.kp2
) 

X Jo sin ~ pV(p) dp. (7.46) 

By using for Icos (tkp2Ir') - 11 and Isin (!kp2Ir')1 the 
bound Ckp2/(r' + p2) and the properties of 813 , it is 
easy to see that the second and the third term in 
(7.46) are uniformly bounded by a constant. We 
notice also that the first term is nothing but the 
leading term in the asymptotic behavior of ko(r'), as 
given by (5.42). Therefore, kL(r') - ko(r') is uniformly 
bounded by a constant. Now, let us look for the 
behavior of kdr') as r' goes to zero. kL(r') can be 
written as a linear combination of S~ cos (tkp2Ir') X 

p V(p) dp and S~ sin C!kp2Ir')pV(p) dp with coefficients 
behaving at the origin like r'l. Let us write again one 
of these terms like 

t ioocos (!kr,-lx)V(x2) dx. (7.47) 

For a potential Vex) of class S13' the function x-
V(X2) belongs to L2(0, 00). Therefore, its Fourier 
transform belongs to £2(0, 00), and therefore r'-~kL(r') 
is square integrable near the origin. Therefore, 
r'-lkL(r') remains bounded, and, since this is true for 
r'-lko(r'), it is true for r'-l[kL(r') - ko(r')]. 

Let us now study 3(,1(r'), writing 

where 

and 

Clearly 

3(,l(r') = (27Tkr')-1[j[~(r') + j[~(r')], (7.48) 

J{;~(r') = f u-
1 

exp [!ikr' (u + D J du 

X 100 

pV(p)k(p, pu) dp (7.49) 

3(,~(r') = fU-
1 exp [tikr' (u + ~)] du 

x 100 

pV(p)k(p, pu) 

x [exp (tikp2~) - 1J dp. (7.50) 

J{;~(r') = iooexp [tikr'(l + S)][S2 + 2s]-! ds 

x 100 

pV(p)k[p, p[1 + s - (S2 + 2s)!]] dp. 

(7.51) 

Since Ik(p, pu)1 can be bounded by Clule , j{,~(r') is 
the Fourier transform of a function which belongs to 
U' for any p such that 1 :::;; p < 2. Hence 

with 

2 < p' < 00. 

(7.52) 

(7.53) 
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As for jj\:Ur')I, it is clearly bounded by 

C flU-Hlf du foo p W(p)1 p' , kp
2

u 2 dp < Cr,-l. 
Jo Jo r + kp u 

(7.54) 

From (7.52) and (7.54), it follows that rlJ(,l(r') is a 
function of L 1,.{a, (0). On the other hand, the quantity 

IfU-lpV(P)k(P' pu) dpl 

is bounded by CpH'!V(p)l. We can therefore study 
the behavior of J(,l(r') near r' = 0 as we did above for 
J(,L(r'), with the same result: J(,l(r') is bounded for 
r' -+ O. Hence we see that the only modification when 
we study the problem in e13 instead of e, as regards 
Lemma 2, concerns the asymptotic behavior of 
:1(,l(r'). 
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APPENDIX 

The following trivial inequalities, and similar ones, 
have been used without quotation: Let x a positive 

number and y a real number, 

I(x + y)l - xli = Iy/[(x + y)l + xl]1 ::S;; Iy/xll 

if lyl::S;; lxi, (AI) 

I(x + y)-l - x-ll = Iy/{xi + xl(x + y)l 

x [(x + y)l + xl]) (A2) 

and therefore ::S;; I y/xi I if Iyl ::S;; Ixl. 
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A I?rocedl!re .for quantization is given w~ich does not require the canonical formalism. Only the 
equatIon of motIon ~or the field and the resultIng co~served current are needed to derive all the necessary 
commutators or antIcommutat~rs, the operators whIch represent the physical observables, the reduction 
form~las, and vacuum expectatIOn v~l~es for the particle fields. The formalism is sufficiently general so 
that It holds for fields, or a superposItIon of fields, of arbitrary mass and spin. 

INTRODUCTION 

There are two basic ways which are used to quantize 
fields. One uses a Lagrangian formulation! from which 
the canonical rules can be used to obtain equal time 
commutators and from which the various invariants 
which represent the physical observables can be 
constructed. The commutators are extended to 
arbitrary times by either using Schwinger's2 or 
Peierls' 3 method or a theorem of Takahashi and 
Umezawa.4 

The other methodS utilizes an expansion of the field 
in terms of plane waves, requiring the Fourier 
coefficients to be Fock space operators whose com
mutators are either zero or a delta function. The 
physical 9perators are then defined in terms of these 
Fourier coefficients and the original expansion is 
inverted to obtain the physical operators as a function 
of the fields. 

The purpose of this paper is to describe still another 
method which seems to be more general than the 
other two, in that the commutators of the Fock space 
operators corresponding to the expansion coefficients 
for the field do not have to be zero or a delta function. 
Nevertheless, physical operators, such as the number
of-particles operator, energy, momentum, etc., can 
be constructed directly from invariant integrals 
obtained from the equations of motion for the fields. 
The unequal time commutators are obtained directly 
from the quantization postulate and are found to 
preserve microcausality. 

It will be seen that this method of quantization is a 
natural one to use in the Lehmann-Symanzik-Zimmer
mann (LSZ) formulation (see Refs. 1, 10, and 13) of 
interacting fields, since everything is derivable from the 
equations of motion, and the c-number wave packet 
solutions of the free particle equations no longer need 
to be restricted to that class of functions which can 
be orthonormalized. Indeed, the c-number solutions 
need not even be complete. 

It is also possible to reduce the S matrix to vacuum 
expectation values of field operators which represent 

particles of arbitrary mass and spin. These expecta
tion values can in turn be expressed as Feynman-type 
propagators. 

In the first section, the creation and annihilation 
operators are defined in terms of the conserved 
current and the quantization postulate is given. The 
second section contains four basic theorems which are 
necessary for the foundation of the q-number theory. 
The q-number theory for particles of arbitrary mass 
and spin is constructed in the third section, and the 
evaluation of the S matrix in terms of Feynman 
propagators is given in the final section. 

1. BASIC POSTULATES AND DEFINITIONS 

In what follows it will be assumed that the fields 
satisfy a linear differential equation 

D(o)V!(x) = 0, (1) 

with the adjoint equation 

1ji(x)D( - 0) = 0, (2) 
where 

(3) 

The arrow indicates the direction of differential 
operation, and Y4 is a nonsingular matrix. The explicit 
form of the differential operator D(o) for arbitrary 
spin can be obtained from either Weinberg6 or 
Hammer et al.7 Then Y 4 is the 2(2s + 1) generaliza
tion of the Dirac Y4 matrix. 

If V!l and V!2 are any two solutions of Eq. (1), it is 
further assumed8 that a conserved current exists with 
the factors of i chosen so that 

where any 4-vector is defined by 

1327 
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With this definition, jl' is linear in ip(x) and V'(x), 

ajiip2(x), V'ix» = jiaip2(X), V'1(X» 

= jiip2(X), aV'lx», (5) 

and its Hermitian conjugate is 

jJ(ip2(X), V'1(X» = ji(ipl(X), V'2(X», 

jJ(iplx), V'1(X» = jo{ijh(x), V'2(X». (6) 

The definition of the conserved current given in 
Eq. (4) is chosen because it applies for the free field 
equations mentioned previously.s.7 If Eq. (4) is not 
applicable, but a conserved current does exist, then 
the proofs given below can serve as an outline for 
obtaining the altered results. 

It is well known that, for fields obeying Eq. (4), 
the invariant integral 

(7) 

or its generalization to an arbitrary hypersurface 
O'I'(x) 

I = I dO'ix)jiif2(X), V'1(X» (8) 

is time-independent, with the Lorentz tensor proper
ties given by V'l (x) and V'2(X). For example, if 0 l(O) is 
a c-number tensor operator of rank I, and 

[Ol(O), D(o)]_ = 0, 

then the q-number operator defined by 

(9) 

0l = I dO'I'(x)jiip(X), 0l(O)V'(X» (10) 

is independent of time and is a Lorentz tensor of 
rank I. Consequently, the invariant integral can be 
used to define the time-independent Fock space 
operators 

ak(p) = I dO'I'(X)jl'(Uk(P, x), V'(X», (11) 

where Uk(P, x) is any c-number solution of 

D(Ox)Uk(P, x) = 0, 

with discrete eigenvalues k and continuous eigenvalues 
p. It follows from Eq. (6) that 

aZ(p) = I dap(x) jiip (x), uk(p, x». (12) 

The basic quantization postulate is 

[aip), a;(q)]± = f dO'ix)jl'(uk(p, x), utCq, x», (13a) 

[ak(p), al(q)]± = O. (l3b) 

It should be noted that the ul(p, x) need not be a 

complete set of orthonormal functions. Thus it may 
not be possible in general to invert Eq. (11) to obtain 
V'(x) as a function of ak(p), On the other hand, Eqs. 
(11) and (13) reduce to the usual results if the ul(p, x) 
are a complete set of orthonormal functions. 9 

II. THEOREMS 

In this section the commutation rules, which are 
basic to the construction of a q-number theory for 
particles of arbitrary mass and spin, are derived for 
the configuration fields and the operators defined by 
Eqs. (10), (11), and (12). The rules are presented in 
the form of four theorems. 

Theorem 1,' The commutation rules for field 
operators, which satisfy a differential equation from 
which a conserved current can be derived, are 

[V'(x), V'(Y)]± = 0, 

[V'(x), ip(y)]± = G(x - y), 
where 

G(x - y) = Ga(x - y) - Gr(x -- y), 

(14a) 

(14b) 

(15) 

the advanced and retarded Green's functions, respec
tively, defined by 

D(ox)Ga.r(x - y) = -o(x - y), (l6a) 

Ga.r(x - y) = 0, for (xo - Yo) ~ O. (16b) 

Proof' The proof exploits the linearity properties of 
jl'(x) given in Eq. (5). For example, from the definition 
given in Eq. (11), 

[ak(p), al(q)]± = II dO'ix) davey) 

x [j iuip, x), V'(x»,jv(utCq, y), V'(y»]± 

= II dO'I'(x) da.(y) 

x j iUk(P, x), [V'(x),j.(Ul(q, y), V'(y»]±) 

= I dO'iX)jl' (iiiP, x), J davey) 

x j.(ul(q, y), [V'(x), V'(y)]±»). (17) 

However, the left-hand side of this equation must be 
zero by the quantization postulate of Eq. (13b). Since 
Eq. (17) must hold for all Uk(P, x) and ul(q, y) or any 
variation of them, it follows that 

[V'(x), V'(y)]± = O. 

Similarly, by using Eq. (l3a), 

f daix)jiuip, x), ul(q, x» = f do"p(x)jl' ( uip, x), 

f da.(y)jv([V'(x), ip(y)]±, Ul(q, y») , (18) 
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from which it follows that 

Ut(q, x) = f d<1(Y)i/l((1jl(x), 'Iji(y)]±, ut(q, Y»· (19) 

It also can be shown (see Appendix) that 

Ut(q, x) = f d<1iy)j/l(G(x - y), ut(q, y». (20) 

Consequently Eqs. (19) and (20) can be combined as 

f d<1iy)j/l(G(x - y) - [1jl(x), 'Iji(y)]±, ut(q, x» = o. 
(21) 

Since this equation must apply for all Uj(q,y) or its 
variations, 

(1jl(X) , 'Iji(Y)l± = G(x - y). 

Theorem 2: The commutation relations between the 
field operators 1jl(x) and the Fock space operators 
Uk(P) are 

[1jl(X), aL(p)]± = uip, x), (22a) 

[1jl(x), ak(P)]± = O. (22b) 

Proof: Equation (22a) follows directly from Eq. 
(19), which can be expressed as 

uk(p, x) = [1jl(X), f d<1iy)ji'lji(y), uk(p, Y)}J±, 

from the linearity of j/l. The integral within the com
mutator brackets can be seen from Eq. (12) to be 
aL(p). Equation (22b) follows in a similar way from 
Eq. (14a). 

Theorem 3: The commutation relation between a 
field operator and a q-number operator is 

[at, 1jl(x)L = -OI(O",)1jl(X). (23) 

Proof: Equation (23) follows from Theorem 1, Eq. 
(20), and the linearity of j /l: 

[Oz, 1jl(x)L = - f d<1iy)ji[1jl(x), 'Iji(y)]±,Oloy)1jl(Y» 

= - f da'/Y)i/l(G(x - y),OI(Oll)1jl(Y» 

= -0 tCo)v-{x). 

Theorem 4: The commutation relation for q-number 
operators is 

[01 , OkL = I d<1ix)i/l('Iji(x), [OI(Ox), °iox)L1jl(x». 

(24) 

Proof: Equation (24) also follows from Theorem 1, 
Eq. (20), and the linearity ofj/l: 

[OJ, 0k]- = f d<1iX)j/l( ijJ(x), f d<1v(Y) 

x j.{0I(Ox)[1jl(x), 'Iji(y)J±, Ok(OI/)1jl(y») 

T f d<1.{y)jv( 'Iji(y), f d<1ix) 

x jiOk(Oy)['Iji(x), 1jl(Y)]±, O!(Ox)1jl(X») 

= f d<1iX)j/l( 'Iji(x), °1(OX) f d<1'(y) 

x j.{G(x - y),Ok(Oy)1jl(Y») 

-f d<1v(y)jv( 'Iji(y) , °ioy) I d<1/l(x) 

x jiG(y - X),OI(OX)1jl(X») 

= f d<1ix)j/l('Iji(X), [O!(o",), °iox)L1jl(x». 

III. Q-NUMBER THEORY 

Each dynamical system in quantum theory corre
sponds to a unitary representation of the Poincare 
group which is completely specified by a Lie algebra 
for the infinitesimal generators: P/l corresponding to 
four-vector momentum (translations) and M/lv corre
sponding to four-tensor angular momentum (rota
tions). It is clear then from Theorems 3 and 4, 
Eqs. (23) and (24), and from Eq. (10), that the Fock 
space generators of the Poincare group, and therefore 
the physical observables corresponding to linear 
momentum, energy, etc., are given by 

P/l = f d<1ix)jiijJ(x), ~ix)1jl(x», (25a) 

M/lv = f daix)jiijJ(x), ..A(,/l.(x)1jl(x», (25b) 

with the corresponding equations of motion 

[1jl(x), PIl ]- = ~/l(x)1jl(x), (26a) 

[1jl(x), M llv]- = ..A(,llv(x)1jl(x), (26b) 

where ~Il(x) and ..A(,llv(x) are the generators of the 
Poincare group in the configuration representation. 

In a similar way, Eq. (l0) can be used to define any 
observable which corresponds to a transformation 
that leaves the equations of motion invariant. If the 
generators of the transformation form a Lie algebra, 
then Theorem 4 guarantees that the q-number 
generators satisfy that algebra. Typical examples 
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might be the SU(3) generators, isospin, and hyper
charge. 

For those transformations that do not form a 
group, Eq. (10) of course equally applies. In particular, 
the number-of-particles operator is 

N = f da,,(x)jiip(x), "P(x», (27) 

since, by Eq. (23), 

[N, "P(x)L = -tp(x), (28) 

from which follows 

(29) 

by Eqs. (6). It also follows from Theorem 2 and 
Eqs. (11) and (12) that 

[aip), NJ_ = ak(p), (30) 
t t 

[aip), NL = -ak(p). (31) 

It is clear from these last two equations that number 
of particle states can be constructed from a vacuum 
in the usual way, even though the operators ak(p) 
satisfy Eq. (13) rather than the usual delta-function 
relationship. 

For a relativistic theory, operators are needed to 
create both particle and antiparticle states. If Uk(P, x) 
and vip, x) are any positive and negative c-number 
solutions of Eq. (1), it is convenient to redefine Eqs. 
(11) and (12) to 

ak(p) = f da,/x)j/J(uip, x), "P(x», (32a) 

bip) =f da,/x)jiip(x), vk(p, x» (32b) 

for the destruction operators of the particle and anti
particle states, respectively. Note that the requirement 

[ak(p), bl(q)]± = 0 

implies the orthogonality of u(p, x) and v(q, x), since 
by Theorem 1 

[ak(p), bl(q»)± = f da,/x)j/J(uip, x), vl(q, x». 

Then, in parallel to Eq. (30), 

[ak(p), NL = ak(p), (33a) 

[bk(p), NL = -bk(p). (33b) 

An n-particle and an m-antiparticle state can be 
constructed from the vacuum state 10) by the operation 

Ip1,'" ,Pn) = (n!)-!at(pn)'" at (PI) 10), (34) 

Iq1, ... ,qn) = (m!)-!bt(qn)' .. bt (q1) 10), (35) 

where the discrete indices have been suppressed. As 

usual, it is postulated that 

ak(p) 10) = 0, 

bk(q) 10) = o. 
The operator N must now be interpreted as the differ
ence between the number of particles and antiparticles 
(charge) since by using Eqs. (33) and their Hermitian 
conjugates, 

N Ip1, ... , Pn; q1, ... , qm) 

= (n - m) Ip1,"', Pn; q1,"', qm), (36) 

where now the q-number operators are defined in 
terms of a normal ordered current 

(37) 

with 

:jiip, 19 1(0)'11'): = tUiip, 19 1(0)'11') ±ji ' (19 1 (o)tp)ip»). 

(38) 

Here the + j - sign is used for bosonsjfermions and 
the second term in the brackets is the same as the 
first term except that ip and all operations on it are 
written to the right oftp. 

An equivalent definition for the normal 9rdered 
product can be obtained by writing the fields as the 
sum of positive and p.egative energy parts 

with 

tp(x) = tp+(x) + tp-(x), 

ip(x) = ip+(x) + ip-(x), 

ak(p) = f daix)jiuk(P, x), "P+(x», 

bk(P) = f da,/x)j/J(vip, x), tp-(x», 

ak(p) = f da'/x)j/J(ip_(x), uk(p, x», 

bip) = J da/J(x)jiip+(x), vip, x», 

(39) 

(40) 

since Uk and Vk project out the appropriate parts of 'II' 
in Eq. (32). With these definitions 

:j/J(ip, 19 1(0)'11'): = j/J(ip+, 19 1(13)'11'+) + jl'(ip-, 191(0)'11'_) 

+ il'(ip-, (') 1(0)'11'+) 

±i/J( , (19 I (o)tp_)ip+). (41) 

The connection between Eq. (38) and Eq. (41) is 
somewhat tedious but straightforward. Because of 
Eqs. (40), following the proof of Theorem 2, 

[aip), tp+(x)]± = [aip), Vi+(x)]± = 0, 

[ak(p), ip_(x)]± = IIk (p, x), 

[bk(P), tp-Cx)]± = [b;(p), ip_(x)]± = 0, 

[bip), "P-(x)]± = vip, x). 

(42) 
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These equations along with Eq. (40), in parallel to the 
proofs of Theorem 1, imply 

[V'+(x),1idy)]± = G+(x - y), 

[V'_(x),1j.i+(y)]± = G_(x - y), 
(43) 

with all other commutators equal to zero, where 
G+(x) and G_(x) are the positive and negative fre
quency parts of G(x), 

G(x) = G+(x) + G_(x), 

D(o)G±(x) = O. (44) 

The equivalence of the two forms for the normal 
ordered product is then established by observing 
that the divergence of the right-hand sides of Eqs. (38) 
and (41) are equal. Therefore they differ by at mosta 
c-number which may be taken equal to zero. 

The q-number operators Oz, when operating on an 
n-particle state, give 

O! Ipl"", Pn) = (n!)-![O!, at(Pn)'" at(Pl)L 10). 

(45) 
However, from Eq. (37) and Theorem 2, 

[Oz, U \p)] = f da,.(x)j,.(1j.i(x), \9!(o)u(p, x» 
= \9!(p)at(p), (46) 

where \9!(p) is the eigenvalue 

t\(o)u(p, x) = \9z(p)u(p, x). (47) 

Therefore Eq. (45) becomes 

" 
Ollpl" .. , p,,) = z Oz(Pi) Ipl,' ", p,,), (48) 

i=l 
as expected. 

It is also possible to define the charge conjugation 
operation as 

where 

Cak(p)C-1 = bk(p), 

CV'(x)C-1 = CV't == V'c, (49) 

vip, x) = Cu:(p, x), 

uip, x) = Cv:(p, x), (50) 

and t means Hermitian-conjugate the Fock space 
part of V' and complex-conjugate the c-number part. 
Equations (49) can then be used in conjunction with 

IV. REDUCTION FORMULAS AND VACUUM 
EXPECTATION VALUES 

The definitions of the Fock space operators given 
in Eqs. (32) provide a natural starting point for 
developing reduction formulas for field operators 
satisfying the inhomogeneous equation 

D(o)V'(x) = J(x). (53) 

Corresponding to free field operators V'in(x) , V'out(x) 
satisfying Eq. (11), the Fock space operators a1D , aout 
are defined by 

ain (p) =fda/l(x)jiu(P, x), V'in (x»; (54) 
out out 

corresponding to operators V'(x) satisfying Eq. (53), 
the operato~ a(p, a) is 

a(p, a) = f da,.{x)j,.(u(p, x), V'(x», (55) 

where u(p, x) is any wave packet c-number solution 
to Eq. (1). The operators a1n(p), aout(p), and a(p, a) 
are then related by the weak limit condition1o 

aiD (p) = lim a(p, a). (56) 
out a .... 'ftO 

Consider the scattering matrix element for an initial 
configuration 

Ip, a:)in = ai~(p) Ia:)in, (57) 

and a final configuration 

with 
Iq, (3)out = a~ut(q) 1(3), (58) 

ain(p) Ia:)in = Uout(p) 1(3)out = 0, (59) 

and the S matrix defined by 

Seq, (31 p, oe) = out (q, (31 p, a:)in' (60) 

Using the standard techniques for deriving reduc
tion formulas,ll it is found that 

Seq, (J I p, oc) = out «(J lain (q) I p, a: )in 

+ f dx out«(J1 a:/o(U(q, x), V'(x» Ip, oe)!n' (61) 

Since the divergence of the currentjl'(u(q, x), V'(x» 
is just 

Eqs. (32) to show 

j,.(iMp, x), V'c(x» = j,J1j.i(x) , vk(p, x». (51) -:- jju(q, x), V'(x» = u(q, x)J(x) = u(q, x)D(a)V'(x), 
vX/l 

This in turn requires that (62) 
CD*(8)C--1 = -D(a), Eq. (61) can be rewritten 

Ct C-1 * Y4 = -Y4' (52) Seq, (J I p, a:) = out <(31 [ain(q), ain(P)]± loe)!n 

standard treatment.5 + dx u(q, x)D(o",) out«(J1 V'(x) Ip, X)in' (63) 
These last equations are in agreement with the f 
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Continuing with the standard procedure we find that 

Seq, (J I p, (X) = out«(J1 [ain(q), ain(P)]± 1(X)in 

-ffdX dyu(q, x)D(o,,) out«(J1 ~ 
. oyo 

x MT[1p(x)V;(y)], u(p, y» 1(X)in, (64) 

where T indicates the time ordered product. However, 
it is clear from the form of jJl that 

f jl'(T[1p(x)tji(y»), u(p, y» 
YJl _ 

= - T(1p(x)tji(y)]D( -Oy)u(p, y). (65) 

Thus it is found that the reduction formula for 
fields satisfying Eq. (53) is 

Seq, (J I p, (X) = out«(J1 [aiU(q), a;n(P»):!; 1(X)in 

+ II dx dyu(q, x)D(o,,) 

x out«(J1 T[1p(x)tji(y)] 1(X)in D( -Oy)U(p, y). (66) 

Evidently this procedure can be continued until the 
vacuum expectation is reached. For example, 

out(ql'" qn I Pl'" Pm)in 

= I dx l " -J d~nI dYI" -J dYmu(q ,Xl)'" ii(q" , Xn) 

X D(a"l)'" D(a",,) 
x (01 T1p(x1)' •• 1p(Xn)tj}(Yl) ... tji(y m) 10) 

X DC -OY1)' .. D( -OYm)U(PI, Yt) . .. U(Pm' Ym), 

(67) 

where forwardlike scattering terms have been 
neglected. 

The vacuum expectation value for the time ordered 
product follows just as for Klein-Gordon or Dirac 
theory. By definition 

(01 T[1p(x)tji(y)] 10) = e(x - y) (OI1p(x)tji(y) 10) 

=F e(y - x) (01 tj}(y)1p(x) 10). 
(68) 

However, from Eqs. (40) and (43), 

(O\1p(x)ip(y) 10) = (0\ [1f'+(x) , tj}_(y)]± \0) = G+(x - y), 

(69) 

(01 tji(y)1p(x) 10) = (01 [tji+(y) , 1p_(x)]± 10) = G_(x - y). 

(70) 
Consequently Eq. (68) becomes 

(01 T[1p(x)tji(y)] 10) 

= 8(x - y)G+(x - y) - 8(y - x)G_(x - y) (71) 

in analogy to the Feynman propagator for the spin
O and -! cases. 

This result may be extended to the time ordered 
product of any number of field operators by Wick's 
theoreml2 or by using a functional differentiation 
technique.13 Feynman rules can therefore be con
structed for any field that has a conserved current of 
the type discussed here. Weinberg6 has already 
treated the subject of high spin propagators in detail. 

V. DISCUSSION 

A quantization procedure has been presented which 
does not depend on the canonical formalism and which 
is more general in that the Fock space operators 
create and annihilate particles that have internal 
degrees of freedom or whose wavefunctions are 
arbitrary wave packets. Since the spinors u(p, x) can 
always be expressed in terms of their plane wave 
counter parts through the use of form factors, form 
factors enter into a scattering calculation based on 
the formalism of the preceding section in a very 
natural way. 

The formalism also applies for a superposition of 
fields. For example, consider the field operator 1p, 

(72) 

It is apparent that 1p is any linear combination of 
fields CPI and CP2: 

(yp - im1)CPl = 0, 

(yp - im2)CP2 = O. (73) 

The invariant integral associated with Eq. (72) is 

1= ml + m2fdX 
m1 -m2 

X {tji2(X)'Y41pI(X) + j [tji2(X)~1pl(X)J}, (74) 
m1 + m 2 (It 

where 

iPz(X);; 1f'l(X) = (~1p2(X») 1pix) - tji2(X) ~ 1pl(X). 

Consequently, annihilation operators can be defined 
according to Eqs. (11), 

a(p) = m1 + m2 JdX 
ml - m2 

X {U(P, X)'Y4"P(X) + i [U(P, x) iJ" 1p(X)]}, 
ml + m2 at 

(75) 

where u(p, x) is a c-number solution of Eq. (72) and 
consequently any linear combinations of c-number 
solutions of Eq. (73). The same process can be 
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repeated for Eq. (73): 

al(p) = f dxiil(p, X)Y49?I(X), 

a2(p) = f dxii2(p, X)Y49?2(X). (76) 

It is then a straightforward calculation to show that if 

'1jJ = AI9?1 + A2'P2, 

U = B1UI + B 2u2 , 

then 

a(p) = A2Bta2(P) - A1Bial(p). (77) 

Thus Eqs. (75) and (76) are equivalent. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the many helpful 
discussions with their colleagues Dr. David S. Moroi 
of Kent State University and Dr. Derek Pursey of 
Iowa State University. 

APPENDIX 

Given that '1jJ(x) satisfies an equation 

D(a)'1jJ(x) = 0, (AI) 

from which a conserved current can be derived, and 
given an invariant Green's function G(x) where 

G(x) = Ga(x) - Gr(x), (A2) 

D(a.,)Ga.rCx - y) = -b(x - y), (A3) 

Ga.r(x) = 0 for Xo ~ 0, (A4) 

then '1jJ(x) can be expressed as 

'1jJ(x) = f daiy)jiG(x - y), '1jJ(y». (A5) 

Proof: It is convenient to rewrite Eqs. (AI) and (A3) 
as 

D(a)'1jJ(y) = 0, (A6) 

Ga.r(x - Y)D( -aj/) = -b(x - y), (A7) 

where Eq. (A 7) follows from Eq. (A3) by the fact that 
the right-hand side ofEq. (A3) is diagonal. It is readily 
seen that 

from the form of jp.. Integrating Eq. (A8) from 
Yo < Xo to Yo > Xo and over all space yields 

f dyio(Ga.rCx - y), '1jJ(Y»I~~~~~ = '1jJ(x). (A9) 

Then from Eq. (A4), 

j dyio(GaCx - y), '1jJ(y» = '1jJ(x), (AIOa) 
)Yo> <1:0 

j dyjo(Gr(x - y), '1jJ(y» = -'1jJ(x). (AIOb) 
Jyo<xo 

Using the definition of G(x), Eqs. (AIO) can be com
bined to give 

f dyio(G(x - y), '1jJ(y» = '1jJ(x) (All) 

for all Xo and Yo' By generalizing dx to an arbitrary 
hypersurface, Eq. (All) can be written 

f dap.(y)jp.(G(x - y), '1jJ(y» = '1jJ(x). (AI2) 

• Work performed in the Ames Laboratory of the U.S. Atomic 
Energy Commission, contribution No. 2629. 

1 See, e.g., S. S. Schweber, An Introduction to Relativistic Quantum 
Field Theory (Row Peterson, Elmsford, N.Y., 1961). 

2 J. Schwinger, Phys. Rev. 74, 1439 (1948). 
3 R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952). 
4 Y. Takahashi and H. Umezawa, Progr. Theoret. Phys. (Kyoto) 

9, 14 (1953). 
6 T. J. Nelson and R. H. Good, Jr., Rev. Mod. Phys. 40, 508 

(1968). 
6 S. Weinberg, Phys. Rev. 133, B1318 (1964). 
1 C. L. Hammer, S. C. McDonald, and D. L. Pursey, Phys. Rev. 

171, 1349 (1968). 
8 See Y. Takahashi, An Introduction to Field Quantization 

(Pergamon, London, 1969), Chap. IV. He also defines a conserved 
current which is subsequently used to define invariant integrals 
representing the physical observables. 

9 If the Uk are a complete set of orthonormal functions, then 

1p(x) = f J dpaip)uk(P, x). 

Substitution for aip) from Eq. (II) gives rise to the completeness 
relationship 

f J dpUk(P, x)iik(p, y) = G(x - y). 

The proof parallels the proof leading to Eq. (21). 
.10 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 

CImento 11, 342 (1954). 
11 See Ref. I, pp. 692-94. 
1. See Ref. I, p. 435. 
13 See, e.g., S. Gasiorowicz, Elementary Physics (Wiley, New 

York, 1966), p. 121. 



                                                                                                                                    

J 0 URN A L 0 F MATH E MAT I CAL P H Y SICS VOLUME 12, NUMBER 7 JULY 1971 

Nonlinear Spinor Equation and Asymmetric Connection in 
General Relativity 

F. W. HEHL AND B. K. DATTA 

Institute for Theoretical Physics of the Technische Universitiit Clausthal 
3392 Clausthal-Zellerfeld, West Germany 

(Received 17 August 1970) 

In .order to t.ake fu~1 account of spin in general relativity, it is necessary to consider space-time as a 
!'letnc .space Wlt~ torSIOn, as was shown else.where. We tr~t a Dirac particle in such a space. The general
Ized Dirac equatIOn turns out to be of a Heisenberg-Pauli type. The nonlinear terms induced by torsion 
express a universal spin-spin interaction of range zero. 

1. INTRODUCTION 

The realization that momentum and spin angular 
momentum are, in a certain sense, quantities of the 
same kind suggests a generalization of the general 
theory of relativity which encompasses spin angular 
momentum.1- 4 Momentum is a dynamic quantity 
which corresponds to translation, whereas spin 
angular momentum corresponds to rotation. If one 
further observes that in differential geometry the 
metric tensor field is related in a definite way to 
translations and the torsion tensor field to rotations, 
one is led to consider a geometry with curvature and 
torsion (Riemann-Cartan geometry) in place of the 
Riemannian geometry.5.S 

The physical model now proposed is as follows: 
The matter-free space-time continuum has neither 
curvature nor torsion and therefore possesses Min
kowskian structure. (This is merely a modeL Strictly 
speaking, according to general relativity, space-time 
does not exist in the absence of matter.) Imagine that 
in this space-time continuum matter with momentum 
and spin angular momentum is introduced and 
distributed continuously. Owing to the influence of 
matter, curvature and torsion are produced. The 
curvature can be derived from metric and torsion 
in a well-known way. Hence, there should exist 
functional relationships between momentum and 
spin angular momentum on one side and metric and 
torsion on the other side. These relationships are the 
field equations (generalized Einstein field equations); 
the momentum and the spin angular momentum 
densities appear as the sources of the metric and 
torsion fields. 

The solutions of these equations are of the following 
type: Given the densities of momentum and spin 
angular momentum, the metric and torsion fields are 
to be found. These solutions obviously touch only 
a part of the physical problem. Therefore, one should 
also be able to calculate the momentum and the spin 

angular momentum densities from the physical con
ditions. These conditions could perhaps be given in 
terms of the (classical) wave amplitude of matter on a 
spacelike hypersurface. What one still needs in the 
theory are the matter equations. (These are of course 
not entirely independent of the field equations.) 

The field equations as well as the matter equations 
will be derived from a variational principle. In order 
to obtain the conventional form of general relativity 
in the case of vanishing spin, one introduces a Lagran
gian density which is the sum of the field Lagrangian 
and the matter Lagrangian. The field Lagrangian den
sity is determined by metric and torsion; the usual 
arguments of simplicity lead to the curvature density. 
The material Lagrangian density can be obtained from 
that of special relativity by minimal coupling to 
metric and torsion, i.e., the partial derivatives are 
replaced by the derivatives which are covariant with 
respect to the curved and contorted Riemann-Cartan 
space-time. 

In this paper, we treat a classical Dirac field in the 
way discussed above; hence the matter field will be 
represented by a four-component spinor. 

Note added in proof' The whole theory for a~bitary 
matter fields is represented in an article by one of the 
authors (F. W. Hehl, "Spin und Torsion in der 
Allgemeinen Relativitatstheorie Oder die Riemann
Cartansche Geometrie der Welt," Habilitation thesis 
TV Clausthal, 1970). An English version has been 
submitted for publication to Fortsch Physik. 

In accord with these preliminary remarks, we set up 
the theory in the following way. 

In Sec. 2 we summarize all the geometrical apparatus 
necessary for our theory. In Sec. 3 we introduce in a 
well-known manner orthonormal tetrads as an
holonomic coordinates in the space-time under con
sideration. This allows us to define the covariant 
differentiation of a spinor in a straightforward way. 

1334 
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In Sec. 4 we introduce the action function of a 
Dirac particle interacting with a gravitational field. 
We explicitly compute the additional terms character" 
istic for our non-Riemannian geometry. Through a 
variational procedure we deduce the field equations 
in Sec. 5 and the matter equations which constitute 
the generalized Dirac equation in Sec. 6. Eliminating 
the contortion in the Dirac equation, we arrive at a 
nonlinear spinor equation of the Heisenberg-Pauli 
type, thereby generalizing somewhat similar results 
obtained first by Rodichev. 7 

After the general theory, in Sec. 7 we work 
out and stress the difference between conventional 
general relativity and our non-Riemannian theory. 
The torsion terms in the action function and therefore 
the nonlinear term in the spinor equation are recog
nized as corresponding to a universal spin-spin 
contact interaction. We propose to regard 'this 
universal spin-spin interaction as a classical model of 
weak interaction. 

2. RIEMANN-CARTAN GEOMETRY 

As was shown elsewhere,3.4 it is reasonable to 
assume for the affine connection of space-time the 
expression 

f:i = {/;} + Sijk - Sik; + S\;. (2.1) 

In our notation we essentially follow the book of 
Schouten.s The physical conventions are taken from 
Landau-Lifshitz. 9 In (2.1), Ui} is Christoffel's 
symbol of the second kind belonging to the metric 
gi;' Cartan's torsion tensor is defined according to 

S} = Hr7; - r~i) == r[~j)' (2.2) 

Latin indices run from 0 to 3. With the contortion 
tensor 

(2.3) 

(2.1) can be written as 

(2.4) 

We remark that (2.1) and therefore (2.4) are equiva
lent to the relation 

(2.5) 

The manifold equipped with a connection of the form 
(2.1) will be called a U4 ("Riemann-Cartan space"). 
It is the most general metric space with a linear affine 
connection. For vanishing torsion we arrive at a 
Riemannian space V4 • 

The Riemann-Christoffel curvature tensor is de
fined in the usual way as 

Riikl = 20 [in]k + 2fl[ilmlf;:V:. (2.6) 

The first two identities of the curvature tensor are 
valid in each affine space: 

i(Riik
l + Riikl) == RWlkl = 0, (2.7) 

RUik/ = 2V [iSik~ - 4S [iY' SkJml. (2.8) 

The third identity for a U, reads 

Ri;(kll = O. (2.9) 

For these and other formulas the book of Schouten8 

should be referred to. Bianchi's identity is given by 

V[iR;kHm = 2S [i7 Rk]nlm. (2.10) 

We define the Ricci tensor Rii = RkJ and the 
Einstein tensor as 

(2.11) 

For a V4 (2.8) with (2.9) inter alia tells us that the 
antisymmetric part of the Einstein tensor vanishes; 
but not so for a U4 • We contract (2.8) and get 

* iR[ki;]k = VkT/, (2.12) 

where we have introduced a modified torsion tensor 

T;jk = S} + 6~S ill - 6~Si/ 

and used the notation 

* V; = Vi + 2Sik
k. 

(2.12) together with (2.9) and (2.11) yields 

* 

(2.13) 

(2.14) 

VkT;/ - G[in = O. (2.15) 

As we have shown,' (2.15) is the geometrical image of 
the angular momentum conservation theorem. 

Bianchi's identity can also be written in a contracted 
form. Using (2.10), (2.11), and (2.13) we get 

* V;G/ + 2SiikGkj = TjkIRi/k. (2.16) 

Of course this relation corresponds to energy
momentum conservation; therefore the right-hand 
side will represent a certain volume force density apart 
from a dimensional factor. 

3. TETRADS AS ANHOLONOMIC 
COORDINATES 

Equation (2.1) determines the geometry of space
time. There is nothing in our formalism like an inde
pendent tetrad connection or similar entities often 
described in the literature. Thus there is no place 
for the so-called Palatini formalism in our theory. 
We prefer the method worked out for instance in Ref. 
7. The independent geometrical quantities describing 
the U4 are metric and torsion (or contortion). One is 
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then able to introduce anholonomic coordinates. Let 
us choose at each point a tetrad ea.i • 0( = 1,2, 3, 4, 
numbers the four different and linearly independent 
vectors. Because we treat a metric space, it is con
venient to use (pseudo-)orthonormal tetrads. This 
yields the relations (eP i is the reciprocal of ea. i): 

eaiea
i = b}, eaieP

i = b~, (3.1) 

(' 0 0 

J) g., ~ ~ 
-1 0 i _ il P 

ea - ga.pg e I' 
0 -1 

0 0 

(3.2) 
The object of anholonomity 

fly i ia Y fl _ g fl6 Ua.p = ea. ep [ie I]' ~l.aPY - y~ua.P (3.3) 

depends on the coordinates we chose. 
The reason for introducing orthonormal tetrads is 

the following. As is well known, tensors are connected 
with the group of general coordinate transformations. 
Accordingly, there exists no necessity for introducing 
anholonomic coordinates for computations with 
tensors in the U4 • Spinors, however, are connected 
with the Lorentz group. We are compelled therefore 
to define at each point of the U4 a tangent Minkowski 
space R4 via the tetrads ea.i • This procedure cannot be 
circumvented in principle because of the very nature 
of spinors mentioned above. The details of this dis
cussion will be worked out in a forthcoming publica
tion. 

The covariant derivative in anholonomic coordi
nates reads 

Va."P = aa."P + r~pf/"P' (3.4) 

Because of (3.1) and (3.2) the operator f/ describes 
the behavior of "P under an infinitesimal Lorentz 
transformation bxY : 

(3.5) 

If we remember (3.1) and (3.2), the connection (2.1) 
expressed in anholonomic coordinates is given by 

r apy = gyar~p = - Qapy + Opya. - Qyap - K apy · 

This yields the formulas 

ra.(py) = 0, 

r[aPy] = - Q[a.Py] - K[aPY] 

gPyrpya = -2Q~p + Kp!. 

Let us define for later use the scalar density 

e = (-det gil)! = det (ea
i)· 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

The definition of the determinant together with (3.1) 
leads to 

(3.11) 

Later we will also be concerned with the ordinary 
divergence of tetrads. With (3.1), (3.3), and (3.11) we 
arrive at 

ake/ = 2Q~p - e/aaeP
k = 20~p - (aae)je. (3.12) 

Let us now turn to 4-spinors, because we want to 
treat a Dirac particle in a U4 • From Corson,lO for 
instance, we get 

(3.13) 

with the well-known Dirac matrices. Covariant 
differentiatic;m of a 4-spinor is hence given by 

Va"P = aa"P - !rapyyPyY"P' (3.14) 

The derivative of the Dirac adjoint "P+ = "P*Y4 can be 
calculated easily: 

(3.15) 

For later purpose we also introduce a covariant 
derivative with respect to a V4 : 

{} 

Va"P = aa"P + HOaPy - Opya + OyaP)YPyY"P' (3.16) 

4. ACTION FUNCTION OF A DIRAC PARTICLE 
INTERACTING WITH A GRAVITATIONAL 

FIELD 

For the special relativistic Lagrangian density of a 
Dirac particle we use the usual expression in a R4 , 

given, for example, in Ref. 10. Instead of taking the 
partial derivatives, we substitute the covariant ones of 
(3.14) and (3.15) in the sense of minimal coupling to 
metric and torsion. This results in (27T1i = Planck's 
constant, c = velocity of light, limjc = mass of the 
electron) 

C = -e(ilicj2)[(Va."P+)ya"P - "P+yava"P + 2im"P+"P]' 

(4.1) 
Hence, we assume that Pauli-type terms do not enter 
(4.1). Substituting (3.14) and (115) in (4.1) and 
noting (3.16), we have 

{} {} 

!: = -e(ilic/2)[(V;,"P+)ya"P - "P+yava"P + 2im"P+"P] 

+ e(ilicj4)Kapy"P+y[alyPyIY]"P' (4.2) 

The first term on the right-hand side is identically 
the same as one would get in a V4 or already in a R4 

in curvilinear coordinates. The second term can be 
simplified using the formula 

yaypyy = y[aypyy] + gapyy + gpyya _ gyayp (4.3) 

or more specifically 

y[alyPy'Y] = y[ayPyY], (4.4) 
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which follows from the anticommutation relations 
for the y's. Thus, we have for (4.2) 

C = C(O) - e(ilic/4)1p+y[YyPy"11pK"pr (4.5) 

A similar consideration leads to the equivalent ex~ 
pression 

C = C(a~) + e(ilic/4)1p+y[yypy"11pr"PY' (4.6) 

where qo,,) is the Lagrangian (4.1), but with the 
difference that partial derivatives replace the covariant 
ones. 

According to the general theory treated in Refs. 
3 and 4, spin angular momentum TJ is coupled to 
the contortion of the U4 : 

eTleii = bC/bKJ. 

(4.5) and (4.7) yield 

(4.7) 

Ta/ly = ea/eflje\Tiik = T[aPy] = _ i:C 1p+Y["yfJyYl1p. 

(4.8) 

This is the well~known canonical spin angular 
momentum as required by the theory of Refs. 1, 2, 
and 4. It is totally anti symmetric and hence has only 
four independent components. Thus (4.5) and (4.6) 
can be written in the form 

L = C({}) + eT
y
/l

aK a/l1 = 1:(0,,) - eTyPar"/ly' (4.9) 

(In spite of some other remarks in the literature, a 
material Lagrangian density generally contains a 
third term depending on the contortion. A formula of 
the type (4.9) is valid only if the spin is independent 
of contortion, as in Dirac's case. This remark is not 
crucial, however, because the mentioned third term 
represents only a correction.) 

Let the field Lagrangian be given by 

:R = eR/. (4.10) 

This is the only scalar density which can be derived 
from the curvature tensor by contraction. Additional 
torsion-dependent terms4 destroy the simplicity of 
the theory. Thus (4.10) is suggested by analogy with 
conventional relativity. A straightforward but lengthy 
calculation reveals that (4.10) can be separated into 
a Riemannian and a torsion part: 

:fl, = :R({}) + 0i(2eKk
ik) - eT/iKi/. (4.11) 

Since in what follows we do not vary on the boundary 
of the integration volume of the action function, we 
can forget the divergence in (4.11). The last term of 
(4.11) can be written in anholonomic coordinates as 
well. 

Correspondingly the total action function is given by 

w = ~ JdO[L(O) + eTYPIXK"Pr + ~ :R({}) 
c 2k 

- .!!...- pP"K ] (4.12) 2k "PY , 

where kc4/81T is Newton's gravitational constant. 
Observe that we get two different additional terms 
characteristic for a U4 : a term coupling spin and 
contortion and a term quadratic in the contortion. 
(Using a tetrad formalism and quantizing a Dirac 
particle interacting with a gravitational field, Kibblell 

and Kannenberg and Arnowittl2 subtracted out such 
terms, because they wanted to have the Riemannian 
result. The same is true for Lemmer,13 who quantized 
a general matter field under the same conditions.) 

Rodichev7 was the first who stated an action 
function similar to (4.12). He treated the case of 
:R({}) = 0, which leads to a sort of a teleparallelism, 
and required the torsion to be totally antisymmetric 
a priori, which is not necessary in our theory. See also 
Braunss14 for an interpretation of Rodichev's results. 
For vanishing spin the theory presented here simpli
fies to ordinary general relativity; furthermore the 
constant in front of the last term of (4.12) is specified. 
For related papers with action functions resembling 
(4.12), in which torsion is considered more as a 
secondary concept, see Peres,15 Lenoir,16 and Wain
wright.17 •18 

5. FIELD EQUATIONS 

We must now vary (4.12) with respect to ef1:; and 
Kil and equate the variations to zero as required 
by Hamilton's principle. This yields 

~eP. ~ e(JP = - ~ b:R eP. ('5.1) 
be"'.' IX 2k be", ., • • 

bC def ii 1 15 :R 
--Ie = eTk = - - --k • (5.2) 
bKii 2k i5KH 

Here the left-hand side of (5.1) is by definition the 
metric energy-momentum density ea/ and the left
hand side of (5.2) the spin angular momentum 
density according to (4.7). 

Notice that :R depends on eO: i only via gkl • Thus we 
can use the variational method worked out in detail 
in Ref. 4. Ifwe define the canonical energy-momentum 
tensor according to 

, def * y Y 7 
2:afl = (J"p + Vy(T",p - Tp 1% + T "p) (5.3) 

(see Ref. 4), the above-mentioned procedure applied 
to (5.1) leads to the equations 

(A) 
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Using (4.12) and (5.2) we immediately have 

(5.4) 

(A) and (5.4) are the field equations which are 
generally valid in this form. 

Using now (4.8) we see that in the Dirac case 
discussed here the contortion tensor is totally anti
symmetric and the second set of field equations can be 
specialized to 

yapy = y[aPy] = s[aPY] = _ KlaPY] = k-raPy 

(8) 

Here we have introduced /2 = lick or / ~ 10-32 cm. 
This results in a very special U4 : Only four inde

pendent components of Kapy are "excited" by a 
Dirac particle, and this indicates the relatively simple 
nature of such a particle. It is of course possible to 
introduce the axial vector corresponding to TaPY 
making explicit the independence of only four com
ponents. We use the well-known relation (see Ref. 9, 
for instance) 

iy ya = l €apyoy y y . 
53! P Y 0 

(5.5) 

[€apyo = ± lIe if (x, (J, r5 is an even (odd) permutation 
of 1, 2, 3, 4; otherwise 0.] Inverting (5.5) and 
substituting it in (8) yields 

K apy = -kTaPy = !12€apyo1p+Y5l1p· 

Squaring (5.5), we get for later use 

y[aYPYY]YaYpyy = -6(Ysya)(Y5Ya)' 

6. GENERALIZED DIRAC EQUATION 

(5.6) 

(5.7) 

We vary (4.12) with respect to 1p and 1p+, and then 
the action principle yields the Euler-Lagrange equa
tions 

~ _ a (e k ac ) - 0 (6.1) 
a1p(+) k a aCaa1p(+» - . 

In view of (3.12) we get 

~ - (a + 20P - (aa
e») ~ = O. (6.2) 

a (+) a ap ~a (+) 1p e u a1p 

For convenience we now use the Lagrangian in the 
form (4.6). Computing the necessary partial deriva
tives, we obtain from (6.2) 

[yaoa - !rapyy[aypyy] + O~pya]1p = imy. (6.3) 

The partial derivative can be transformed into a 
derivative with respect to a V4 or a U4 • Substituting 
(3.14) in (6.3) we have 

[y'Va + trap/yaypyy - yraypyYl) + O~pya]1p = im1p. 

(6.4) 

With (4.3), (3.7), and (3.9) one is led to 

ya[Va + tKp/]1p = im1p (6.5) 

and with (3.14), (3.6), (3.16), and (4.3) to 

{} 

[y"Va + tKapj"yPyY]]1p = im1p. (C) 

The comparison of this equation with the result in a 
V4 is especially instructive. 

With the help of (B) it is possible to eliminate the 
contortion everywhere. Substituting (B) in (C), we 
immediately have 

{} 

[yaVa + (il2j16)(1p+y[ayPYY]1p)YaYpYy]1p = im1p (6.6) 

or together with (5.7) 

{} 

[yaV'a - iil2(1p+y5ya1p)Y5Ya]1p = im1p. (C') 

This is a classical spinor equation of the Heisenberg
Pauli type and because of (6.5) it can be equivalently 
written as 

(6.7) 

It should be noted that we arrive at this simple 
equation only in view of (B). 

In addition to the above-mentioned authors of 
Refs. 7 and 14--18, Gtirsey19 and Finkelstein20 dis
cussed nonlinear spinor equations, more or less 
resembling (C' ), in space-times with torsion. They 
both worked with a connection allowing teleparal
lelism, and Finkelstein even used a space with constant 
torsion. 

7. UNIVERSAL SPIN-SPIN INTERACTION 
OF RANGE ZERO 

Let us now reflect on the difference between the 
theory presented here and usual general relativity. 
With the help of the field equations (B) we can 
collect the contortion terms in the Lagrangian scalar 
of (4.12) in one term 

lTyPaKaPy = iT[yPa]KaPY = tkT[aPY]T[aPY1' (7.1) 

We recognize the interaction term (7.1), character
istic for a U4 , as a universal spin-spin contact inter
action. That is to say there is nothing like a "spin 
field" which is emitted and which is the carrier of a 
new interaction; there is rather a very weak classical 
interaction as soon as any spinning matter is over
lapping. This leads also to a certain self-interaction of 
spinning matter automatically introducing non
linearities as in (C' ). This interaction is very weak, 
as can be seen from the smallness of 1 in (C/). Hence 
this theory describes in a unified manner two universal 
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interactions: the far reaching gravitational interaction 
and a weak spin-spin interaction of vanishing range. 
It is very tempting to regard such a theory as a' 
classical model unifying gravitational and weak 
interaction. 

For a Dirac particle according to (5.6) the canonical 
spin can be represented by an axial vector. A spin
spin interaction thus leads in this special case to an 
axial vector interaction and (7.1) can be rewritten, 
using (B) and (5.7), in the form 

1 YP«K 31
4 
(+ )( + «) 

~'T «Py = 16k "P YsY«"P "P YsY "P . (7.2) 

(7.2) naturally corresponds to the nonlinear term 
entering the spinor equation (C'). It is easy to obtain 
a V-A interaction instead of (7.2) by modifying the 
matter Lagrangian in a suitable way. 

Apart from all speculations, we have formally 
arrived at the result that the second term of (C') 
can be derived from the first term just by using the 
connection (2.1) of a U4 instead of the Christoffel 
symbol of a V4 • This leads to a deeper understanding 
of such nonlinear spinor equations and their connec
tion with geometry of space-time. 
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Group invariance is used to analyze the solutions of several well-known differential equations. 

INTRODUCTION 
Nonlinear mechanics is the name generally given to 

the study of nonlinear, second-order, ordinary differ
ential equations. The independent variable is usually 
interpreted as time. The principal tool in nonlinear 
mechanics is the phase plane, the plane in which the 
dependent variable and its first derivative are the 
coordinates. The phase plane is particularly useful for 
studying autonomous differential equations, i.e., 
those equations in which the independent variable does 
not appear. For them, the paths in the phase plane 
traced out by the solutions are independent of time 
and can be obtained from the solution of a first-order 
differential equation. In the event that the first-order 

equation cannot be solved in terms of elementary 
functions, which is frequently the case, its direction 
field can be sketched in the phase plane and the 
qualitative nature of the paths determined. From 
these paths, certain properties of the solutions of the 
original equation can be inferred: whether they are 
oscillatory or monotone, whether they are stable or 
unstable, whether they have any asymptotic limits, 
whether they have roots or singularities. 

When the differential equation is not autonomous, 
the paths in the phase plane are no longer time
independent nor are they determined by a first-order 
differential equation. The phase plane loses much of 
its usefulness. However, if the differential equation is 
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interactions: the far reaching gravitational interaction 
and a weak spin-spin interaction of vanishing range. 
It is very tempting to regard such a theory as a' 
classical model unifying gravitational and weak 
interaction. 

For a Dirac particle according to (5.6) the canonical 
spin can be represented by an axial vector. A spin
spin interaction thus leads in this special case to an 
axial vector interaction and (7.1) can be rewritten, 
using (B) and (5.7), in the form 

1 YP«K 31
4 
(+ )( + «) 

~'T «Py = 16k "P YsY«"P "P YsY "P . (7.2) 

(7.2) naturally corresponds to the nonlinear term 
entering the spinor equation (C'). It is easy to obtain 
a V-A interaction instead of (7.2) by modifying the 
matter Lagrangian in a suitable way. 

Apart from all speculations, we have formally 
arrived at the result that the second term of (C') 
can be derived from the first term just by using the 
connection (2.1) of a U4 instead of the Christoffel 
symbol of a V4 • This leads to a deeper understanding 
of such nonlinear spinor equations and their connec
tion with geometry of space-time. 

JOURNAL OF MATHEMATICAL PHYSICS 

ACKNOWLEDGMENTS 

We especially thank Professor E. Kroner for many 
discussions and for suggestions improving our paper. 
One author (F. H.) gratefully acknowledges support 
from the Deutsche Forschungsgemeinschaft. 

1 D. W. Sciama, in Recent Developments in General Relativity 
(Pergamon, New York, 1962), p. 415. 

2 T. W. B. Kibble, J. Math. Phys. 1, 212 (1961). 
3 F. Hehl and E. Kroner, Z. Physik 187, 478 (1965). 
• F. Hehl, Abhandl. Braunschweiger Wiss. Ges. 18,98 (1966). 
• E. Cartan, Compt. Rend. Acad. Sci. (Paris) 174,593 (1922). 
6 E. Cartan, Ann. Ecole Norm. Sup. 40, 325 (1923); 41, 

(1924); 41,17 (1925). 
7 V.1. Rodichev, Zh. Eksp. Teor. Fiz 40,1469 (1961) [SOY. Phys. 

JETP 13, 1029 (1961)]. 
8 J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 1954), 

2nd ed. 
9 L. D. Landau and E. M. Lifshitz, The Classical Theory of 

Fields (Pergamon, New York, 1962), 2nd ed. 
10 E. M. Corson, Introduction to Tensors, Spinors, and Relativistic 

Wave Equations (Blackie, London, 1953). 
11 T. W. B. Kibble, J. Math. Phys. 4, 1433 (1963). 
12 L. Kannenberg and R. Arnowitt, Ann. Phys. (N.Y.) 45, 416 

(1967). 
13 G. Lemmer, Nuovo Cimento 37, 1647 (1965). 
14 G. Braunss, Z. Naturforsch. 19a, 825 (1964). 
1. A. Peres, Nuovo Cimento Suppl. 14, 389 (1962). 
16 M. Lenoir, Compt. Rend. Acad. Sci. (Paris) 159, 3701 (1964). 
17 J. Wainwright, in Colloquium on the Calculus of Variations 

(U niversity of South Africa, Pretoria, 1966), p. 98. 
18 J. Wainwright, Tensor 19, 217, 266 (1968). 
19 F. Giirsey, Nuovo Cimento 5, 154 (1957). 
20 R. Finkelstein, J. Math. Phys. 1,440 (1960). 

VOLUME 12, NUMBER 7 JULY 1971 

Phase-Plane Analysis of Nonlinear, Second-Order, 
Ordinary Differential Equations * 

LAWRENCE DRESNER 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 

(Received 12 October 1970) 

Group invariance is used to analyze the solutions of several well-known differential equations. 

INTRODUCTION 
Nonlinear mechanics is the name generally given to 

the study of nonlinear, second-order, ordinary differ
ential equations. The independent variable is usually 
interpreted as time. The principal tool in nonlinear 
mechanics is the phase plane, the plane in which the 
dependent variable and its first derivative are the 
coordinates. The phase plane is particularly useful for 
studying autonomous differential equations, i.e., 
those equations in which the independent variable does 
not appear. For them, the paths in the phase plane 
traced out by the solutions are independent of time 
and can be obtained from the solution of a first-order 
differential equation. In the event that the first-order 

equation cannot be solved in terms of elementary 
functions, which is frequently the case, its direction 
field can be sketched in the phase plane and the 
qualitative nature of the paths determined. From 
these paths, certain properties of the solutions of the 
original equation can be inferred: whether they are 
oscillatory or monotone, whether they are stable or 
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When the differential equation is not autonomous, 
the paths in the phase plane are no longer time
independent nor are they determined by a first-order 
differential equation. The phase plane loses much of 
its usefulness. However, if the differential equation is 
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invariant to a one-parameter group of transformations 
of the variables, an analysis very similar to phase
plane analysis is possible. In fact, when the group of 
transformations is the group of translations of the 
independent variable, the analysis is identical with 
phase-plane analysis. 

The new analysis is based on a theorem of Lie, l 

namely, if an invariant u and a first differential 
invariant v of the group are substituted in the original 
(invariant) second-order equation, the resulting 
equation in u and v is of first order. (An invariant u of 
the group is a function of x, the independent variable, 
and y, the dependent variable, which is invariant to 
the transformations of the group. A first differential 
invariant v is an invariant function of x, y, and 
jI == dyldx.) We now study the paths in the (u, v) plane 
(henceforth called the Lie plane), which is the analog 
of the phase plane of an autonomous differential 
equation. 

The remainder of this paper will be devoted to the 
analysis of several well-known equations to show how 
the method works. The equations are the Bessel 
(zero-order), Emden-Fowler, Poisson-Boltzmann, 
and Fermi-Thomas equations. Bessel's equation. 
while linear, is included by way of introduction 
because the properties of its solutions are well known. 

BESSEL'S EQUATION 

Bessel's equation of order zero is 

(1) 

(The dot denotes differentiation with respect to the 
independent variable.) Equation (1), like all linear 
equations, is invariant to the group of transformations 

y' = Ay, (2a) 

x' = x, (2b) 

o < A < 00. u = x and v = jlly are an invariant and 
a first differential invariant, respectively. (There is a 
systematic method of calculating these invariants, but 
we shall be content to display them without proof. 
For the uncomplicated groups treated in this paper, 
the invariants u and v are evident on inspection.) Now 

so that 

du = dx, 

dv = ~ dx - f dx, 
y l 

(3a) 

(3b) 

dv ji y2 V 2 
P == - = - - - = - - - 1 - v . (3c) 

du y y2 U 

In obtaining the last equality, we give ji its value from 
Eq. (1). 

Figure 1 shows the direction field of Eq. (3c) in the 
Lie plane. Shown also in Fig. 1 are the p = 0 and 
Ipl = 00 isoclines. The origin 0 (u = 0, v = 0) is a 
critical point, and it is clear from the figure that it is a 
saddle point. Two separatrices intersect at 0, dividing 
the Lie plane into four distinct parts. One of the 
separatrices is the Ipl = 00 isocline, that is, the v axis. 
The other we find by noting that, in the neighborhood 
of 0, the separatrix obeys the equation dvldu = vlu. 
We see then from (3c) that (dvjdu)o = -t, Having 
found the slope of the separatrix at the origin, we can 
calculate it by integrating (3c) away from the origin 
in both directions. The separatrices are shown in Fig. 1. 

The integral curves of (3c) have many branches, and 
away from the origin are reminiscent of the curves 
v = -tan u. On each branch, save the two that are 
asymptotic to the v axis, v goes from + 00 to - 00 as 
u increases. When Ivl is sufficiently large, dvldu ~ -v2• 

Thus Ilv = u - a, where a is a constant of integration. 
Since v = Y/y and u = x, this last equation is the 
same as y/y = I/(x - a). Integrating again we find 
y = b(x - a), where b is another constant of inte
gration. Thus each singularity of an integral curve in 
the Lie plane, with the possible exception {)f that 
at u = 0, marks a root of the one-parameter family of 
solutions corresponding to the integral curve. Thus 
Bessel's equation of zero order only has oscillatory 
solutions. 

The singularity at u = 0 requires more analysis 
since the term vlu cannot necessarily be neglected 
when compared with the term v2• The I on the right
hand side of Eq. (3c) can be dropped since p = ± 00 

2 

-\ 

-2 

, , , , 
_3~'~~~~~~~lU~~~~lU~~~~ 

-3 -2 -\ o 

FIG.!. The direction field in the Lie plane for Bessel's equation of 
order zero. 



                                                                                                                                    

DIFFERENTIAL EQUATIONS 1341 

on u = O. Then (3c) can be integrated: Near u = 0, 
v = [u In (u/a)]-l, where a is a constant of integration. 
This last equation can be integrated again and gives 
y = b In (x/a), where b is a second constant of inte
gration. Thus the families of solutions corresponding 
to integral curves of (3c) that are singular at the origin 
themselves have logarithmic singularities at their 
origins. 

There is a one-parameter family of solutions whose 
integral curve in the Lie plane is nonsingular at the 
origin, namely, that corresponding to the' separatrix. 
Since (dv/du)o = -t for this separatrix, this family 
has the form y = ae-w2

/ 4 = a(1 - x 2/4 + ... ) near 
the origin. The curves of this family are all multiples 
of the Bessel function of order zero Jo(x). 

When u» I, we can easily find the form of the 
solutions of (1), for v ~ -tan (u - a) -1/2u and 
y = bx-t cos (x - a), where a and b are constants of 
integration. This is the asymptotic form of all the 
solutions of Bessel's equation of zero order. 

POISSON-BOLTZMANN EQUATION 

The one-dimensional Poisson-Boltzmann equation 
is 

j.i + (v/x)y = ell , (4) 

where v = 0,' I, or 2 according to whether we work 
in plane, cylindrical, or spherical geometry, respec
tively. Equation (4) is invariant to the one-parameter 
group of transformations 

x' = AX. 

y' = y - 21n A. 

(5a) 

(5b) 

An invariant and a first differential invariant of this 
group are 

v = xy. 

(6a) 

(6b) 

According to Lie's theorem, u and v should be 
connected by a first-order differential equation. A 
short calculation shows it to be 

dv u + (1 - v)v 

du u(v + 2) 
(7) 

When v = I, (7) can easily be integrated. The 
resulting relation between u and v can be integrated 
again, and leads in a straightforward way to the 
solution of Walker and Lemke.2 When v = 0, Eq. (7) 
is not easily integrated, but then (4) simplifies and 
can easily be integrated directly. When v = 2, neither 
Eq. (7) nor Eq. (4) can be easily integrated. 

When v = 1, the integral curves of (7) in the Lie 

plane are the parabolas 

(v + 2)2 = 2(u - a), (8) 

where a is a parameter. These parabolas all have the 
line v = - 2 as their common axis and the points 
(a, -2) as their vertices. In terms of the variables x 
and y, (8) becomes 

[(2x2eY - 2a)t - 2] dx - x dy = O. (9) 

Another theorem of Lie's3 tells us that [x(2x2e!l -
2a)t]-1 is an integrating factor for (9). When a > 0, 
integration of (9) gives 

(2/a)t arccot (x2eY/a - l)t + In (x/b) = 0, (10) 

where b is another parameter. Using (l0), we can 
easily show that 

y = 2 In Icsc [(2/a)-t In (x/b)] I - 21n x + In a, 

u = a csc2 [(2/a)-t In (x/b)], 

v = - (2a)t cot [(2/a)-t In (x/b)] - 2. 

(lla) 

(Ub) 

(llc) 

From (Ila) we see that y has a logarithmic singularity 
whenever (2/a)-t In (x/b) is an even multiple of 7T/2. 
When (2/a)-t In (x/b) is an odd multiple of 7T/2, y = 
In a - 21n x. A sketch of y as a function of x is 
shown in Fig. 2. In cylindrical geometry we are only 
interested in x > O. 

When (2/a)-fin (x/b) is just slightly less than some 
even multiple of 7T/2, both u and v are large and 
positive. When (2/a)-t In (x/b) is just slightly greater 
than some even multiple of 7T/2, u is large and positive, 

y 

FIG. 2. A sketch of y vs x for the Poisson-Boltzmann equation in 
cylindrical geometry when a > O. 
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while v is large and negative. When (2ja)--'! In (x/b) is 
an odd multiple of 7T/2, u == a, and v = -2. Thus as 
we pass from one singularity to the next on a curve 
of y vs x, we traverse the entire integral curve in the 
Lie plane in the direction shown in Fig. 3. 

When a < 0, (10) becomes 

(x2ell/lal + 1)! + 1 = (~)-(2Iap!, (12) 

(xV/lal + 1)! - 1 b 

from which it follows that 

[(
X/b)(2Iall! + 1)2 ] 

Y = In 1 - 1 - 21n x + In lal, 
(x/b)(2 IaP- - 1 

(13a) 
1 

[(
X/b)(2Iall- + 1)2 ] 

U = lal - 1 , 
(x/bY2Ia pt _ 1 

(13b) 

! (x/b)(2Ia pt + 1 
v = -(2 laD - 2. 

(x/bY2 IaP! - 1 
(13c) 

The only singularities which y has now are at x = 0, 
x = b, and x = 00, except when lal = 2, when there 
is no singularity at x = O. When 0 < lal < 2, Y < 0 
near x = O. When lal = 2, Y = 0 at x = O. When 
lal > 2, Y :> 0 near x = O. The behavior of y is shown 
in Fig. 4. 

When x = 0, v = (2 lal)! - 2 and u = O. When 
x = 00, v = - (2 lal)! - 2 and u = O. When x = b, 
both u and v = 00. When x/b is slightly less than 1, v 
is positive; when x/b is slightly greater than I, v is 
negative. Thus as x increases from zero to infini~y, the 
integral curves in the Lie plane are traversed 10 the 
direction shown in Fig. 5. (Only the right-hand half
plane is of interest since u = x2ell > 0.) 

From this analysis, we see, for example, that only 
the integral curve corresponding to a = -2 in the 

u 

I 
I 
I 
I 
I 
I 
I 
Ix=b 

I 
I 
I 

I 
FIG. 4. A sketch of y vs x for the Poisson-Boltzmann equation in 

cylindrical geometry when a < O. 

Lie plane leads to solutions that are nonsingular at the 
origin. The solutions all form a one-parameter family, 
but transform into one another under the transfor
mations of the group (5). In this sense, there is but one 
solution nonsingular at the origin. According to (13a), 
it can be written y = In [8b2/(X2 _ b2)2]. 

Figure 6 shows the direction field of (7) when v = 2. 
Again only the first and fourth quadrant are of interest. 
The lines u = 0 and v = -2 are the Ipl = 00 isoclines; 
the line v = u is the p = 0 isocline. The origin is a 
saddle point. The separatrices are the lines u = 0 and 
a curve, shown in Fig. 6, which crosses the origin with 
a slope of!. 

We pursue our analysis by studying the singularities 

;' x=o 
/ 

I~/--+---------------------------u 
I , 
\ 
\ , 

" x=co 

__ -.:x::...= b + 0 

FIG. 3. The direction in which the integral curves are traversed- FIG. 5. The direction in which the integral curves are traversed-
Poisson-Boltzmann equation in cylindrical geometry, a > O. Poisson-Boltzmann equation in cylindrical geometry, a < O. 
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FIG. 6. The direction field in the Lie plane for the Poisson-Boltz
mann equation in spherical geometry. 

of the solutions in the (x, y) plane. First off, we ask 
whether a finite point (0 ~ I vi < OCJ, ° < u < OCJ) of the 
Lie plane can correspond to a singularity in the (x, y) 
plane. In the neighborhood of any point in the (u, v) 
plane, p = (v2/u)eY

• Near a singularity of y, v2/u may 
be considered constant. The solution to this differ
ential equation is then 

y = -In [b - (v2/4u)!xt (14a) 

Furthermore, 

(14b) 

and 

(14c) 

For y to be singular, b - (v2/4u)!x must vanish, and 
then u and v are infinite, contrary to hypothesis. The 
only possible exception occurs when b = 0, in which 
case v = -2, u can have any nonzero positive value, 
and y = In u/x2• Substitution into (4) shows that u 
must equal -2 if (4) is to be satisfied by y = In u/x2 

near x = 0. Thus y can have no singularity corre
sponding to a finite point in the (u, v) plane. All 
singularities in the (x, y) plane correspond to points at 
infinity in the Lie plane. 

When u and v are both» 1, Idv/dul '" II/v - llul« 
1. Hence, eventually, u far outweighs v. Then dv/du ~ 
llv so that v2 ~ 2u + a, where a is a constant of 
integration. No matter what value a has, when v and 
u are large enough, both will be » a. Then v2 "-' 2u, 
which can be written p = 2eY in terms of x and y. 

The solution of this differential equation is y = 
In [2/(x - b)2], where b is a constant of integration, 
corresponding to a logarithmic singularity. Moreover, 
v = xy = -2x/(x - b), so that when x = b - 0, 
v = +00 and, when x = b + 0, v = -00. Thus when 
we traverse the integral curves lying below the 
separatrix in the direction shown in Fig. 3, we advance 
from one singularity to the next in the (x, y) plane . 
Furthermore, b must be positive for y to be singular; 
it cannot equal zero, since then Ivl would not be » I 
near x = b. 

Let us now consider the behavior of the solutions 
determined by the behavior of the integral curves in 
the Lie plane near the positive part of the v axis. When 
v» I, dv/du = -l/u so that v + In u = a. When v 
is large enough, the constant a may be neglected, and 
v + In u = 0. The latter can be written d(xy) + 
21n x dx = 0, so that xy + 2x In x - 2x = b' . If we 
calculate v from this last equation, we find v = -b'/ 
x - 2. Since v must be large and positive, ° < x « I 
and b' < ° (remember x > ° in spherical geometry). 
Thus y ""' -Ib'l/x near x = 0. 

Now we are in a position to consider the kind of 
solutions (4) can have when v = 2. Either the solutions 
are singular or nonsingular at x = 0. If they are non
singular, y and yare finite at x = 0, and u = v = ° 
there. The only integral curve traversing the origin is 
the separatrix, so these solutions start off with u = 3v, 
i.e., with ye-Y = x/3. This equation integrates to give 
y = In [6/(b - x 2)], b ¥= 0, in the neighborhood of 
x = 0. Advancing along the separatrix leads to a 
singularity as u and v approach OCJ [arc (a), Fig. 7]. If 
the solutions are singular at the origin, their behavior 
there corresponds to the positive v axis, i.e., a - I/x 

FIG. 7. A sketch of y vs x for the Poisson-Boltzmann equation in 
spherical geometry. 
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singularity [arc (b), Fig. 7]. In each case, a singularity 
is reached. From the first singularity on, the solution 
corresponds to traversals of integral curves in the Li~ 
plane below the separatrix, these being the only ones 
both of whose extremes can correspond to points on 
the finite x axis. The behavior of the possible solutions 
is shown in Fig. 7. 

EMDEN-FOWLER EQUATION 

The Emden-Fowler equation has the form 

ji + (2/x)y + yn = 0, X ~ 0, (15) 

where II ~ 0. Equation (15) is invariant under the 
gro~ of transformations 

x' = AX, 
y' = A2/(1-n)y, 

(l6a) 

(16b) 

except when n = 1. An invariant u and a first differ
ential invariant v of this group are 

u = x-2/ U- n )y, 
V = x(n+ll/(n-l)Y. 

In terms of these invariants, (I5) becomes 

dv (1 - n)un + (3 - n)v 

du 2u - (1 - n)v 

(17a) 

(17b) 

(18) 

We begin by considering the case n = 5. Equations 
(17) and (18) then become 

u = xty, (19a) 
a 

V = x"y, (l9b) 

dv 2u5 + v 
(19c) -=-

du u + 2v 

The direction field of (I 9c) in the Lie plane is shown in 
Fig. 8. There are three critical points: (J2/2, -J2/4), 
(-J2/2, J2/4), and (0, 0). The first two critical points 
are vortex points, the origin is a saddle point. Two 
separatrices cross the origin; in the neighborhood of 
the origin they are the curves v = -u and v = -iu5• 

The two separatrices join smoothly to form a figure 
eight. Integral curves inside the loops of the figure 
eight are closed curves surrounding the vortex points; 
integral curves outside the figure eight are closed 
curves surrounding the entire figure eight. 

Our analysis is aided in this case by the fact that 
(19c) can be integrated to give 

3uv + 3v2 + u6 = b, 

where b is a constant. 
In terms of x and y, (20) becomes 

3x2yy + 3x3P + X3y6 = b. 

(20) 

(21) 

o 

-\ 
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FIG. 8. The direction field in the Lie plane for the Emden-Fowler 
equation, n = 5. 

Equation (21) is also invariant to the group (l6b). 
Another theorem of Lie's shows that the substitution 
w = y2x will lead to a differential equation for w in 
which the variables are separable. After some compu
tation we find 

dx = (J3/2) dw(w2(£ - w2
) + bw)-!. (22) 

x 

b = ° for the separatrices since they pass through 
the point u = v = 0. For b = 0, (22) can be integrated 
using the trigonometric substitution w = (J3/2) sin (j. 
Again after some calculation we at last find 

y = [3a/(x2 + 3a2)]! (23) 

as the family of solutions all of which correspond to 
the separatrix in the Lie plane. These solutions are 
already known.4 

Having the explicit solution (23) enables us to find 
directly how a point in the Lie plane traces out the 
separatrix as x increases from zero to infinity. From 
(23) we find 

u = [3ax/(x2 + 3a2)]!, (24a) 

v = -(3a)!xi /(x2 + 3a2)~. (24b) 

When x is small (<< a), u,...., (x/a)! and 

v,...., -iCx/a)i = -iu5• 

Hence, as x advances away from the origin, the point 
in the Lie plane moves away from the origin in the 
Lie plane along the branch of the separatrix that 
has zero slope at the origin (see Fig. 8). When x is 
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large (» a), u,-...; (3a/x)! and v,-...; -(3a/x)! = -u. 
Thus as x approaches 00, the point in the Lie plane 
returns to the origin in the Lie plane along the sepa
ratrix that has a slope of -1 at the origin. One 
circuit in the Lie plane corresponds to passage of x 
from 0 to 00. The two halves of the figure eight 
correspond to families of solutions which are negatives 
of each other, i.e., to opposite choices of the sign of 
the square root in (23). 

Equation (22) can be integrated in terms of elli~tic 
integrals, but this is a laborious task. To determme 
the qualitative behavior of the solutions, we return 
to (21). When x --+ 0, at least one of the terms on the 
left-hand side must remain finite. [None can become 
infinite since (21) is the same as (20), and u and v are 
bounded on any integral curve.] No matter which one 
we choose, we see that y '" x-! as x --+ O. If this is so, 
v "" - iu when x --+ O. The same argument also holds 
as x --+ 00. Then half a circuit of each integral curve 
from one intersection with the line v = - iu to the 
other corresponds to passage of x from zero to infinity. 
The two halves of the same integral curve in the Lie 
plane correspond to families of solutions which are 
negatives of each other. Thus the solu!ions of (15) 
corresponding to b ;e 0 all vary as x-:r near x = 0 
and x = 00. Then u = y..} x = const in these extremes, 
and its value can be found from the equation u6 -

iu2 = b, which results from substituting v = -iu in 
(20). 

b is greater than zero for the integral curves in the 
Lie plane outside the figure eight, and b is less than 
zero for those inside the loops of the figure eight. 
v = 0 at one point on each half of the curves for which 
b > O. Since this occurs at a finite value of x, y = 0 
once on each curve for which b > O. v ;e 0 on the 
integral curves in the Lie plane for which b < 0, and y 
has no extremum at all on these curves. Thus the 

solutions of (15) for n = 5 look like those sketched in 
Fig. 9. Each vortex point corresponds to an entire 
solution. These two solutions are y = ±..}2J2..} x. For 
these solutions b = -to 

EMDEN-FOWLER EQUATION: n = 3 

A different type of behavior is exhibited by the 
Emden-Fowler equation when n = 3. Then, 

u = xy, 

v = x2y, 
dv u3 

-=---
du u + v 

(25a) 

(25b) 

(2Sc) 

The only critical point is the origin; it is a node. (See 
Fig. 10.) All of the integral curves approach the line 
v = - u as they approach the origin except that for 
which dv/du = 0 at the origin. 

Let us now ask whether any finite point of the Lie 
plane (0 < lui < 00,0 < Ivl < 00) can correspond to 
a singularity in the (x, y) plane. Near such a singularity, 
Y1y2 = v/u2 ; the right-hand side of this equation may 
be treated as a constant. Then y = [a - (vju2)x]-l, 
where a is a constant of integration. Then u = 
x[a - (vju2)X]-1 and v = (vju2)x2[a - (vju2)X]-2. If u 
and v are finite in the neighborhood of the singularity, 
a must equal zero. But then u = -u2/v and v = u2jv. 
The only solution of these equations is v = -U. Thus, 
if there are singularities corresponding to finite points 
in the Lie plane, the latter must be on the line v = -U. 

The corresponding solutions are y = u/x in the 
neighborhood of the singularity, which occurs at 

FIG. 10. The direction field in the Lie plane for the Emden-Fowler 
FIG. 9. A sketch of y vs x for the Emden-Fowler equation, n = 5. equation, n = 3. 
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x = 0 in the (x,y) plane. However, substitution into 
(15) shows that y = uj x cannot satisfy (15) even to 
leading order near x = O. Hence, finite points of the 
Lie plane correspond to ordinary points in the (x, y) 
plane. 

Let us now consider the behavior of the solutions 
when the point in the Lie plane approaches the origin. 
In general, as the integral curves in the Lie plane 
approach the origin they draw ever closer to the line 
v = -u, but there is one exception-:-the integral 
curve that approaches the line v = 0 as it crosses the 
origin. The integral curves which approach the line 
v = -u have equations near the origin of the form 
v + u = feu, uo). Here Uo is the abscissa at which the 
curve first cuts the line v = -u as we proceed away 
from the origin, and feu, Uo) is a function with the 
following properties. It has the same sign as u for u 
between zero and uo, and it vanishes more rapidly 
than u as u ~ O. Thus, in the neighborhood of the 
origin v = u = 0, 

x
du = x~(xy) = x2y + xy = u + v =/(u, uo) 
dx dx 

(26a) 
or 

In (~) __ ruo~ 
a - Ju feu, uo) , 

(26b) 

where a is a constant of integration. As u ~ 0, the 
right-hand side of (26b) approaches - 00, so that 
x ~ O. Furthermore, since feu, uo) approaches zero 
faster than u does, x must approach zero faster than u 
does. But then (25a) shows that y ~ ± 00 as x ~ 0, 
the sign depending on the sign of u. 

The integral curve which approaches the origin with 
zero slope has the equation v = -ius + ... in the 
neighborhood of the origin. This integrates to give 
y = [3j(X2 + a)]t, where a > 0 is a constant of 
integration. For this solution, U = X[3j(X2 + a)]i, 
v = -xS.J3(x2 + a)-i. u and v can only vanish if 
x ~ O. Hence, this integral curve leads to a solution 
that is nonsingular at the origin; the others treated 
above lead to solutions singular at the origin. 

As we advance away from the origin in the Lie plane, 
the integral curves spiral outwards around the origin. 
Each time they cross the line u = 0, y = 0; each time 
they cross the line v = 0, y = O. Clearly, then, the 
solution oscillates as x increases. The oscillations are 
bounded. This is easier to prove starting from (15) 
than by using the Lie plane. If we multiply (I5) by 
.v dx = dyand integrate, we get t(y)2 + f~ (2jX)(y)2 X 

dx + ty' = const, where x = a is some point at which 
y is nonsingular. When x> a, all the terms in the sum 

are positive, and therefore they must be bounded. 
Then y and yare both bounded for x > a. 

The solutions of (I5) for n = 3 are thus all oscil
latory and bounded at 00. They have no singularities 
when x> O. At x = 0 they are singular, except for a 
one-parameter family of solutions that are regular 
everywhere. 

FERMI-THOMAS EQUATION 

The Fermi-Thomas equation has the form 

y = x-iyi (27) 

and is invariant to the group of transformations 

y' = A.-Sy, 

x' = AX, 

(2Sa) 

(2Sb) 

whose invariant u and first differential invariant v are 

u = xSy, 

v = x'y. 

In terms of u and v, (27) becomes 

dv ui + 4v 

du v + 3u 

(29a) 

(29b) 

(30) 

The critical points of (30) are (0, 0) and (144, -432). 
The direction field in the Lie plane is shown in Fig. 
11. The abscissas in Fig. 11 have been reduced by a 
factor of 64, the ordinates by a factor of 200. Only the 
right half-plane is considered since u cannot be less 
than zero. The origin is a nodal point; the point P: 
(144, -432) is a saddle point. The separatrices cross the 

FIG. 11. The direction field in the Lie plane for the Fermi-Thomas 
equation. 
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saddle point with slopes of HI ± -J73). One of them, 
the one with the negative slope, also passes through 
the origin. 

Let us now study the asymptotic behavior of the 
separatrices. On any integral curve in the Lie plane 
on which lui and 1v.1 -+ 00, five possibilities are open: 

Ivl « lui, i.e., lim Iv/ul = 0, 
Ittl .... '" 

Ivl'"" lui, i.e., lim Ivjul = const, 
lui .... '" 

Ivl » lui, i.e., lim Ivjul = 00. 

1"1 .... '" 

singularity in the finite part of the Lie plane; the 
singularity occurs at the point P. 

Next let us study the behavior of the solutions 
corresponding to integral curves near the origin. 
Again we analyze (30) by cases. As lui and Iv! approach 
zero, five possibilities exist. 

Case 1: Ivl « lultt. dvjdu = lui, l' = ~1I~, which is a 
contradiction. 

Case 2: Ivl "" lul~. Set v = ).u~. dv/du = HI + 4A)u! 
or v = HI + 4).)utt . Therefore, ). = 2 and v = 2ui . 

The latter case comprises three subcases, Ivl « lul~, Case 3: lui» Ivl »Iul!. dvjdu = 4vj3u. v = aut, 
Ivl "" lul~, or Ivl » lultt. a = const. 

Case 1: Ivl« lui. Then dvjdu"" lui, v '"" -~-u~ so 
that Ivl is not « lui, a contradiction. 

Case 2: Ivl "" lui. dv/du "" const X u!, v "" const X 

ufr , which is a contradiction. 

Case3: lui! » Ivl » lui. dv/du,"" u~jv, v'"" (2/J5)ut 
This last equation can be integrated again to give 

y = [(2/3J 5)xi - a ]-4, (31 a) 

u = x3[(2/3J5)x! - a]-4, (3Ib) 

v = -(2/J5)i!-[(2/3J5)x! - a]-5, (31c) 

where a is a constant of integration. lui and Ivl can 
only approach 00 if (2/3J5)x! -+ a. If the approach to 
a is from below, u -+ + 00 and v -+ + 00; if the 
approach is from above, u -+ + 00 and v -+ - 00. 

Case 4: Ivl'"" lul i . dvjdu,"" const, so that Ivl'"" 
lui, again a contradiction. 

Case 5: Ivl » lul~. The proofis the same as in Case 4. 

Next let us locate the singularities, if any, in the 
finite portion of the Lie plane. In the neighborhood 
of a singularity, we have y3jy4 = V3/U4, where the right
hand side can be considered as constant. Integration 
givesy = 27[a - (vjut)X]-3, U = 27x3[a - (v/Ut)X]-3, 
v = 8Ix4(vju!)[a - (vjut)X]-4. At a singularity, u 
and v would thus become infinite, contrary to 
hypothesis, unless the constant a = o. If a = 0, 
u = -27u4jv3, and v = 8Iu4/v3 , so that v = -3u and 
y = ujx3. Thus the only possible singularity in the 
finite part of the Lie plane corresponds to an x-3 

singularity in the (x, y) plane at x = o. If we substitute 
y = ujx3 into (27), we find that it will only satisfy (27) 
if u = 144; but then it satisfies (27) for all x. Hence 
only the special solution y = 144jxl can have a 

Case 4: Ivl '" lui. Set v = AU. A = 4)'/()' + 3) or 
). = 1. Therefore, v = u. 

Case 5: Ivl» lui. dv/du = 4, v = 4u, which is a 
contradiction. 

The separatrix OP has a negative slope; for small u it 
therefore has the form v = aut. The value of a has 
been determined by Fermi as -1.58 and by Baker as 
-1.588588.5 Any attempt to determine a by inte
grating from the origin outwards is plagued by two 
difficulties: First, it must be a trial and error method; 
second, it will be unstable against small errors, e.g., 
roundoff and truncation errors. In contrast, a can be 
determined by a single inward integration from the 
saddle point, which is, moreover, stable. The starting 
values are (+ 144, -432) and the starting slope 
(necessary at the critical point) is t(1 - -J73). In 
fact, if we only want the value of a and not the 
equation of the separatrix, it is enough to start at any 
convenient point in the Lie plane and integrate 
inwards to the origin. 

The solutions in the (x, y) plane corresponding to 
v = aut are y = (b - iax)-3, u = x3(b - iax)-3, 
v = ax4(b - iax)-4. If u and v are both to vanish, x 
must -+ 0 and b cannot equal zero. Thus, in the neigh
borhood of the origin, the solutions corresponding to 
the separatrix OP behave like y = (b - iax)-3. 

How do these solutions behave as we move along 
the separatrix OP towards the saddle point? In the 
vicinity of the saddle point, u = 144 + u' , V = 
-432 + v', v' = mu' , m = HI - -/73). Then v -
mu = -432 + v' - 144m - mu' = - (432 + 144m). 
In terms of x and y this becomes x4y - mx3y = 
-(432 + 144m). This last equation is linear, and, to 
solve it, we set y = 144x-3 + w. Then x4w - mxlw = 
o so that w = cxm

, C = const. Hence y = I44x-3 + 
cxm, u = 144 + cxHm , V = -432 + mcxm+3. As 
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we approach the saddle point then, x3+n! must 
approach zero and, since 3 + m < 0, x must 
clearly ->- 00. Thus the arc of the separatrix between 
the origin and the saddle point corresponds to a one
parameter family of solutions having the behavior 
y = (b - tax)-3 at the origin and y = l44Jx3 for 
large x. All the members of this family transform into 
one another under the group (28). The member for 
which b = I is the solution originally obtained by 
Fermi and by Bush and Caldwell.6 

The same analysis holds when we approach the 
saddle point along the other separatrix, except that 
now m + 3 > 0. Clearly, then, x = ° at the saddle 
point for curves corresponding to this separatrix. 
These curves all behave like 144x-3 at the origin. 

So far we have only considered Case 3 of the three 
noncontradictory possibilities for the behavior of u 
and v as both approach zero. Case 4 implies the 
existence of an integral curve Sl entering the origin 
with v = u. Near u = 0, this integral curve has the 
series expansion v = u + tu! - 310U2 + Ttoul + .. '. 
Along this curve, y = bx, to lowest order, where b 
is a constant of integration. All of these solutions form 
a one-parameter family, transformable into one 
another according to (28). The one for which b = I 
has the following power series expansion around 
x=o: 

y = x + t x3 + s\rx5 + l'/40X7 + .... (32) 

Eventually this solution becomes singular (since the 
integral curve starting with v = u at the origin lies 
above the separatrix with positive slope). 

Case 2 implies an integral curve S2 which enters the 
origin with v = 2utt . S2' which has the series expansion 
2u~ - 3u2 + 6ul + 66u3 + ... , corresponds to a 
family of solutions behaving like y = (b - iX!)-2, 
b ¢ 0, near x = 0. The member of the family for 
which b = I has the following expansion around 
x =0: 

y = I + txtt + ixa + -l7X~ + 4hx6 + .. '. (33) 

Next, what happens when we approach the line 
u = 0 away from the origin? dvJdu = 4 when lui « 
Ivl. Then v - Vo = 4u. In terms of x and y, x4y = 
4xay + Vo. We can solve this as we did above: 
y = -tvox-3 + Ax4, A = const. u = -tvo + Ax7 

and v = tvo + 4Ax7. For u to vanish, x must equal 
Xo = (voJ7A}+-. Then v = Vo as it should, and y(xo) = 
O. Thus the line u = 0 corresponds to a root of the 
solution. It is an upcrossing for positive Vo and a 
downcrossing for negative vo. In either case, the 

solution cannot be advanced analytically, since u can 
never be negative. One may skip from a point on the 
negative v axis to a point on the positive v axis, and 
the solution has a discontinuity in slope at y = O. 

We break off the analysis of the Fermi-Thomas 
equation here even though some interesting questions 
still remain unanswered, e.g., how do the integral 
curves between Sl and S2 approach the origin? A wide 
variety of solutions is possible, but only those corre
sponding to the segment OP of the separatrix are 
known to be of physical significance. 

DISCUSSION 

The equations discussed here are all invariant under 
extremely simple groups, and the group invariance is 
evident on inspection. Many interesting differential 
equations are invariant under somewhat more 
complicated groups, but the group invariance is hard 
to recognize. Lie7 has shown how to calculate the 
most general differential equation of given order 
invariant under a specified group. Tables have been 
prepared of these differential equations for various 
groups.8 A given differential equation can be compared 
with the entries in the tables and, if it is found to have 
one of the forms entered in the table, a group under 
which it is invariant can be identified. In this way, 
the differential equation x3jJ = f(xy - y), which is a 
generalization of Eq. (6.93) in Kamke's compilation,9 
is found to be invariant to the group of transformations 
x' = x(1 + XA)-l, y' = y(l + XA)-l (group X in 
Table II of Ref. 1). In spite of these tables, however, 
one often encounters equations for which no group 
invariance is obvious; in fact, it has been shown that 
there are second-order differential equations that are 
not invariant under any group.lO The application of 
Lie's method thus depends to some extent on fortunate 
circumstances, but, as the examples given in this paper 
have shown, such circumstances are not rare. 

* Research sponsored by the U.S. Atomic Energy Commission 
under contract with the Union Carbide Corporation. 
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The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, 
nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest 
system of the medium and then write the result in an appropriate four-dimensional, covariant form 
which is valid in any inertial system. 

I. INTRODUCTION 

Recently Besieris and Compton! solved the problem 
of electromagnetic radiation by an arbitrary source in 
a uniformly moving, homogeneous, isotropic, non
dispersive, conducting medium by making use of a 
relation between the fundamental solution of a 
radiation problem and that of a corresponding Cauchy 
initial value problem. An alternative method was 
provided by Chen and Yen,2 who applied judiciously 
chosen affine transformations to the pertinent differ
ential equation. 

It is the purpose of this paper to solve the same 
problem but in a different way. The most essential 
feature of the technique used in the present paper is 
that the problem is handled in the rest system K' of 
the medium "as long as possible," because the 
pertinent differential equations are much simpler in 
K'. In fact the whole problem is solved in K' by making 
use of the known fundamental solution of the Klein
Gordon differential equation; the result is then 
transformed to an arbitrary inertial system K by 
means of an appropriate tensor formulation. 

We use Cartesian tensor notation as in Ref. 3. By 
a tensor we understand a tensor defined on the 
Lorentz transformation group. Latin subscripts run 
from I to 4, Greek subscripts run from 1 to 3. The 
coordinate x" == iCf, where t is the time and C the 
speed of light in vacuum; therefore, the metric tensor 
in 4-space is equal to the Kronecker symbol 00 (when 
Cartesian spatial coordinates are used) and we do not 
distinguish between contravariant and covariant 
tensors. Repeated subscripts obey the summation 
convention, and commas in subscripts denote partial 
differentiation with respect to coordinates (or co
variant differentiation since the metric tensor is 
independent of the coordinates). 

II. THE. POTENTIAL TENSOR (4-VECTOR) 

In any inertial system Maxwell's equations are 

aB 
VxE=-at ' 

aD v x H = iii" + JI + J, 

V·D = PI + p, 

V·B=O, (1) 

where E, H, D, B are familiar symbols for the field 
quantities, J I' P, denote the free current and charge 
densities, and J, p the externally applied current and 
charge densities. 

In the rest system K' of the medium, the following 
constitutive relations are assumed to be valid: 

D' = €E', 

B' = ,uH', 
J; = O'E', 

(2) 

where E, ,u, 0' are the dielectric constant, the perme
ability and the conductivity, respectively. 

It is well known4 that vector and scalar potentials 
A', <1>' can be introduced in K', satisfying the equations 

(3) 

where we have assumed that p~ = 0 because of the 
brevity of usual relaxation times. 

A' and <1>' are connected by the gauge condition 

V A, a<l>' ,h' 0 (4) . + ,uE - + O'fi'l' = . at' 
The translation of (3) into tensor language is given 

in Ref. 5 for the case 0' = O. It is not difficult to show 
that if 0' =;6. 0, a single term has to be added so that the 
tensor wave equation for the potential tensor Ai 
(consult Ref. 6) which is valid in any inertial system K 
may be written as 

(5) 

where K == (n2 - 1)jc2, n == cjc', c' == (fi€)-1, Si == 
fi{J; + Kjn2Jr Ur U;), Ur is the velocity 4-vector, and 
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finally Ji is the current density 4-vector (consult Ref. 6) solution also holds when (in) and (if) are purely 
of the external source. imaginary; therefore 

The tensor equation for the gauge condition turns 
out to be 

(6) 

III. INTEGRATION OF THE TENSOR EQUATION 
FOR DAMPED WAVES 

The first-order term in (5) may be eliminated. Let 
k i denote a constant 4-vector (i.e., independent of the 
space-time coordinates xr). Also, tensor functions Bi 
and Ti are defined by 

Bi == Aie-k,,,'r, 

Ti == S;e-k,z,. 

From (5) and (7) we derive 

where 

(7) 

(8) 

(9) 

G'(x;, z;) 

(
15*(U~ - inr') .1 Jl(lR') 1*(' .') u~ > 0 

-1--- U -mr -
r' n R' + 4 , i 

= , 
0, u~ < 0 

i 

where 
R' == [r,2 + (u~/n)2]!, 
r' == (u;u;)!. 

(14) 

(15) 

J l is the Bessel function of first kind and first order, 
and It denotes the unit step function with purely 
imaginary argument, i.e., 

*()_{I'X/i~O 1+ x - . 
0, xli < 0 1== [krkr - K(krUr )2 - (fflkrUr]! 

and kr is subjected to the condition 

2ki - (2KkrUr + (ffl)Ui = 0. 

By means of G' we are able to write down an 
integral representation for the potentials A; con

(10) nected with B; by (7): 

Since U; = (0, 0, 0, ic), (10) is satisfied in K' if we 
define 

, ( . (fflC) ki == 0, 0, 0, 1 2n2 • (11) 

Because (10) is a tensor equation, it holds in any 
system of inertia K since it holds in K'. [In K we can 
get kr from (11) by means of the tensor transformation 
law.] 

I is defined by (9) and transforms like an invariant 
under a Lorentz transformation. It is easily shown 
(in K') that 

I = i(f(fl/ f)!. (12) 

In K' (8) reduces to 

(V,2 + n2 ~ + 12)B~ = -T (8') 
ax~2 • •. 

In preparation for the integration of this equation, 
consider 

(V,2 - (in)2 a~:2 - (il)2)G' = -47T()(U;), (13) 

where u; == x; - z;; z~ are parameters and ()(u;) == 
()(u~)I5(u~)I5(u~)t5*(u~). 15*(u~) is a delta-function with 
purely imaginary argument, i.e., S~~oo j(z)I5*(z) dz = 
f (0) for a great class of functions f 

Equation (13) is the Klein-Gordon equation for the 
time-dependent Green's function G'. The solution of 
(13) for the whole space is given in Ref. 7 for real 
constants (in) and (if). It is readily seen that the 

-00 

x S~(z;) du~ du~ du~ du~. (16) 

IV. TRANSFORMATION TO AN ARBITRARY 
INERTIAL SYSTEM 

Let a;i be the transformation matrix for a proper 
Lorentz transformation, i.e., Xr = ar.x~. Multiplying 
(16) by a;i' we see that the left side is equal to 
A;(xr) because A; is a tensor. a;i may be taken under 
the integral and, since S i is a tensor, a;;S; (z;) = 
S;(zr) if the Lorentz transformation is also applied 
to the integration variables, i.e., if Zr = arsz~ which 
implies Ur = arsu; . Furthermore, kr is a tensor so that 
ekr'u,.' = ekrur• 

Next we investigate how the Green's function G' 
is transformed. Without loss of generality, we choose 
ars so that Xl = x~, X2 = x~, X3 = y(x~ + ifJx~), 
X4 = y(x~ - ifJx~), where y == (I - fJ2)-!, fJ == vIc, 
and v is the velocity of K relative to K'. 

Consider a three-dimensional hypersurface in 
Minkowski space, which in K' is given by R'2 = 0, 
u~/i > 0 (Fig. I) (cf. Ref. 3). In order to express the 
surface independently of the inertial system, we define 

R == [UrUr + K(Ur;r)]!. (17) 

Obviously R is an invariant function of Ur , and it 
is easily seen that R = R' in K'. Therefore, the 
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FIG. 1. Location of zeros of the function R2 in Minkowski 4-space 
for U4/i > O. 

hypersurface is also given by R2 = 0, u4!i > 0 because 
it is located entirely in that part of Minkowski space 
where the condition u4/i = (X,. - z4)/i > 0 is valid in 
any inertial system K. 

U4 is purely imaginary so R2 may be negative, which 
is the case inside the hatched domain in Fig. 1. The 
roots of R2 = 0 are given by (cf. Ref. 3) 

where a == [1 - (nfJ)2]/(l - fJ2), P == (u~ + u;)!. 
It is seen that nfJ < 1 implies T + > 0, T _ < O. In 

the domain u4!i > 0 the equation R2 = 0 defines a 
one to one correspondence between Us and U4 (for 
given p). This is not the case for nfJ > 1 (Cerenkov 
region) because T't' > 0 for U4/i < -p lal l , and both 
roots are complex or do not belong to the domain 
u4/i > 0 for u4!i > - p lal l . 

From the preceding remarks we conclude that the 
step function in (14) may be written in covariant form 
as 1+( _R2), U4/i > O. 

As to the d function in (14), we have 

Finally we observe that the limits of integration in 
(16) remain unchanged because a Lorentz transfor
mation is a one-to-one mapping of the Minkowski 
space on itself. 

We are now able to write down the covariant forms 

of (14) and (16) valid in an arbitrary inertial system: 

-rx;; 

G(x" z,) 

= (i ~ b( _R2) _ i ~ Jl~R) 1+( _R2), 

0, 
(21) 

When nfJ < 1, 

. 2 ~. 2 t5*(u4 - iT+) t5*(u4 - iT+) 
I-d(-R)=l- = i' 

n . n -(dR2/du4)"'=iT+ (u~ + ap2) 

u4!i > O. (22) 

When nfJ > 1, both roots T ± playa part as pointed 
out before. In this case it turns out that 

.2 il( 2) d*(U4 - iT+) + d*(u4 - iT_) 
l-u-R = , 

n (ui + al)! 

U4/i > O. (22') 

If the medium is nonconductive, i.e., a = 0, then 
krur = 0 and 1= 0 [cf. (11) and (12)], furthermore, 
the second term in (21) evidently vanishes. This 
problem has been investigated previously by Comp
ton,S Lee and Papas,9 Tai,lO.l1 and the author.s As 
pointed out by Tai,ll the first term in (21) is equivalent 
to the corresponding expression found by Compton.s 

As to the general case (a =;t. 0), the result given by 
Besieris and Compton1•12 is in errorlS due to miscalcu
lation, and there is a formal error in Ref. 2,14 so the 
author hopes deeply that he is right in asserting that 
the results in Refs. 1 and 2 can be brought into 
agreement with the results given here. 

1 I. M. nesieris and R. T. Compton, Jr., J. Math. Phys. 8, 2445 
(1967). 

2 K. C. Chen and J. L. Yen, J. Math. Phys. 9,2081 (1968). 
3 G. Johannsen, J. Math. Phys. 11, 3251 (1970). 
4 D. S.Jones, The Theory of Electromagnetism, Vol. 47 (Pergamon, 

New York, 1964). 
5 J. M. Jauch and K. M. Watson, Phys. Rev. 74, 950 (1948). 
G C. MIJller, The Theory of Relativity (Qxford U.P., London, 1952). 
? P. M. Morse and H. Feshbach, Methods of Theoretical PhYSiCS, 

Vol. I (McGraw-Hili, New York, 1953), pp. 854-857. 
8 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966). 
9 K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1688 (1964). 

10 C. T. Tai, IEEE Trans. Antennas Propagation AP-13, 322 
(1965). 

11 C. T. Tai, J. Math. Phys. 8, 646 (1967). 
12 I. M. Besieris, J. Math. Phys. 8, 409 (1967). 
13 As pointed out in Ref. 2, there is an algebraic error in Eq. 

(I8a), Ref. 1 (v should be replaced by yv); furthermore, the factor 
before the second term of (59), Ref. 12, is not correct, which in tum 
influences the results in Ref. I. 

14 In Eq. (21) etc., Ref. 2, the argument of the Bessel function is in 
error. 
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The infinite series representation of the generalized Bose operator given by Brandt and Greenberg is 
shown to be equal to an operator introduced by Demkov. 

Generalized Bose operators b which reduce by two 
the number of quanta of a Bose operator a have 
recently been studied by Brandt and Greenberg.1 

The representations obtained for these operators are 
normal ordered infinite-degree power series of a, 
namely 

where 

b = IocJ(at)Jai+2, 
J~O 

(1) 

OC
j 
= ~ ± (j)(_1)J-r(2r + 3 + (-1y»)lexP (iOr), 

2j! r~O r (r + 2)(r + 1) 
(2) 

the Or being arbitrary real numbers. 
Demkov,2 studying the symmetry group of the two

dimensional anisotropic oscillator, introduced the 
operator 

B = B+A+ + B_A_, 

B+ = 2-la(ata)-la, B_ = 2-la(aat)-la, (3) 

A+ = cos2 (TTata/2), A_ = sin2 (TTata/2). 

This operator will now be shown, in a representation
independent manner, to be equal to the generalized 
Bose operator b, provided that the choice Or = 0, 
r = 0, ... ,00, is made and thus constitutes a 
compact and convenient representation of it. 

Lemma: 
(4) 

Proof: Using the normal ordered expansion formula3 

j(ata) =~ ± (-1)r-1(s) (atyar 
r~o S~O s! (r - s)! 

and the fact that [a, (aty] = r(aty-1, we get 

aA+ = a cos2 (iTTa t a) 

(5) 

00 r ( 1)'-S 2(1 ) =! ! - cos 2TTS [(a tya,+l + rea tr-1a,]. 
r~Os~O s! (r - s)! 

Separating the two terms, changing the summation 
index in the second to r' = r - 1, and noting that, 

by continuing the first for s > r, vanishing terms are 
added [as then 1/(r - s)! = 0], we get 

aA+ =~ 11 (_IY-s (1 _ (r + 1) ) 
r~Os~OS! (r - s)! (r + 1 - s) 

X cos2 (tTTs)(a tYaH1 

00 r+I (1)r+I-s =L L - COS2(tTTs)(atfar+I. 
r~O 8~O (s - 1)! (r + 1 - s)! 

Noting that the term s = ° vanishes and changing to 
s' = s - 1, we get 

A _~ ~ (_1)r-s .2(1 )( t)r r+1 
a + - k k sm 2TTS a a 

r~Os~O s! (r - s)! 

= sin2 (tTTata)a == A_a, 

Eq. (5) having been used in the last step. The identity 
aA_ = A+a follows analogously. One might suspect 
that the proper form of the operator B should be 

B = A+B+A+ + A_B_A_, (6) 

but, by a straightforward use of the lemma and the 
relations [A±, (ata)-l] = ° and A~ = A±, one easily 
shows that the expression given in Eq. (6) is equal to 
that given in Eq. (3). 

Using the lemma, we note that 

B = 2-la[(ata)-lA_ + (aat)-lA+]a. (7) 

If we introduce the expansion (5), it follows that 

l 00 , ( -1)'-s 
B = TaL L ---"-----'-

r~O s~o s! (r - s)! 

(
Sin

2 
am) cos2 

(im}) t, ,+1 
X l + t (a) a . 

s (s + 1) 

By a sequence of operations analogous to that used in 
the proof of the lemma, we obtain 
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Using the fact that for integral s 

cos2 (1Ts/2) = [1 + (-1)8]/2, 
we get 

[cos2 (i1TS)/(S + l)! + sin2 (!1TS)/(S + 2)!]2 

= H[2s + 3 + (-I)']/(s + 1)(s + 2)]). (9) 

JOURNAL OF MATHEMATICAL PHYSICS 

From Eqs. (1), (2), (8), and (9) we finally get, for 
Or = 0, r = 0, ... , 00, B = b. 

1 R. A. Brandt and O. W. Greenberg, J. Math. Phys. 10, 1168 
(1969). 

2 Yu. N. Demkov, Zh. Eksp. Teor. Fiz. 44, 2007 (1963) [Sov. 
Phys. JETP 17, 1349 (1963)]. 

3 R. M. Wilcox, J. Math. Phys. 8, 962 (1967). 
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Micromagnetism and Superconductivity* 
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The balance laws of microelectromagnetic theory developed by Eringen and Kafadar [J. Math. 
Phys. 11, 1984 (1970)] are shown to contain, as special cases, the classical theories of micro magnetism 
and Londons' equation of superconductivity. Various generalizations are indicated. 

1. INTRODUCTION 

Recentlyl we gave a relativistic theory of micro electro
magnetism which is intended for the prediction of 
physical phenomena involving ferromagnetism, micro
magnetism, electrets, microwave propagations, and 
other related microelectromechanical effects. A hier
archy of balance laws was derived for all order 
moments of electromagnetic fields. The field equations 
for the zeroth-order moments are Maxwell's equations 
of the classical electromagnetic theory, and those for 
the first-order moments are entirely new and possess 
extra internal degrees of freedom for the description of 
a large class of microelectromagnetic phenomena not 
describable by Maxwell's equations. 

The main purpose of the present paper is twofold: 
(i) to derive the basic balance laws of ferromagnetism 
as a special case of the theory and (ii) to show that 
Londons' equation of superconductivity is contained 
in our theory. Various rational extensions of both 
theories are suggested. 

The literature is extensive on both ferromagnetism 
and superconductivity. Since the introduction of 
molecular fields by Weiss in 1907, ferromagnetism 
has been developed in various directions. Both quan
tum mechanical approaches (Heisenberg,2 Dirac,3 
and Bloch4

) and phenomenological work (Landau and 
Lifshitz,5 Brown,6.7 Tiersten,8 Amari,9 and Alblas10) 
exist. A number of books and reviews on the subject 
have also been published (Kittel,ll Kittel and Galt,12 
and Brown7). The basic micromagnetic balance law 

in most of these works is argued on the basis of its 
origin through electronic spin. The discussion of 
magnetic domains, the instability of domain walls, 
and the micromagnetic resonance phenomena requires 
knowledge of this law. In phenomenological ap
proaches to the subject, this law is often derived by 
a variational principle for the static case; afterwards, 
suitable dynamical terms are added5-7.1o.11 or certain 
inertia terms or a kinetic energy are postulated.8 •10 A 
rational and unified approach should provide not 
only a deeper understanding but also extensions of 
the existing theories in various fruitful directions. 

In Sec. 3 we arrive at the balance law of spin moment 
of momentum by specializing the general theory given 
in Ref. I and by providing physical interpretations to 
new magnetic field tensors. Complete balance laws 
and jump conditions are obtained. Various dynamical 
generalizations of the theory are indicated. 

In Sec. 4 another special case of the basic equations 
of the microelectromagnetic theory of Ref. I is con
sidered. This leads to Londons' equations of super
conductivity13.14 and its generalizations. 

Proper reference to works in both fields is beyond 
the scope of this paper. 

We believe it is interesting and important to find 
that on a microcontinuum basis such seemingly diverse 
fields as ferromagnetism and superconductivity have 
the same unified foundations. In addition, various dy
namical generalizations and new physical interpreta
tions suggest new directions for research in these fields. 
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Using the fact that for integral s 

cos2 (1Ts/2) = [1 + (-1)8]/2, 
we get 

[cos2 (i1TS)/(S + l)! + sin2 (!1TS)/(S + 2)!]2 

= H[2s + 3 + (-I)']/(s + 1)(s + 2)]). (9) 
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From Eqs. (1), (2), (8), and (9) we finally get, for 
Or = 0, r = 0, ... , 00, B = b. 
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The balance laws of microelectromagnetic theory developed by Eringen and Kafadar [J. Math. 
Phys. 11, 1984 (1970)] are shown to contain, as special cases, the classical theories of micro magnetism 
and Londons' equation of superconductivity. Various generalizations are indicated. 

1. INTRODUCTION 

Recentlyl we gave a relativistic theory of micro electro
magnetism which is intended for the prediction of 
physical phenomena involving ferromagnetism, micro
magnetism, electrets, microwave propagations, and 
other related microelectromechanical effects. A hier
archy of balance laws was derived for all order 
moments of electromagnetic fields. The field equations 
for the zeroth-order moments are Maxwell's equations 
of the classical electromagnetic theory, and those for 
the first-order moments are entirely new and possess 
extra internal degrees of freedom for the description of 
a large class of microelectromagnetic phenomena not 
describable by Maxwell's equations. 

The main purpose of the present paper is twofold: 
(i) to derive the basic balance laws of ferromagnetism 
as a special case of the theory and (ii) to show that 
Londons' equation of superconductivity is contained 
in our theory. Various rational extensions of both 
theories are suggested. 

The literature is extensive on both ferromagnetism 
and superconductivity. Since the introduction of 
molecular fields by Weiss in 1907, ferromagnetism 
has been developed in various directions. Both quan
tum mechanical approaches (Heisenberg,2 Dirac,3 
and Bloch4

) and phenomenological work (Landau and 
Lifshitz,5 Brown,6.7 Tiersten,8 Amari,9 and Alblas10) 
exist. A number of books and reviews on the subject 
have also been published (Kittel,ll Kittel and Galt,12 
and Brown7). The basic micromagnetic balance law 

in most of these works is argued on the basis of its 
origin through electronic spin. The discussion of 
magnetic domains, the instability of domain walls, 
and the micromagnetic resonance phenomena requires 
knowledge of this law. In phenomenological ap
proaches to the subject, this law is often derived by 
a variational principle for the static case; afterwards, 
suitable dynamical terms are added5-7.1o.11 or certain 
inertia terms or a kinetic energy are postulated.8 •10 A 
rational and unified approach should provide not 
only a deeper understanding but also extensions of 
the existing theories in various fruitful directions. 

In Sec. 3 we arrive at the balance law of spin moment 
of momentum by specializing the general theory given 
in Ref. I and by providing physical interpretations to 
new magnetic field tensors. Complete balance laws 
and jump conditions are obtained. Various dynamical 
generalizations of the theory are indicated. 

In Sec. 4 another special case of the basic equations 
of the microelectromagnetic theory of Ref. I is con
sidered. This leads to Londons' equations of super
conductivity13.14 and its generalizations. 

Proper reference to works in both fields is beyond 
the scope of this paper. 

We believe it is interesting and important to find 
that on a microcontinuum basis such seemingly diverse 
fields as ferromagnetism and superconductivity have 
the same unified foundations. In addition, various dy
namical generalizations and new physical interpreta
tions suggest new directions for research in these fields. 
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2. MICROMAGNETIC BALANCE LAWS 

Balance laws (5.11) and (5.13) and jump conditions 
(5.12) and (5.14) of microelectromagnetic theory' 
given in Ref. I may be simplified a great deal in the 
case of negligible electric fields. Here we are interested 
in micromagnetism. For this case we set 

D = :D = P = E = & = 7t = 0, q = (J = 0, 

Ek! = Hk! = 0, Ek4 = Hk4 = Dk4 = Bk4 = 0. (2.1) 

With this, the balance laws reduce to 

DZk;z = 0, 

Ek!mHm;! = (41T/C)J\ 

(2.2a) 

(2.2b) 

Ekm'1'H!, _! oD
kZ + Ek!m(H _ Je + 41TM ) = ° n.m C ot m m m , 

(2.2c) 

Bk;k = 0, (2.2d) 

Bk = $k' (2.2e) 

B!k;! = 0, (2.2f) 

Eklm(Jem - 41TMm);/ = (41T/C)Jk, in 'U' - r, (2.2g) 

valid in the region 'U' excluding the discontinuity 
surface r. For the corresponding jump conditions 
from (5.12) and (5.14) of Ref. I we have 

[DZk]nz = 0, 

Ek!mn![Hm ] ,= (41T/C)Kk, 

Ekmnnm[HnZ] + Y(n)c-1[DkZ] = -41TEk1m",nm, 

[Bk]llk = 0, 

[BkZ]nk = 0, 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

EkZmnz[Jem] = 41T(Xk.aEab"'.b + Eklmnz[M m]) + (41T/C)Kk, 
(2.3f) 

valid on the discontinuity surface r, which may be 
moving with a normal velocity Yen) in the direction of 
its positive unit normal n. Various tensorial quantities 
appearing in these equations are: 

Dlk = electric displacement tensor, Hk = magnetic 
field vector, Hkz = magnetic field tensor, Jek = local 
mean magnetic field, Mk = magnetization vector, 
Bk = Hk + 41TMk = magnetic flux vector, BZk = 
magnetic flux tensor, '" = surface magnetization, 
c = speed oflight in vacuum, Jk = the current vector, 
Kk = the surface current vector. 

Throughout this paper we employ the summation 
convention over the repeated indices, and use the semi
colon to indicate covariant partial differentiation with 
metric tensor gkZ and the comma to indicate partial 
differentiation with respect to the curvilinear co
ordinates Xk, e.g., 

k k { k} m Bk = OBk 
B ;1 == B .1 + 1m B, .1 - ox l • 

Also, Ek!m, k, I, m = 1,2,3 and Eab, a, b = 1,2, 
are, respectively, three- and two-dimensional alter
nating tensors, and indices a, b following a comma 
indicate the surface gradient on the discontinuity 
surface r given by its Gaussian form Xk = xk(ua). 
Quantities enclosed in boldface brackets are the 
jumps of these quantities at r. 

Note that the above set of equations contain the 
field equations of the classical theory of magnetism, 
namely, 

v x H = (41T/C)J, V· B = ° in 'U' - r, (2.4) 

n x [H] = (41T/C)K, [B]· n = ° on r. (2.5) 

The remaining equations are new. 
The field equations (2.2a) and (2.2f) are the general

izations of Gauss' law to the first moments of dielec
tric displacement and magnetic induction in the 
absence of charges. Equation (2.2c) extends Ampere's 
law to the first moment of the magnetic field, and the 
last equation of (2.2) is the extension of Ampere's law 
to the surface average of magnetic field. In the present 
theory, the magnetic field H (which is the local line 
average of the microscopic field) is distinguished from 
the local surface average Je of the magnetic field. 
The second-order tensor H!k is the average of the first 
moment of the local magnetic field and D!k is that 
of the local dielectric displacement. These equations 
arise from the consideration of macroscopic electro
magnetic fields as distributions over macroelements of 
the body (cf. Ref. I). We note that these new equations 
are not the result of multipole expansions. In fact, as 
we shall see, (2.2c) are the field equations for the 
micro magnetic fields and spin inertia whose special 
forms are discussed by Landau and Lifshitz,5 Brown,6 
and others. 

Any second-order tensor may be expressed as 

(2.6) 
where 

are, respectively, symmetric and antisymmetric parts 
of Dkl. Upon substituting (2.6) into (2.2a) and (2.2c), 
we get 

D(M;I + D[lkl;! = 0, 

1 OD(kO 
Emn(kHnO;m - - -- = 0, 

c ot 

(2.7a) 

(2.7b) 
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We now define 

dr == tEklrD[kl], 

Tlr == t(H/ - H/tJ1
r), 

which possess the inverses 

D[kl] = Ek1rdr , 

H/ = 2T'r - T\b'r . 

Upon introducing these into (2.7), we obtain 

D(lk);1 - Eklrdr;1 = 0, 

1 :lD(kl) 

2 mn(kTll _ - _v __ - 0 
E n;m C at - , 

1 adr I 
~ at = T r;l + Hr - :Ie,. + 41TMr· 

(2.8a) 

(2.8b) 

(2.9a) 

(2.9b) 

(2.10a) 

(2.10b) 

(2.1Oc) 

The jump conditions corresponding to these follow 
from (2.3a) and (2.3c): 

[D<lk)]n l + Eklrnl[dr] = 0, (2. 11 a) 

2Emn(knm[Tlln] + v(n)c-l[D(kll] = 0, (2. 11 b) 

[Tlr]n , + v(n)c-l[dr] = -41Tp,nr . (2.11c) 

If dr is determined by solving (2.l0c) under the jump 
conditions (2.llc), then D(kll would be determined by 
the two first sets of (2.10) under the jump conditions 
(2.11a), (2.11b). Finally, the last two equations of 
(2.2) and the corresponding jump conditions are 
necessary in the determination of Jem and Ht 
(equivalently Tn ,). To this end, however, one alter
nately needs a set of constitutive equations, which 
has been ignored so far. 

3. BALANCE OF SPIN MOMENT OF 
MOMENTUM 

In the literature there exists a dynamical law for 
the spin moment of momentum. This law is usually 
written down on some quantum mechanical arguments 
(cf. Refs. 2-4) or in analogy with the moment 
of momentum of an electron.5- 7 A model based on 
two superposed continua, one mechanical and one 
spin, was also proposed.s All these theories contain 
certain analogies and rationale. We believe, however, 
that micro magnetic phenomena is an integral part 
of microelectromagnetism. Naturally, this important 
connection could not have been established on any 
rational basis before a unified theory was available. 
Here we establish this connection by showing that the 
dynamical law of spin moment of momentum is a 
special case of the present theory. 

Multiplication of (2.IOc) by EkmrMm gives 

1 kmr adr kmr (I W ) 
-E Mm- = E Mm T roZ + Hr - ""'r' 
C at . 

(3.1) 

This equation may be made identical to those postu
lated by Landau and Lifshitz,6 Brown,7 Herring,H and 
TierstenS by setting 

1 EkmrM adr = 1. aMk 
c m at Yo at ' 

(3.2) 

with gyromagnetic ratio Yo = ge/2mc, (g f"'oJ 2), where 
elm is the ratio of charge of an electron to its mass. 

We now investigate the nature of (3.2). In vector 
notation 

aM = YOM x ad. 
at c at 

(3.3) 

From this it follows that 

aM 
M • - = 0 or IMI = M(x). (3.4) 

at 

Thus the magnetization must have a magnitude 
independent of time. This is the assumption used by 
most previous writers for the saturation of magnetiza
tion. In fact most authors take M = const. 

An examination of (3.3) indicates that aM/at is 
perpendicular to the plane of M and d; thus, if M is 
proportional to the mechanical moment of mOQlentum, 
then 

(3.5) 

is the angular velocity with which M rotates at x. 
This interpretation may be arrived at also by con
sidering the definition of Dkl as given in our work,l 
namely, 

(3.6) 

where an angular bracket indicates the average over 
a macroelement and ;' may be taken as the directed 
segment from a point to the position of the electric 
displacement vector D'. According to (2.8a), then, 

d = t(D' x;'). (3.7) 

With (2.1), we assumed D = (D') = o. Now suppose 
that D' is independent of time and that the micro
elements are rigid. If the operator a/at is commutative 
with the angular bracket, then 

2 ad = (D' x ~') = (D' x (w' x;') 
at 

= (D' • ;'w - D' • w;'), 

where w is the constant spin angular velocity (the 
gyration vector) of any point ;' in macroelement. 
Thus we may take w outside of the angular bracket. 
Hence 

(3.8) 
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where we used the definition (3.6). Consequently 

a, = Yo (Dnno', - D',)ws. (3.9) 
2c 

This provides the relation of the gyration vector w 
to angular velocity n. It is clear that Dk! must have 
the same dimension as Yo/c. From (2.2c) we have 

dim Dk! = ct dim Hk. 

Upon using this in (3.5), we see that 

dimn e 
Yo f"-.J dim H = mc' 

which is well known from the theory of electrons (cf. 
Landau and Lifshitz,15 p. 121). 

Upon introducing (2.9a) for the Drsr ) , (3.9) may 
be written as 

Or = Yo (Dn ng., - D(s,»wS 
- Yo €srndno/, (3.10) 

2c 2c 

which serves to determine w whenn (equivalently d) 
is known. 

In the special case when D(s,) = 0, (3.10) reduces to 

n = Yow x d. 
2c 

In this case d is to be determined from 

ad 
- = tw x d, at 

(3.11) 

(3.12) 

which indicates that d has a magnitude independent 
of time and rotates with the angular velocity w. 

Under the above special conditions, (3.1) takes the 
form 

.1 aM
k 

= €km'M m(Tl,;! + Hr - Je,), (3.13) 
Yo at 

which, as stated, has the form encountered in the 
literature. Of course, the tensor Tlr and the field Jer 
in literature are· replaced, respectively, by forms that 
are derivable from a potential, the free energy. From 
Brown16 and Tiersten,8 for example, we have the 
identifications17 

Je - of Tk - ~ Xk (3.14) 
r - aMr ' r - aM' .K' 

.K 

where F = F(M', M'.K, Xk.K) is the free energy. To 
obtain such equivalence, one needs the mechanical 
balance laws (mass, momenta, energy) and a con
stitutive theory. 

The present theory is broader in its scope and 
coverage. It is a dynamical theory, and the inertia 
terms are not brought in as a modification to a static 

theory. Additional developments on thermodynamics 
and constitutive theory are required for a proper 
development of a constitutive theory leading to (3.14) 
and its generalizations. This development is beyond 
the scope of this paper. 

Finally, we consider the jump conditions (2.lIc) 
relevant to spin moment of momentum. By taking the 
product of this with €kmr M m' we write 

€kmrMm[(T!r + 41T,ub',)n l + "(n)c-Id,J = O. (3.15) 

Aside from the terms containing "(n) , which drop out 
for the stationary discontinuity surfaces, this equation 
is similar to those obtained by others in an entirely 
different fashion. 

We emphasize the fact that, in the present theory, 
we have six extra degrees of freedom D(kll which 
affect the magnetization. These degrees of freedom 
arise from the nonrigid character of the position 
vectors of the polarization vectors associated with 
different points in a macroelement. For magnetism, 
(2.7a), (2.7b) and the corresponding jump conditions 
(2.lIa), (2.lIb) may be used to determine D(kll. In 
the general theory of microeiectromagnetism, the 
situation is much more complicated, and separate 
constitutive equations for Dkl are needed involving 
the electric field tensors as well. 

4.SUPERCONDUCTnnTY 

Here we shall show that the micro magnetic balance 
laws (2.2), in a special case, reduce to the field equa
tions of superconductivity derived by F. and H. 
London in 1935,13 Thus the present theory encom
passes the diamagnetism. 

We can always take 

(4.1) 

where;' is a scalar and Jeri is a tensor field.18 Intro
ducing the magnetic stress tensor Tlr in the same way 
as in (2.8b), we have 

Hrl = 2;.2Je,;1 + 21" r - 1'\gr" (4.2) 
where 

T-1 - .l(W 1 W h!) 
r = 2 J\..r - ..,\.ok U r • (4.3) 

Substituting (4.2) into (2.7) and using (2.2g), we get 

(4.5) 

2 Tl 1 adk ;. (V x V X Je)k + Jek - Bk - k;1 + - - = 0, 
c at 

(4.6) 
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where super current field j is defined by 

j = J + cV x M. (4.7) 

In a special case when the magnetic stress tensor is 

negligibly small, i.e., i = 0, Eqs. (4.4) and (4.5) serve 
to determine D(kll. However, compatible with this 
limit we can also take D(k!l = ° and disregard Eq. 
(4.5). This simply ,means that the gradient of current 
field is small. In this case the above system reduces to 

V x d = 0, (4.8) 

1 ild 
il2V x V x Je + Je = B - - -. (4.9) 

cat 

The remaining equations of the system (2.2) are 

V x H = (4rr/c)J, V· B = 0, 

V x Je = (4rrJc)j. (4.10) 

These equations take the form of Londons' equations 
of superconductivity if one further neglects the mag
netic inertia term ad/at, by taking d = 0. Thus 

il2V x V x Je + Je = B, (4.11) 

V x Je = (4rr/c)j, V • Je = 0, (4.12) 

V x H = (4rr/c)J, V· B = 0, (4.13) 

of which (4.12)2 follows from (4.11) by taking the 
divergence of both sides and using the second of 
Eqs. (4.13). Equations (4.13) are Maxwell's equations 
of magnetism. 

Equations (4.11) differ from those of the Londons 
by the presence of B, instead of 0. However, it is well 
known that (cf. de Gennes,14 p. 58) in the core of 
supermagnets Londons' equation must be modified 
by a flux term. This term is usually introduced 
heuristically by some arguments based on experi
mental observations. The present theory gives rise to 
this effect in a rational manner. Moreover, dynamical 
generalization of the superconductivity is suggested 
by the set of equations (4.8)-(4.10) in which a magnetic 
inertia term ad/at appears. Still further generalization, 
(4.4)-(4.6), contains micro magnetic effects not usually 
included in a discussion of diamagnetism. The physi
cal phenomena contained in these equations present 
interesting challenges for future workers. 

The jump conditions corresponding to (4.4)-(4.6) 
follow from (2.3) by using (4.2). Below we give the 
boundary conditions corresponding to (4.8)-(4.10), 
valid on r: 

n x Ed] = 0, (4. 14a) 

il2[Je.zJnl + il2c-l [~ V • d] n + 'V(n)c-l[d] = -4rr,un, 

(4.14b) 

(4. 14c) 

€klmnl[Jem] = 4rr(xk.a€ab,u.b + €klmnl[Mm]) + (4rr/c)K\ 

(4.14d) 

n x [H] = (4rr/c)K, 

[B]· n = 0, 

(4. 14e) 

( 4.14f) 

where (4.14b) follows from (2.3c) by multiplying it 
by €klr and using (2.8a), (4.9), and (4.2) with t lr = O. 
The jump condition (4.14c) is the result of substituting 

Bkl = Hkl + 4rrMki = 2il2Jek.1 + 4rrMk1 , (4.15) 

since iik1 = 0. From the third of Eqs. (4.10), it follows 
that 

Jek;l = JeZ;k + (4rr/c)€lkr/· 

Upon substituting this into (4.14c) and combining 
with (4.14b), we obtain 

(c/2)[Mkl]nkgz = c,un + il2[j] x n + ('V(n)/4rr)[d] 

il2[a ] + 4rr at V· d n, on r, (4.16) 

which may be used in place of (4. 14c). The scalar and 
vector products of (4.16) with n gives 

c kl 'V(n) il
2 [a ] - [M ]n n = Cll. + - Ed] • n + - - V • d 

2 k I r 4rr 4rr at ' 
c kl l2 • 'V(n) [ 
- [M ]nkn x gl = I'. [J(t)] - - d] x n, (4.17) 
2 4rr 

on r, where 

is the jump of the super current tangential to the 
surface r. Equations (4.17) express, respectively, the 
balance of the normal and tangential components of 
the magnetization tensor on the surface r with the 
surface magnetization ,u and the magnetization due to 
super currents and displacements of the surface 
dipoles. 

The magnetization tensor Mkl can be eliminated 
from (4.16) and (4.17) by observing that from (4.9) 
we have 

ck 1 a (dk ) Jl, ;k + - ;- ;k = 0, 
cut 

Jek;kZ + 1 ! dk;kl = 0, 
Cut 

(4.19a) 

(4.19b) 

with the corresponding jump condition for the latter 

[Jek;zJnk + ! [dk;zJnk = 0, 
c 

on r, which is equivalent to (4. 14c). From this and 
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(4.14c), by comparison, we have the identification 

k ;"2 [dk ] 21T[M ank = - ;1 nk· 
c 

Using this, we can eliminate Mk1from (4.16) and (4.17). 
Thus in place of the jump condition (4.16) we may use 

2 "(n);"2 [0 ] ;,. [j] x n + cp,o + - [d] + - - V • d n 
41T 41T at 

- R[.£.d I] . ng! = O. (4.20) 
41T at . 

The jump conditions corresponding to (4.11)-(4.13) 
follow from (4.14) and (4.20) by taking d = 0. In this 
case (4.20) gives p, = O. Thus, for ;,. ~ 0, 

where 

[:Ie.anl = 0, 

[j] x 0 = 0, 

n x [:Ie] = (41T/C)k, 

n x [H] = (41T/C)K, 

[B] • 0 = 0, on r, 

k == K + cn x M, on r, 

(4.21a) 

(4.21b) 

(4.21c) 

(4.21d) 

(4.21e) 

(4.22) 

is the surface super current vector. In this case, 
clearly 

k • 0 = 0, K • n = 0, 

which express the fact that in the absence of external 

currents fed into the system, the normal components 
of surface current vanish (cf. Ref. 14, p. 19). In the 
present case, probably the jump condition (4.21b) 
should be replaced by 

[:Ie]·n = 0, (4.23) 

which is a condition associated with (4.19a). 
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Matrix elements and propagators of renormalizable field theories are defined in terms of indicatrices 
of maximal regularity. The relation of the indicatrix approach with analytic regularization and with the 
subtraction formalism is established. It is shown that the indicatrix formalism gives rise to weIl-defined 
propagators and that the self-energy of a particle vanishes on the mass sheIl so that no mass renormal
iza~i~n is !1ecessary. :r~e renormalization c?nS~ant!3 equals one without the theory becoming a free one. 
This ImplIes that, wlthm the frame of the mdlcatnx approach, convergence of the theory is assured and 
renormalization actuaIly is superfluous. 

INTRODUCTION 

In this paper we develop a general theory of 
propagators and matrix elements of renormalizable 
field theories in terms of indicatrices of maximal 
regularity. We also show how this formalism renders 
the mass renormalization of the theory equal to zero 
and yields for the renormalization constant Za the 
value Za = I, without the theory becoming a free one. 
The results are valid also for unrenormalizable inter
actions. 

By an indicatrix of maximal regularity we under
stand an analytic function of the 4-momentum 
squared, whose discontinuity across the real axis 
equals the given spectral function and whose high 
energy growth is as small as possible (see Secs. 2 and 
3). The connection of the indicatrix approach with 
analytic regularization (cf. also Refs. 1,2, and 3) and 
with the subtraction formalism (Ref. 4) is established 
(see Sec. 4). The indeterminacy of the indicatrix in 
coordinate space is given by a generalized function 
concentrated at the origin of the light cone and does 
not influence observable quantities (see Sec. 5). The 
indicatrix formalism gives rise to a well-defined 
propagator and in turn to a well-defined expression 
for the self-energy of the particle. This self-energy 
vanishes on the mass shell. Therefore, mass re
normalization turns out to be zero (see Sec. 6). On 
the mass shell the propagator behaves as the free one 
with residue -1, i.e., Za = I (see Sec. 6). This implies 
that, within the frame of the indicatrix approach, 
convergence of the theory is assured and renormal
ization actually is superfluous. The results are illus
trated by an example in quantum electrodynamics in 
Sec. 7. 

1. NOTATIONS AND DEFINITIONS 

We use the notations and definitions of Ref. I: The 
Feynman, anti-Feynman, retarded, and advanced 
propagators ~~, ~F' ~~, ~~, which are the vacuum 
expectation values of time-ordered, anti-time-ordered, 

retarded, and advanced products of a scalar field 
operator <I> are called "inhomogeneous" propagators 
and denoted by ~i:. The vacuum expectation value of 
the field commutator, ~', and its positive and negative 
frequency parts ~~ and ~~ are called "homogeneous" 
propagators and denoted by ~~. In the case of a 
superrenormalizable theory, where by definition all 
renormalization constants are finite, the Lehmann 
representation5 

~~(x) = f dx2p(x2)~I(X, ( 2) (Ll) 

~iI(x) = f dx2p(x2)~H(X, ( 2) (1.2) 

makes sense. In (1.1) and (1.2), ~I.H(X, ( 2) are the 
propagators corresponding to free particles with mass 
x satisfying the homogeneous and inhomogeneous 
Klein-Gordon equation 

(0 + (2)~I(X, ( 2) = ~(x), (1.3) 

(1.4) 

We assume that the usual spectrum conditions hold 
for the spectral function p: 

p = 0 for x 2 < 0, (1.5) 

p ~ 0 otherwise. (1.6) 

In momentum space (1.1) reads 

f 
p(x2) 

~f(p) = dx
2 

2 2 ' 
-p +x 

(1.7) 

where 

(1.8) 

is the Fourier transform of ~i:(x). Ifin (1.7) we assume 
p2 to be a complex variable, then all the inhomogene
ous propagators can be obtained from (1.7) by letting 
p2 approach the real axis in an appropriate way. For 
example, we have 

~~(p) =fdX2 
2 p(x2~ . = ~~(l + iO). 

-p + x - ,0 
(1.9) 

1359 
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Therefore ~i: from (1.7), with p2 being considered as 
a complex variable, represents all the propagators 
~~, ~F' etc., and is simply called the inhomogeneous 
propagator. 

In order to give a precise meaning to the notion of 
superrenormalizable, renormalizable, and unrenormal
izable spectral functions, we define the order N of a 
spectral function p, characterizing its behavior for 
x 2 -+- 00 as follows. 

Definition 1: N is the order of the spectral function 
p if and only if (a) N integer or + 00, (b) the integral 

foodx2p(X2)/(x2t+l (1.10) 

is divergent at infinity for any integer n < N, and 
(c) there exists an € > 0 such that 

p(x2) = O[(x2)N-£], x 2 -+- 00. (1.11) 

It follows that we have N = 00 if (1.10) diverges for 
any integer n. Furthermore we have 

foo dX2 (x2)/(x2)n+l{ < 00 for n ~ N 
P C < N· (1.12) = 00 lor n 

Definition 2: A spectral function is of superre
normalizable, renormalizable, or unrenormalizable 
type if and only if N < 0, 0 =:;; N < 00, N = 00. 

We use the following abbreviations: SR for "super
renormalizable," R for "renormalizable," NR for 
"unrenormalizable," mr for "maximal regularity." 
"*,, means complex conjugation, :F (:F-1) denotes 
(inverse) Fourier transformation. Tn is the support of 
a distribution D. 

2. THE INDICATRIX OF A DISTRmUTION 

We introduce the notion of the indicatrix of a 
distribution as follows: 

Definilion 3: Let D(r) be a distribution on a space 
of test functions cp, r being a one-dimensional variable, 
and let D be concentrated on some part T D of the real 
r axis. Then I(t), I = r + is, is called an indicatrix of 
D if and only if 

D(r) = (l/27Ti)[I(r + iO) - I(r - iO)] 

= (l/27Ti) disc. I(r), (2.1) 
i.e., 

D(r)(cp(r» = ~ r dtI(t)cp(t) (2.2) 
2m Jc 

for all cp(t) which are analytic functions of I in some 

region containing Tn such that 

D(r)(cp(r» = D(r)(cp(/).=o) (2.3) 

exists. C is any contour equivalent to the contour of 
Fig. 1, i.e., any contour which runs clockwise around 
the support Tn of D and lies inside the domain of 
analyticity of cpo 

From this definition it follows that 1(/) is analytic 
in I for all I outside the support Tn of D. D is uniquely 
determined by I, whereas I is determined by D only 
up to an entire function U(t).6 

It is easily seen that the general form of I is.given by 

l(t) = W(t)fdr D(r) + u(t) 
W(r) ( -t + r) 

= W(t)D(r/\ 1 j\ + u(t), (2.4) 
W(r)(-t + r) 

where W is any entire function of I for which the 
integral in (2.4) exists, u being an arbitrary entire 
function. If D exists for all bounded test functions cp, 
then we can choose 

W = 1 (2.5) 
in (1.4) and obtain 

l(t) =fdr D(r) + u(t). (2.6) 
(-[ + r) 

If in this case we require that I(t) behaves as regu
larly as possible (i.e., grows as slowly as possible) for 
t -+- 00, we have to choose u = 0 in (2.6) since the 
first term on the rhs of (2.6) behaves as const/t for 
t -+- 00. 

Definition 4: Let D(r) be a distribution which exists 
for all bounded test functions cp(r). Then we call 
~i:(t) the indicatrix of maximal regularity (mr) of D 
if and only if (a) ~i:(t) is an indicatrix of D and (b) 
~i:(/) behaves as regularly as possible for I-+- 00, 

namely 
~I(t) = O(l/t) (2.7) 

for I-+-OO in such a way that 

d(/, Tn) ~ {} III, (2.8) 
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where d(t, T D) is the shortest distance between t and 
TD: 

d(t, TD ) = min {It - rl, r E TD }, (2.9) 

and {} > 0 may be arbitrarily small. 

Of course, Definition 4 is a rather complicated 
formulation of the simple fact that d~ is given by 

df(t) =Jar D(r) = D(rl\ 1 \/. (2.10) 
-t + r -t + r 

This, however, is no longer true if we are concerned 
with distributions D which grow like some power of 
r at infinity and therefore do not exist for all bounded 
test functions cpo In this case (2.10) does not make 
sense. Definition 4, however, can be extended also to 
this case and also to the case where D grows faster 
than any power of r, 2 as will be shown in the following 
sections and in a sequel to this paper.? 

From Definition 4 or Formula (2.10) the following 
theorem emerges. 

Theorem 1: In an SR theory the propagator d~(p) 
from (1.7) is the indicatrix of mr of the spectral 
function p and may also be defined by this property. 
Furthermore, it is real analytic, i.e., 

(2.11) 

Similarly as for Ref. 1 we have considered here p2 as a 
one-dimensional variable. This procedure is justified 
by using Garding's mapping of invariant four
dimensional distributions onto the space of distri
butions of one variable.8 

In Sec. 3 of Ref. 1 we have shown how to reduce the 
case of spinor fields to the scalar case. Therefore, with 
slight modifications, the results of the following 
sections apply also to the case of propagators corre
sponding to spin or vector particles. 

3. RENORMALIZABLE SPECTRAL FUNCTIONS 
AND THEIR INDICATRICES 

In the following we confine ourselves to spectral 
functions of finite order 

N< 00. (3.1) 

In case of an SR theory, we have seen in Sec. 2 that 
the inhomogeneous propagator d~ could be defined 
as the indicatrix of mr of p. It seems reasonable, 
therefore, to use this definition also in the case of R 
theories. First we show how to calculate any indicatrix 
of a spectral function of finite order N. Immediate 
consequences of (2.4) are the following theorems. 

Theorem 2: The general form of the indicatrix J of 
p (cf. Definition 1) is given by 

J(p2) = W(p2) f da;2 W(a;2);~;: + a;2) + u{l), (3.2) 

where W is an arbitrary entire function of its argument 
without zeros inside the support Tp of p, such that the 
integral in (3.2) exists, i.e., W has to satisfy the 
condition 

I W(a;2) I ~ const(a;2)N, a;2..-+ 00, (3.3) 

and U(p2) is an arbitrary entire function. 

Theorem. 3: The general form of the real analytic 
indicatrix IT of p is given by the real analytic part 
of (3.2) 

J (p2) = Re (W(p2)Jda;2 p(a;2) ) 
r . W(a;2)( _ p2 + (2) 

+ Re u(l), (3.4) 

where, for arbitrary F, Re (F) is defined by 

Re F(p2) = HF(p2) + F*(p2)] 

= t{F(p2) + [F(pU)]*}. (3.5) 

Equation (3.4) can also be written in the form 

1 (p2) = w.(p2)fda;2 p(a;2) + (2) 
T r w;.(a;2)( _ p2 + ( 2) Ur P , 

(3.6) 

where Wr is an arbitrary entire real analytic function 
without zeros inside the support Tp of p, such that the 
integral in (3.6) exists and Ur (p2) is an arbitrary real 
analytic entire function. 

Proof: Formula (3.6) is obtained by noting that 

w;.(p2)fda;2 w.( 2);<x2~ 2 (3.7) 
ra; -p +x) 

is real analytic and that the general form of any real 
analytic indicatrix differs from (3.7) by an entire real 
analytic function ur • The rest of the theorem is trivial. 

QED 

In order to introduce the concept of "maximal 
regularity" (mr) also for R spectral functions, we note 
that the least possible growth of J(p2) at infinity is 
O(/p2IN-E) with some E > O. Therefore, we use the 
following definition. 

Definition 5: Let p be of order N. Then d~ is called 
an indicatrix of mr if and only if (a) di is an indicatrix 
of p and (b) there exists an € > 0 such that 

(3.8) 
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for p2 ~ 00 in such a· way that 

arg (p2) ~ {} (3.9) 

for arbitrary {} > 0. Note that (3.9) is equivalent to 
(2.8), since Tp is part of the positive real x 2 axis. 

Theorem 4: The general form of the indicatrix of 
mr of pis 

2 f 2 p(x
2

) 2 f1I(p) = w(p) dx 2 2 2 + u(p), (3.10) 
w(x )(-p + x) 

where w is a polynomial of degree N, its zeros being 
localized outside the support Tp of p, and u is an 
arbitrary polynomial of degree ::;; N - 1. If, in 
addition, real analyticity of f1i is required, one has to 
take the real analytic part of (3.10), or choose wand 
u as real analytic functions, as in (3.6). 

Proof' We note first that the integral in (3.10) exists 
since 

w(x2) "" const (x2),y, x 2 
-+ 00, const;t: 0. (3.11) 

Comparing (3.10) and (3.2), we see that (3.10) yields 
an indicatrix of p. Furthermore, according to (1.11), 
we have 

f
dx2 p(x2) = O(lir£) (3.12) 

W(x2)( _ p2 + x2) 

for p2 ~ 00 as in (3.9) with some € > 0. Therefore, 

w( 2)fdx2 p(x
2

) = 0(1 2(-£) (3.13) 
p W( x 2

)( -l + x 2
) P 

is an indicatrix of mr. Because of (3.8) the general 
form of ~~ differs from (3.13) by a polynomial U(p2) of 
degree::;; N - 1. QED 

A further remark should be added: It is often 
convenient to admit also for functions W, w with 
zeros inside the support Tp of p, at x 2 = M~ , say, 

W(l) = W(p2, M~) = II (p2 - M~Y; W(l), 
j 

W(p2) ;t: 0 for p2 E Tp. (3.14) 

Then an indicatrix of p is, e.g., given by 

I.(l) = l ( W(p2, M; + i€j) 

X fdx2 . p(x
2
) 

W(x2, M~ + i€j)(_p2 + x 2) 

+ W(p2, M; - i€;) 

fd 2 p(x
2

) ) 

X X W(x2, M; _ i€j)(-l + x 2) , 

(3.15) 

since the zeros M; ± i€j of W(p2, M; ± i€j) are out
side Tp. One can easily prove that 

(3.16) 

is also an indicatrix of p, if the limit exists uniformly 
in every compact region of the p2 plane minus Tp. 
[A sufficient condition is that p(x2), considered as an 
ordinary function, possesses derivatives up to order 
!Xj - 1 at x 2 = M~ and that (dJdx2)a;p(x2) is inte
grable at x 2 = M;.] Though W is analytic, (3.16) is 
not necessarily equal to 

W( 2 M2) pffdx2 p(x
2
) (3 17) 

P '3 W(x2, M~)( _ p2 + x2) , . 

Pf· .. being defined as 

i I' (fd. 2 p(x
2

) 
11 1m x 2 2 2 

£j-+O W(x , M~ + i€j)( - P + x) 

f 2 p(x
2

) ) + dx 2 2 2 2; 
W(x,Mj-i€;)(-p +x) 

(3.18) 

for we have 

d " (2 2 fJd 2 p(x
2

) 
ISC. W P , M j) P x 2 2 2 2 

W(x, Mj)(-p + x) 

= {27Ti P(l), p2;t: M~ 
0, p2 = M;' 

(3.19) 

If, therefore, p contains a !5 function concentrated at 
x 2 = M~ [higher derivatives of !5(x2 

- MD are 
excluded because of the positive definiteness of the 
spectral function p], then (3.17) does not yield an 
indicatrix of p and we have to use (3.15) or (3.16); if, 
however, p is an ordinary function at x 2 = M;, then 
the rhs of (3.19), considered as a distribution, is 
equivalent to 27Tip, and we can use (3.17). 

4. RELATION TO SUBTRACTION PROCEDURE 
AND RESIDUE PRESCRIPTIONS 

It is well known that, in case of spectral functions of 
order N > 0, one possibility of giving a meaning to the 
divergent rhs of (1.7) is the subtraction procedure 
(cf. also Ref. 4): One subtracts and adds from the 
integrand 

(4.1) 

in (1.7) N terms of its Taylor series at x 2 = 00, or, 
equivalently, at p2 = M2, M2 being an arbitrary 
complex number localized outside the support Tp of p: 

1 1 
= _ p2 + x2 _ p2 + x2 

N-l (p2 _ M2)1t N-l (p2 _ M2)1t 

- t (x2 - M2)1l+1 + -t (x2 - M2)1l+1 . 

(4.2) 
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Then one splits the integral in (1.7) into a convergent 
and a divergent part: 

I 
p(x2) 

dx
2 

_p2 + x2 

f 2 2 (1 X-I (p2 - M2)" ) 
= dx p(x) -l + x 2 - t (x2 _ M2)"+1 

lV-l 

+ I CJp2 - M2)", (4.3) 
o 

where the divergent constants C" are given by 

(4.4) 

Finally one replaces the divergent constants C" by 
arbitrary finite ones, 

(4.5) 
and arrives at 

~;(P)lsubtr = f dx
2
p(x

2
) 

( 
1 N-1 ( 2 _ M2)" ) 

X _ p2 + x2 - t (~ _ M2)"+1 + U(p2) , 

(4.6) 

where u is an arbitrary polynomial of degree ~ N - 1. 
Now we prove the following theorem. 

Theorem 5: The subtraction procedure (4.3) to (4.6) 
is equivalent to the definition of ~~ as an indicatrix of 
p of mr. Therefore, if wand u are the same functions 
as in Theorem 4 and if ~~Isubtr is given by (4.6), then 

~i(p)IBubtr = W(l)fdx2 ( 2)( p(~2) 2) + u(l) 
w x -p + x 

(4.7) 
if u or u are chosen appropriately. 

Proof: We use the fact that 

1 N-1 (p2 _ M2)" 

_ p2 + x 2 - t (x 2 _ M2)"+1 

1 
= wo(p~ (2)( 2 + 2)' (4.8) Wo x -p x 

where 

(4.9) 

is a polynomial of degree N. Therefore, the first term 
on the rhs of (4.6) is an indicatrix of mr. It differs 
from the rhs of (4.7) at most by a polynomial of 
degree N - 1. The rest ofthe theorem is trivial. QED 

A remark should be added: If p is of order N, 
~i(p2) is determined up to a polynomial of degree 

~ N - 1. Therefore, we can, e.g., require 

C~S~{(P)11l2=M2 = 0, '" = 0,' .. ,N - 1. (4.10) 

This requirement determines ~i uniquely: 

~ '( ) _ ( 2 _ M 2)Nfdx2 p( x
2
) 

I P - P (x2 _ M2)N ( _ p2 + x 2) . 

(4.11) 
Because of (4.8), (4.11) is equal to 

fdx2p{x2)[ 21 2 _Nil (p2 - M2)" 
-p+x 0 ",! 

x C~2r (-l + lx2)l
p
2=MJ (4.12) 

A more general result follows from the next theorem. 

Theorem 6: The requirement 

C~2) ~{(P)p2=Mi2 = Ci ,,' I" = 0, 1, ... ,ct.; - 1, 

ct. j ~ 0, I ct.; = N, (4.13) 
; 

determines ~i uniquely and we obtain 

~{(p) = W1(p2) f dx
2 W1(X2);~;~ + x2) + u1(p\ 

(4.14) 
where 

wtCp2) = IT (p2 - M~ll (4.15) 
; 

and U1 (p2) is the interpolating polynomial of degree 
~ N - I satisfying (4.13) with ~; replaced by U1' The 
proof is trivial. QED 

In Ref. 1 we have seen that for a large class of 
spectral functions p of R type the corresponding 
propagator ~i could be defined by 

I a2zf 2 p(x2
) 

~I(P) = Res - dx 2 • (4.16) 
z=o Z ( - p + x 2)1-Z 

[For the definition of the residue prescription in (4.16) 
see Ref. I.] We now prove the following theorem. 

Theorem 7: If the residue prescription (4.16) exists, 
it yields an indicatrix of p. 

Proof: Since the residue prescription is a linear 
operation and since 

disc. [1/(_p2 + X2)1-Z] 

= 2i(p2 - x 2r1+Z(}(l- x 2
) sin 1TZ, (4.17) 
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we obtain 

disc. Res - dx2 : x 2 1-. 
a20f ( 2) 

0=0 Z (-p +x) 

. sin 7TZf 2 p(x2)O(l - x 2
) 

= 2771 Res -- dx 2 2 1 
7TZ (p - x)-Z 

= 27Ti f dx2p(x2)b(p2 - x 2
) = 27Tip(l), (4.18) 

for we have 

O(p2 - x
2

) ( 2 2)-1+0ll( 2 2)1 
Res 2 2 1-. = Z P - x v p - x .... 0 
.=o(p -x) 

= b(p2 _ x 2
). (4.19) 

In a similar manner one can treat the 
prescription 

1 f 2 p(x 2)[a2(x 2 
- M2)]" 

Res - dx 2 2 
Z -p + x 

(cf. Ref. I). We have 

. 1 fd 2 p(x2)[a2(x2 - M2»)" 
dISC. Res - x 2 2 

.=0 Z -p + x 

QED 

residue 

(4.20) 

= 27Ti ~~: ; f dx2p(x2
)[a

2(x2 - M2»)"b(l - x
2
) 

= {27TiP(p2), p2:;t=M2. (4.21) 
0, p2 = M2 

Therefore, if M2 is outside the support Tp of p, or, 
if M2 is inside Tp and p is equal to an integrable 
function at p2 = M2, (4.20) gives a correct indicatrix 
of p, whereas if p contains a term const b(p2 - M2), 
one has to apply (4.20) only to the function p -
const X b(p2 - M2) in order to get a correct indicatrix. 

In case of the spectral function 

( 2 2)A-lll( 2 2) 

( 
2) W( 2 2) X - m v x - m 

P x -p x m -- ,- (A - I)! ' 
(4.22) 

considered in Ref. 1, and the corresponding propa
gator 

the connection between the residue prescription 
(4.20) (and therefore between the residue prescriptions 
of Ref. 1) and the definition of ~.i as indicatrix of mr 
of p is established by the next theorem. 

Theorem 8: Formula (3.10) with 

{

(P2 _ m2PJ, A ~ 1,2, ... , 

W(p2) = (p2 _ m2)k-1[1 + a\p2 _ m2)], 

A = k, k = 1,2, ... 

(4.24) 

-i.e., a polynomial of degree [A]-and 

(4.25) 
yields exactly 

, (A) 2 a2zf p(x2) 
~I(P) = ~I (p, m ) = Res - dx2 

2 21-.' 
.=0 Z (-p + x) 

(4.26) 

i.e., (4.20) with p = pW, m2 = M2. By comparison 
with Theorem 6, it follows that ~~A) from (4.26) may 
be defined by the requirement to be the indicatrix of 
pW of mr with 

C~2)~i).)(p, m2
)p'=m' = 0, p = 0, ... , [A] - 1, 

for A:;t= 1,2, .. " (4.27) 
and 

(~)/L ~ w(p m2). • = 0 II. = 0, ... , k - 2, dp2 I , p =m 'f'" 

~1") (p2 = m2 
- l/a 2

) = 0 for A = k, k = 1,2, .... 

(4.28) 

Proof" From Ref. 1 we know that ~~A) from (4.26) 
is explicitly given by 

~\A)(p, m2) 

{

(A)! (_p2 + m2)A-1, A:;t= 1,2, .. " 

= [(-I)k/(k _ 1)!](_p2 + m2)k-l 

X log [a2( - p2 + m2
)], A = k, k = 1,2, .... 

(4.29) 

We see that (4.29) is ofmr and satisfies (4.27), (4.28). 
The rest follows from Theorem 6. QED 

5. THE ARBITRARINESS OF INHOMOGENEOUS 
PROPAGATORS AND MATRIX ELEMENTS 

Up to now we have only considered renormalizable 
theories with spectral functions of finite order N. 
Since the results of the following two sections are valid 
for all causal theories-R and NR ones-we first 
want to summarize the basic results for the inhomo
geneous propagators corresponding to NR spectral 
functions with infinite order N = 00, which are 
discussed in the sequel of this paper7 (cf. also Refs. 2, 
6, 9): (a) The vacuum expectation value ~' of the 
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field commutator satisfies causality, i.e., vanishes for 
spacelike distances X2 < 0 if and only if the spectral 
function p satisfies the high energy bound 

p(x2)e-<X -+ 0, x2 -+ 00, E > arbitrary small. (5.1) 

(b) Also in NR causal theories the definition of the 
inhomogeneous propagator ili as indicatrix of mr of 
the spectral function p makes sense. il~ can always be 
written in the form 

ili(p) = W(l)fdx2 2 p(x~ 2 + u(p\ (5.2) 
W(x )(-p + x) 

where W is an entire function which has no zeros for 
arg (p2) sufficiently small, and satisfies 

W(x
2

) = 0(1 21-<) 
p(x2) p, 

(~.3) 

with an E > 0 which may be arbitrary small. u is an 
arbitrary entire function satisfying 

with an appropriate E' > O. (c) The inhomogeneous 
propagator satisfies a similar high energy bound as the 
spectral function p, viz., 

ilf(p)e-dIP2pt -+ 0, p2 -+ 00, E > 0 arbitrary small. 

(5.5) 

(d) In momentum space ili is determined up to an 
entire function 

ao 

U(p2) = :2 Cip2)fl (5.6) 
o 

satisfying the high energy bound 

u(p2)e-<qp2pl -+ 0, p2 -+ 00, E > 0 arbitrary small. 

(5.7) 

In x space, therefore, u is determined up to a (Lorentz 
invariant) distribution 

00 

u(x) = ;F-IU(l) = :2 Cfl( - D)fl(j(x) (5.8) 
o 

concentrated on the origin of the light cone x = o. 
Via the results of Secs. 3 and 4 of this paper, it is 

easily seen that the statements (b)-(d) are valid also 
for spectral functions of R type and therefore for all 
p's corresponding to a causal commutator. In the 
following we discuss this general case, including R 
and NR spectral functions. 

We may summarize our results as follows: Our 
definitions of the inhomogeneous propagators.are free 
of divergencies. What we have to pay for this advantage 

is that all our definitions give rise to some arbitrariness 
in ili in the following sense: If N is the order of the 
spectral function p, then ili is defined up to a poly
nomial of degree ~ N - 1. For N = 00 the "poly
nomial of degree ~ N - 1" is to be interpreted as an 
entire function satisfying (5.7). It is not at all clear how 
this arbitrariness-we have N arbitrary constants
should be removed by physical arguments. On the 
contrary, it seems rather probable that it does not 
influence the physical content of the corresponding 
matrix element: The only physical quantity connected 
with the two-point function is the transition prob
ability of an incoming one-particle state 11, p) with 
momentum p to a state Ip') with momentum p', 
namely 

I (p'l 't1(t, - (0) 11, p)12 '"'-' 1(01 eD(O) Ip)12 ~(p - p') 
'"'-' p(p2)(j(p _ p'). (5.9) 

Because of 
p(p2) = (lj2rri) disc. il~(p), (5.10) 

this transition probability is independent of the 
arbitrariness of ili , since the discontinuity of a~ entire 
function vanishes. 

Similar arguments show that also in case of higher
order matrix elements the arbitrariness of these does 
not affect the physical results of the theory: Gener
alizing our formulas to inhomogeneous (i.e., time 
ordered, retarded, or advanced) n-point functions, we 
may expect that they are determined up to an entire 
function 

(5.11) 

satisfying the high energy bound (5.6) with respect to 
every variable Pk. Observable quantities can be 
calculated from the scattering amplitudes describing 1 
incoming and n - 1 outgoing particles of mass mk , 

k = 1, ... n. These amplitudes are proportional to 

JdX
1 

••• dxne-i"L,t PkXk IT Dk 
k=l 

X (01 I<D1(X1)· .. <Dn(xn) 10). (5.12) 

Here the <Dk(Xk) are the field operators corresponding 
to the various incoming and outgoing particles (spin, 
isospin indices, etc., have been suppressed) and 
leD} .•. eDn means an inhomogeneous, i.e., time
ordered (I = T), retarded (I = R), or advanced 
product of the <Dk. The Dk are covariant differential 
operators (acting on the kth space-time variable xk ) 

whose homogeneous solutions are the wavefunctions 
describing the correspondent free particles. For ex
ample, if <Dk is the field operator corresponding to an 
incoming scalar or spin-t particle of mass mk , then 
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Dk is the usual Klein-Gordon or Dirac differential 
operator 

(O"k + m:) Crespo (iYO"'k - mk)]' (5.13) 

The arbitrariness of the inhomogeneous n-point 
functions-which in x space is given by 

U(iO"'l' .•. iO",,)t5(XI' .•. xn) (5.14) 

and represents a functional concentrated at the point 
Xl = X 2 = ... = Xn of coinciding arguments Xl, 

X 2 , ••• xn-gives rise to an indeterminacy of the 
scattering amplitude proportional to 

n 

II Dk(Pk)U(PI' ... , Pn)· (5.15) 
k=l 

Dk is obtained from Dk by replacing iO"'k by h. The 
essential point is now the following: The scattering 
amplitude has a physical meaning only on shell, i.e., 
for p: = m:. Since by definition all the Dk vanish on 
the mass shell, we obtain the result that the physical 
quantities are unique despite the arbitrariness of the 
time ordered functions. 

6. RENORMALIZATION AND SELF ENERGY 
PROBLEMS 

Let us adopt the point of view of Ref. 10, i.e., we 
start from the field equations in the integrated form 

4>k(X) = 4>k (x) +fdX'D~-I)(X - x')(!-ix'). (6.1) 
in 

The 4>k are field operators corresponding to the 
different interacting particles k, k = 1,2, ... n; the 
4>k,ln are the usual in operators and the D;l are 
essentially the causal Green's functions of the differ
ential operators Dk in (5.12), i.e., 

DkD;l(X) = t5(x), 

D;l(X) = 0 for Xo < 0, (6.2) 
e.g., 

1 f e-i'IJ'" 
D;I(X) = lim --4 dp 2 2 ' 

E .... O (27T) -(p + iE'YJ) + mk 
"12 = 1, "10> 0, (6.3) 

if the kth particle is a scalar particle of mass mk • 

Making an iteration procedure for the spectral 
function P = Pk' we arrive at 

p(x'l.) = b(x2 - m2) + 0"(x2). (6.4) 

(We have suppressed the index k.) Clearly the zeroth 
approximation must be the free-particle spectral 
function "(x2 - m2); 0" involves higher order cor
rections. Using our definition for the corresponding 

inhomogeneous propagator, we obtain, e.g., assuming 
for simplicity a real scalar field, 

Ll~(p) = Ll1(p, m2
) + Morr(p) 

= l/C-l + m2
) 

2 f 2 0"(x
2
) 2 + W(p) dx 2\ 2 2 + u(p ). 

W(X)(-p + x) 
(6.5) 

Here Wand u are polynomials of degree Nand 
~ N - 1 [resp. entire functions satisfying (5.3), and 
(5.7) in the case N = 00] if P (and therefore 0") is of 
order N. In general 0" will be a continuous function at 
p2 = m2. For instance it will be zero if m2 > 0 is the 
smallest mass of all interacting particles. This follows 
from, energy momentum conservation if one re
members5 

(j(l)p(p~ = ! (014)(0) I pIX) (pIX I 4>(0) 10), (6.6) 

" 

where the set of states Ip, IX) is a complete set of in
states normalized to t5(p - p')t5fY.fY.' and 11, p) is the 
one-particle in state corresponding to the field 4>. In 
what follows it will be sufficient, however, to assume 
that 0" behaves in such a way for p2 -+ m2 that for some 
1'>0 

(6.8) 

This is satisfied, e.g., if 

o{x2
) = O(1/lx2 

- m211-~, x 2 -+ m2
, E > O. (6.9) 

Condition (6.8) means essentially that the 4> 
particle is not a bound state of other particles taking 
part in the interaction (which guarantees that 0" does 
not have a t5 singularity at p2 = m2) and furthermore 
that there is no too strong UR' interaction, i.e., an 
interaction with mass-zero particles giving rise to the 
existence of "too many" states Ip, IX) with total mass 
p2 arbitrary close to m'l. (this guarantees that the 
contribution to the whole spectral function of the 
stable one-particle state dominates the contribution of 
the nearby states Ip, IX), p'l. ~ m2• We obtain the 
following theorem. 

Theorem 9: If (6.8) or (6.9) is satisfied, then 
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Proof' We have 

d~orr(p) 

i 0'(x2) 
= dx

2 
2 2 

Ix2_m21<Y -p + x 

l 2 0'(x2) W(p2) - W(x2) 
+ dx. 2 2 2 

Ix2_m21<Y W(x) -p + x 

+ W(p2) r dx2 2 a(X2~ 2 + U(p2). 
J1x

2-m2 j?1 W(x )( -p + x) 
(6.11) 

The last three terms are easily seen to be bounded for 
p2 -+ m2. Using (6.8), we obtain 

~~orr(p) = 0[1/( -l + m2
)]. (6.12) 

QED 

This means that ~~ has a pole at p2 = m2 with 
residue -1, and therefore may be looked upon as 
what one usually calls the renormalized propagator 
for the physical (and not the bare) particle without 
handling with divergent constants 231

, which would 
be divergent in the usual point of view. Furthermore, 
we obtain a new and unobjectionable possibility to 
define the self-energy TI. Usually TI is defined by a 
sum over all irreducible Feynman diagrams corre
sponding' to one-particle propagation with the external 
lines amputated, and satisfies formallyll.4 

as the propagator for the "physical particle" with the 
renormalized mass m~h = m2 + bm2 , the difference of 
which to the "bare particle" is due to interaction. 

Clearly this procedure is a rather dubious mathe
matical trick and--even worse-it does not work in 
general: If, e.g., some or all of the formal integrals 
corresponding to the irreducible self-energy diagrams 
diverge in such a way that formal differentiation 
with respect to the external variable p2 yields a 
divergent result too, the quantity (6.21) is meaningless, 
or, introducing a cutoff A depends in such a way on 
A that it is by no means possible to define new 
propagators and field operators for which the di
vergencies cancel for A -+ 00 (e.g., in NR theories). 
If instead we use our method, the way out is clear: 
We simply have to define TI by one of the relations 
(6.13)-(6.15). This is possible since ~~ is already a 
well-defined quantity. 

In Theorem 9 we saw that ~I and ~i: have a pole 
at the same value p2 = m2 if (6.8) holds. We may 
suppose, therefore, that no mass renormalization is 
necessary at all. This result holds even independently 
of the requirement (6.8) according to the next theorem. 

Theorem 10: If ~i is defined by (6.5), then no mass 
renormalization is necessary. 

Proof' We have to show that 

b(m2) = TI (p2 = m2) = 0, (6.22) 

~I(p) = ~I(P, m2
) - ~I(P, m2)TI(p)~~(p) (6.13) where the self-energy TI is defined by (6.13) or (6.18). 

m ~re 

(6.14) 
i.e., 

~f(p) = 1/[_p2 + m2 + TI(p)]. (6.15) 

Usually some or all of these diagrams are divergent. 
In order to get rid of these difficulties, one puts12 

~I(p) = [- p2 + m~ll + I1(p) - I1(p )p2=m
P

h 2 r\ 
(6.16) 

m~ll = m2 + bm2
, 

bm2 = TI(P)p2=mph2, 

and chooses m2 = 00 such that 

(6.17) 

(6.18) 

m~h = rn2 + TI(p)p2=mph2 < 00, (6.19) 

and interprets the quantity (6.16) which behaves for 
p'l. -+m~ll as 

d11(p, rn2
) = 0 for l = m2

, 

the condition (6.22) is equivalent to 

~I -+ 00 for p2 ->- m2
• 

(6.23) 

(6.24) 

Equation (6.24) follows from the fact that 0' is non
negative and that 

~~(p) = 2 ~ 2 
-p m 

i 2 0'(x2
) + dx 2 2 + 0(1), 

Ix2
-m

21<r (-p + x) 

p2-+ rn 2. (6.25) 

QED 

7. THE PHOTON PROPAGATOR IN QUANTUM 
ELECTRODYNAMICS 

Let us illustrate the results of the last sections in a 

with 
(6.20) simple example in quantum electrodynamics. Here the 

fidd equations read 

(6.21) Aix) = Allin(X) + J dx' D'R\x - x')jix'), (7.1) 
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where Dil is the retarded Green's function of the mass 
zero Klein-Gordon operator and 

j,,(x) = - (eJ2)[1jj(x)y" , 1p(x)L (7.2) 

is the current operator. It is worth mentioning that the 
simple form (7.2) of j", obtained by proper anti
symmetrization of the fermion fields, is sufficient to 
yield convergent results. It is unnecessary to consider 
the current as a weak limit of products of fermion 
fields, as has been done by various authors. 13•14 

We wish to calculate the photon Feynman propa
gator 

L1iV(x) = - i (01 T A"(y)AV(y') 10) 

= L1~v(oJ(x) + L1~VUJ(x) + O(e4
), (7.3) 

x = Y - y', up to order e2• In the transverse gauge 
[which is consistent with (7.1)] we have 

L1;t'V(p) = (g"V _ P:~")L1~(P)' 

L1~(p) = L1~J(p) + L1~J(p) + O(e4
) = -Miip). 

(7.4) 

(7.5) 

Inserting the Fourier transformed form of (7.8) into 
(7.13) and taking into account that the matrix ele
ment (01 A"in jfn 10) vanishes, we obtain16 

O(1]p)p(l) 

= -(617)-1(217)-4(J dk (01 Arn(p)A"in( -k) 10) 

+ f dkDR\p) (01 Hn(p)j"in( -k) 10) DR\ -k) 

+ o(e'») 
= O(1]p)[pCOJ(p2) + pCl)(p2) + O(e')]. (7.14) 

Clearly the first term on the rhs of (7.14) turns out 
to be the free one-photon spectral function 

(7.15) 

Using (7.9) and applying Wick's rules to the matrix 
element in the second integral of (7.14), one finds after 
some calculation that 

pU>Cp2) = e2(617)-1(217)-4 Dll(p)(p2 + 2ti) 
The formal Lehmann representation reads 

L1~,(p) = f dx2p(X2)L1F(P, x2), 

x (1 - 4ft2Jp2)!0(1 - 4ft2Jp2)DR
1( - p), (7.16) 

(7.6) where ft is the electron mass. Thus 

where p is defined by 

0(1] P )p(p2) 

= -i(217)3 L (01 A"(O) Ip, IX) (p, IXI AiO) 10), 
a 

1]2 = 1, 1]0> 0. (7.7) 

The direct but quite complicated calculation method 
for p starts from (7.7) and the perturbation expansion 
of (7.1) and (7.2), i.e., 

Aix) = A"l/X) + f dx' DR\X - x')j"ln(x') + O(e
2
), 

(7.8) 

A much more elegant procedure uses a Wightman 
function approach (cf. also Ref. 15, where this 
approach has been discussed in a general form). Let 

-iL1':V(x) = (01 A"(y)AV(y') 10). (7.10) 

Then we have in momentum space that16 

L1,:"(p) = (g"V - p"pvJl)L1~(p), (7.11) 

L1~(p) = !L1lip) = 217iO(1]p)p(p2). (7.12) 

Therefore, 

O(1Jp)p(p2) = (l/617i)L1':,,(p) 

= -(617)-](217)-4f dk (01 A"(p)Ai -k) 10). 

(7.13) 

p(x2) = b(x2) + e2(l2172x 2)-1(l + 2ft2Jx2) 

X (l - 4ft2Jx2)!O(l - 4ft2Jx2) + 0(e4). (7.17) 

Since p(I) has the order N = 0, we obtain, according 
to (6.5), that 

Therefore, 

= -IJp2 + e2(12172p2)-1 

X {t + 4ft2Jp2 - (2 + 4ft2Jp2)(4tiJp2 - l)! 

X tan-1 [(4ft2Jp2 - I)-in + O(e4). (7.19) 

~~(p) can then easily be obtained by letting p2 
approach the real axis from above. 

We see that--contrary to the conventional treat
mentll-our approach gives a unique finite result for 
the photon propagator in momentum space up to 
first order; no arbitrary or infinite constants are 
present. For theJow energy behavior of L1~(p) we have 

L1~OJ(p) + L1~l)(p) = -tIl + e2(60172ft2)-1 + 0(p2), 
p2 __ 0, (7.20) 
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and we see that ~i has a pole at the value of the 
"bare" photon mass m2 = 0 with residue -1 in 
accordance with Theorem 9. The high energy bje
havior of ~i is given by 

~iOI(p) + ~il)(p) = -llp2 - i(127llr1 

x [log (4 - p2/{t2) - %] 
+ O(log p2/(l)2), p2 -->- 00. 

(7.21) 

The first order contribution to the photon self 
energy 

ll(p) = ll(ll(p) + O(e4) (7.22) 

can easily be computed according to (6.13): We obtain 

n(l)(p) = (_ p2)2~il)(p) 

= e2(127T2rlp2{t + 4,ill- (2 + 4lll) 

x (4llp2 - l)l tan-1 [(4{t2Ip2 - I)-ln. 

(7.23) 

The first-order contribution to the vacuum polar
ization tensor llllv(p) can easily be obtained from 
(7.23) by multiplication with the factor (gllv
PIIPvlp2). 

In accordance with Theorem 10 we have 

llUI (p2 = 0) = 0, (7.24) 

and we see that no photon mass renormalization is 
necessary. Note that this result does not depend upon 
any gauge invariance arguments. 

The conventional calculation method of the first
order photon self-energy (Ref. 12; cf. also Ref. 14), 
working from the very beginning with time-ordered 
functions, yields instead of the convergent expression 
(7.23) the divergent result 

fiUI(p) = e2(127T2rlp2 1im log (All) + ll(l)(p). 
A .... 00 (7.25) 

We see that with our treatment of the problem the 
first-order corrections turn out to be small (and not 
divergent) quantities thus satisfying the most im
mediate requirement of any concept of perturbation 
theory. In addition, the difficulties in obtaining a 
finite, divergence-free, polarization tensor, discussed, 
e.g., in Ref. 14, are not all present in our approach, at 
least in the approximation considered. 

8. CONCLUSIONS 

We have seen that the indicatrix approach to 
renormalizable and unrenormalizable interacting quan
tized fields yields a vanishing mass renormalization 
and Za = 1, without the theory reducing to a free one. 
This means that, in a field theory, renormalization is 
actually superfluous if the theory is properly formu
lated in terms of generalized functions. In a sequel to 
this paper we extend the formalism to equal time 
commutator problems. 
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A general definition of propagators of causal unrenormalizable fields corresponding to rapidly in
creasin~ spe~tral functions is given in terms of indicatrices. The order of growth of the propagators is 
det~rmmed l~ terms of that of the spectral functions. The high energy bound is rigorously proved and 
the mdetermmacy of the propagators is shown to be concentrated at the origin of the light cone. Theorems 
are proved concerning the approximation of unrenormaIizable propagators by renormalizable ones. 

INTRODUCTION 

Unrenormalizable interactions are characterized by 
rapidly increasing spectral functions and discon
tinuities.1-a It is well known that the conventional 
regularization procedures [analytic regularization4- 7 

subtraction,S and propagator product definition4 •9] 

cannot be applied to these theories.1.2 In this paper it 
is shown that a general theory of unrenormalizable 
theories can be developed in terms of indicatrices of 
maximal regularity.lO After having set up the general 
definition of the indicatrix (Sec. 2), we discuss its 
general properties and determine the order of growth 
of the momentum space propagators in terms of that 
of the spectral function (Sec. 3). The high energy 
bound is rigorously proved, and the indeterminacy 
of the propagators in coordinate space is shown to be 
concentrated at the origin of the light cone (Sec. 3). 
In Sec. 4 we prove some theorems concerning the 
approximation of unrenormalizable spectral functions 
by renormalizable ones. The theorems also extend to 
certain matrix elements. They give criteria under 
which unrenormalizable interactions can be dealt with 
by perturbation approximation. 

1. GENERAL PROPERTIES OF UNRENORMAL
IZABLE SPECTRAL FUNCTIONS IN A 

CAUSAL THEORY 

Let us first introduce the notion of unrenormal
izability and of causality. 

Definition 1: A spectral function p is of unrenormal
izable (NR) type if and only if 

f'''' dx2p( x 2
)J(X

2t+I (Ll) 

is divergent at infinity for any integer n. Since by 
definition the order N of a spectral function p is 
essentially the smallest integer n for which (1.1) is 
convergent, we may also say that spectral functions of 
unrenormalizable type are characterized by'the prop
erty that their order N is infinite (cf. Ref. 10). 

We see that spectral functions of NR type grow 
faster than any power of x 2, e.g., 

p(x2
) '"'" exp (P(x2y), x 2 

-+ 00, IX> 0, P > O. 

(1.2) 

Definition 2: The vacuum expectation value 

~'(y - y') = -i (01 [<I>(y), <I>(y')1- 10) (1.3) 

of the commutator of the field operator <I> is called 
causal if and only if it vanishes for space like distances: 

~'(x) = 0 for x 2 < O. (1.4) 

Causality imposes a severe restriction on the growth 
of the spectral function: p must satisfy the condition 

p(x2)e-€X -+ 0, x 2 -+ 00, € > 0 arbitrary small 

(1.5) 

in order that (1.4) holds.2.3·11.12 Therefore in (1.2) we 
must have (1.. < tor (1.. = t, P = 0 if p corresponds to a 
causal commutator. More generally, if we define the 
order of growth a and the type of growth T of the 
spectral function by 

a = inf {a': p(x2
) = O(exp (x 2

)"')}, 0 ~ a ~ 00, 

(1.6) 

T = inf {T': p(x2) = O(exp T'(X2),,)}, 0 ~ T ~ 00, 

(1.7) 

then we see from (1.5) that in case of a causal com
mutator a cannot exceed! and, if it equals t, then the 
type T must be zero: 

a:::;;!; if a = t, then T = O. (1.8) 

Such functions are called of growth (t,O),13 In the 
following, we shall assume that (1.5) and (1.8) hold. 

2. THE INHOMOGENEOUS PROPAGATORS IN 
UNRENORMALIZABLE THEORIES 

The Feynman, anti-Feynman, retarded, and ad
vanced propagators ~~, ~F' ~~, ~~, which are the 

1370 
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vacuum expectation values of time-ordered, anti-time
ordered, retarded, and advanced products of the scalar 
field operator Ill, are called the "inhomogeneous 
propagators" and denoted by ~~ . The "homo
geneous propagators" ~~ are ~' and its positive and 
negative frequency parts ~~ and ~'-. Formally we 
have the Lehmann representation for ~~: 

~i.(x) = f dX2p(X2)~I(X,X2), (2.1) 

where ~I(X, x 2) are the propagators corresponding to 
free particles of mass x. In momentum space, (2.1) is 

J 
p(x2) 

~~(p) = dx
2 

2 2 • 
-p +x 

(2.2) 

In (2.2) we may consider p2 as a complex variable 
and calculate all inhomogeneous propagators by 
letting p2 approach the real axis in an appropriate 
way.lO ~~ from (2.1) and (2.2) is therefore simply 
called the inhomogeneous propagator. Another 
representation for the inhomogeneous propagators is 
given by the following products of singular distri
butions2 ; 

~~(X) = -6(xl])~~(x) + 6( -Xl])~'-(x), 

~~(x) = -6(xl])~~(x) + O( -Xl])~~(x), (2.3) 

~~(x) = -e(Xl])~'(x), 

~~(x) = 6( -x'YJ)~J(x). 

'YJ is a unit vector of the forward light cone L + ('YJ2 = 1, 
'YJ0 > 0) characterizing the time direction in the frame 
of reference. A third representation is given in Ref. 4: 
If p([2) is the one-dimensional inverse Fourier trans
formation of p(p2), i.e., formally 

p(12) = ;r--lp(p2) = ...!.. Jdp2e-ilVp(l) (2.4) 
217 

(/2 conjugate to p2), then we have 

~~(p) = ;r-~~(l2) = J dI2ei1h'~~(12) (2.5) 

with 
~~(l2) = 27Tip(l2) . 0(12). (2.6) 

All these representations for ~i: are meaningful in 
the case of superrenormalizable theories where the 
spectral function is integrable: 

I dx 2p(X2
) < 00. (2.7) 

In the case of renormalizable (R) theories where p 
possesses a finite order N with 0 ::s;; N < 00, we have 

developed in Ref. 4 some procedures based on the 
theory of generalized functions which give a meaning 
to these representations also in the R case. These 
procedures, however, do not work if p is of NR type, 
i.e., N = 00. Let us consider, e.g., the subtraction 
procedure in momentum space. According to Ref. 4, 
we have to subtract from the integrand 1/(-p2 + x 2) 
in (2.2) a sufficiently large part of the Taylor expansion 
of the integrand at p2 = M2, M2 being an arbitrary 
complex number, such that the modified integrand in 
(2.2) yields a convergent integral. In the case N = 00, 

however, sufficiently large means infinite and, there
fore, we would arrive at a modified integrand of the 
form 

1 00 (p2 _ M2)"--{ d ¥( 1 \ 
_p2 + x 2 - f ,u! \dp2} _p2 + X2}1J2=M2 

1 co (p2 _ M2)" 
= _p2 + x 2 - t(x2 _ M2),1+1' 

(2.8) 

which is zero for Ip2 - M21 < Ix2 - M21 and diver
gent for Ip2 - M21 > Ix2 - M21 and therefore would 
lead to a meaningless result when inserted in (2.2) 
instead of l/( _p2 + x 2). Also the residue prescription 
of Ref. 4 does not work: We have shown in Ref. 4 
that for a large class of spectral functions of R type, 
~i can be defined by 

Res - dx2 p x or tt.2• f ( 2) 
.=0 z ( _ p2 + x 2)1-. 

1 f p(X2)[tt.2(X2 - M2»)" 
~:: ; dx

2 
_ p2 + x 2 ' (2.9) 

where the residue prescription (2.9) is to be interpreted 
in such a way that one first has to choose z in (2.9) 
sufficiently large negative so that the integrals in (2.9) 
exist and then continue the resulting functions of z 
analytically to a region containing the origin z = 0 
and finally take the residue according to (2.9). Because 
of Definition I, however, we cannot find a z for which 
the integral in (2.9) converges if p is of NR type, 
and therefore this procedure fails too. 

The same arguments apply to the representations 
(2.3), (2.6): Since the order N of p is infinite, ~~, ~'-, 
/}.', and pep) have essential singularities at (x'Y) = 0 
(resp. [2 = 0) and cannot be regularized by multipli
cation with appropriate smoothing factors (X1jY' 
[resp. ([2)n]. Therefore the products (2.3) and (2.6) 
cannot be defined as in Ref. 4. 

In Ref. 10 we have given another possibility of 
defining the inhomogeneous propagator ~i:, namely 
as the indicatrix of maximal regularity (mr) of the 
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spectral function p. Furthermore we have shown in 
Ref. 10 that this possibility is equivalent to the various 
procedures developed in Ref. 4 for defining ~~ in the 
case of spectral functions of R type. This definition 
works also in the case of NR spectral functions, as we 
shall see in the following paragraphs. First we have to 
introduce some mathematical notations. 

Definition 3: Let p(x2) be a spectral function. The 
support of p is called Tp. Let W(;:r2) be an arbitrary 
entire function. The set of zeros of W is called Zw 

Definition 4: Let p be a spectral function with 
support Tp. Then I(p2) is called an indicatrix of p if 
and only if 

2rrip(x2) = I(x2 + iO) - I(..z:2 - iO) = disc. 1(.£2), 

(2.11) 

i.e., if and only if 

p(x2)(cp(x2» = f dx 2p(x2)cp(x2) 

= _1 f dp2/(p2)cp(p2) (2.12) 
2rri Jc 

for all cp(p2) which are analytic functions of p2 in some 
region containing Tp such that 

(2.13) 

exists. C is any contour equivalent to the contour of 
Fig. I, i.e., any contour which runs clockwise around 
the support Tp of p and lies inside the domain of 
analyticity of cpo 

It follows that I(p2) is analytic in p2 for all p2 
outside Tp. P is uniquely determined by I, whereas I 
is determined by p only up to an entire function 
U(p2) (cf. also Ref. 10). The general form of the 
indicatrix I of p is given by 

I(l) = W(p2)fdx2 
2 p(

x21 2 + U(p2), 
W(x )(-p + x) 

(2.14) 

where W is an entire function of p2 for which the 
integral in (2.14) exists, u being an arbitrary entire 
function. 

c 

FIG. I. Integration 
contour C. 

Definition 5: Let p be a spectral function. The set 
..M.,p is defined as follows: It consists of all entire 
functions W(p2) with the properties (a) W(p2) ;P 0 for 
arg (p2) sufficiently small (therefore also for p2 E Tp) 
and (b) there exists an € > 0 such that 

p(x2) = O(W(x2)(x2r'), x 2 ~ 00. (2.15) 

The existence of such functions W follows im
mediately from (1.5), (1.8), e.g., W(p2) = exp (OCp2), 
oc > O. Now we are able to define the indicatrix of 
maximal regularity (mr) of a spectral function. 
Loosely speaking the indicatrix of mr is an indicatrix 
which behaves as regularly as possible (i.e., grows as 
slowly as possible) for p2 ~ 00. 

Definition 6: ~i (p2) is an indicatrix of mr of the 
spectral function p if and only if (a) ~~ is an indicatrix 
of p and (b) if WE.;\{,p, then there exists an € > 0 
with the property 

~i(p) = O(W(p2) /p2/-€) (2.16) 

for p2 ~ 00 such that 

del, Tp + Zw) ~ {} /p2/, (2.17) 

where {} > 0 is arbitrary small and d(p2, Tp + Zw) is 
the shortest distance between p2 and the points 
x E Tp + Zw (cf. Definition 3). 

It is easily seen that this definition is equivalent to 
the definition of the indicatrix of (mr) of spectral 
functions ofrenormalizable type (i.e., of finite order N) 
given in Ref. 10. Note that up to now we have not 
assumed that p be of NR type; it may be as well of R 
or superrenormalizable type. The following theorem 
gives an explicit representation of the indicatrix of mr. 

Theorem 1: ~i is an indicatrix of mr of p if and 
only if, for every WE.;\{,p, ~~ can be written in the 
form 

~~(p) = W(l)fdx2 2 p(x
2

; 2 + U(p2). 
W(x)(-p +x) 

(2.18) 
Here u is an entire function satisfying 

U(p2) = O(W(p2) /p2,-€) (2.19) 

with an appropriate € > 0, if p2 ~ 00 as in (2.17). 

Proo!' Suppose (2.18), (2.19) are valid. From (2.18), 
it follows that ~~ is an indicatrix of p, and, from (2.16), 
(2.19) we conclude that there exists an € > 0 such that 

~;(p) =Jdx2 p(x
2

) + U(p2) 
W(p2) W( x 2)( _ p2 + x 2

) W(l) 

= O(llr') (2.20) 
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if p2 -+ 00 as in (2.17). Therefore ~i is an indicatrix of 
mr. On the other hand, if ~~ is an indicatrix of mr of p 
and WE.A(,p then we obtain, using Cauchy's formula 

~~(p2) = _1_ r da? ~~(x2) (2.21) 
W(p2) 21Ti JCA W(x2)( _ p2 + x 2) 

if p2 lies in some arbitrary compact domain D of the 
complex p2 plane minus (Tp + Zw). CA is given in 
Fig.2. 

It consists of the large circle Ix21 = A, the contour 
parallel to Tp and small circles running around the 
zeros x~ of W with Ix;1 < A. Since ~~ is an indicatrix 
of p, we have, 

disc. ~{(x2) = 21Tip(x2). (2.22) 

If Av -+ 00 for v -+ 00, it follows that 

~;(p) = _1_ lim r dx' ~;(x2) 
W(p2) 21Ti v-+oo JCA" W(x2)( -l + x 2) 

= lim ( rA"dx2 p(x
2

) 

v->oo Jo W(x2)(-l+x2) 

+ t. dx2 ~;(X2) 
<lx21=Av W(x2)( _ p2 + x 2) 

_ ~ Res~{(x2) ). 
IXi21<Av {x2=x;2} W(X2)(_p2 + x 2) 

(2.23) 

Because of (2.l6) the first term tends towards 

fd 2 p(x
2

) 

X W(x2)( -l + x2) 
(2.24) 

and the second one vanishes because of (2.16) and 
(2.17) if we choose the sequence Av -+ 00 in such a 
way that the circles Ix21 = Av do not contain a 

FIG. 2. Integration contour CA. 

x 2 E Z w. Both limits are uniform with respect to p2, 
p2 E D. Therefore also the third term must converge 
uniformly in the domain D and is therefore analytic in 
p2 for p2 E D. We obtain 

~~(p) -fdx2 p(a;2) u(l) 
W(p2) - W(x2)( _ p2 + x 2) + W(p2) , 

(2.25) 

( 2) W( 2), R ~Ie(2) 
u p = - p '7 ",.=:~. W(x2)( _ p2 + (2) 

(2.26) 

From (2.26) it follows that U(p2) is regular also for 
p2 E Tp. Furthermore it is analytic if p2 coincides with 
one of the zeros x; of W, for if x; is zero of W 

W(x2) = (x2 
- X~)~iW(X2), W(x~) '=P 0, (2.27) 

then 

~~(X2) 
- Res 2 2 2' (2.28) 

",2="'i2 W(x )(-p + x) 

as a function of p2, is given by 

1 (d )a i
-

1 Me(2
) I 

(cx. i - 1)! dx2 (l- ( 2)W(X2) ",2=",/ 
(2.29) 

which is of the form 

(2.30) 

Therefore, according to (2.26), U is regular at p2 = x; 
since 

• 2 ~i(x2) - 2 
- hm W(p) Res = r .~(x.) 

p2-+"'i" "'"="'i2 W(x2
)( -l + x 2

) ~, • 

(2.31) 

exists. We conclude that u is an entire function since 
the domain D was arbitrary. If p2 -+ 00 as in (2.17), the 
lhs and also the first term on the rhs of (2.25) are 
bounded by const Ip2r' with some appropriate E > O. 
Therefore u satisfies (2.19). If we multiply (2.25) with 
W(p2), the resulting formula (2.18) holds also for 
p2 E Z w, for ~~ is an indicatrix of p which is analytic 
for all values p2 ¢ Tp. This completes the proof. 

QED 

Again we did not make any assumptions about the 
type of the spectral function p. Suppose now that p is of 
superrenormalizable type, satisfying (2.7); then .A(,p 

contains the function W = 1, and we obtain in this 
case from (2.18) 

f 
p(x2) 

~i(p) = dx2 
2 2 

-p + x 
(2.32) 
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since u = 0 because of (2.19). We conclude that in 
this case (2.18) is identical with the Lehmann repre
sentation (2.2), and we see that the inhomogeneous 
propagator is identical with the indicatrix of mr of the 
spectral function. It is reasonable to take this as a 
definition of the inhomogeneous propagator if p is 
of R (cf. Ref. 4) or NR type, which we shall do in the 
following sections. 

Since in a causal theory p(x2) is at most of order of 
growth t, we may assume without restriction that W 
is of order < 1 and therefore may be written in the 
form 

Proof' Choose an entire function WE.A(,p of growth 
(!, £/2), i.e., a function 

W(p2) = ! la,,1 (p2)" (3.3) 

with 
,,2:0 

. v log v 1 
hm sup = -, 

" .... 00 log 111a,,1 2 

~ lim sup v /av /l/2v = ~ , (3.4) 
e " .... 00 2 

e.g., 

cosh [(t-j2)(p2)t] or (p2)-t sinh [(E/2)(p2)1]. (3.5) 

W(p2) = (p2)k}l (1 - !;), (2.33) Because of (2.16) we have 

where x~ = 0 (if k > 0) and x; , i > 1, are the zeros 
of W. Then we see from (2.18) that the choice of u is 
equivalent to fixing the values of 

C~2r ~i(p~pl="'1!' ft = 0, 1, ... , IX; - 1 (2.34) 

if IX. is the multiplicity of the root x; of W. It is clear 
therefore that the usual subtraction method, i.e., the 
choice of a sufficiently large number of derivatives of 
~i: at the same point p2 = M2 cannot work for NR 
theories; for "sufficiently large" means infinite in this 
case, and choosing all the values (d/dp2)1I.~'r(p2)pbM2 
would already determine the whole function (if any) 
which might have nothing to do with the propagator 
~i, since these values were arbitrary. Similarly we see 
that any method based on the choice of the values 
(2.34) does not work if all x; lie in some compact 
domain of the p2 plane. Equation (2.18), however, 
works since the zeros x; of W have an accumulation 
point at infinity according to the theory of entire 
functions. 

3. PROPERTIES OF THE INDICATRIX ~i: OF 
MAXIMAL REGULARITY 

In Sec. 1 we saw that causality imposes the re
striction (1.5) on p which, combined with Theorem I 
yields a universal bound for the high energy behavior 
of the indicatrix of mr of p according to the following 
theorem. 

Theorem 2: We have for all £ > 0 

(3.1) 

if p2 __ 00 as in (2.17). Lli is defined up to an entire 
function u with 

(3.2) 

(3.6) 

Therefore 

~'(p)e-f/P'/! = ~ap) W( 2)e-f /P'/! __ 0 
I W(p2) P 

(3.7) 

since 

W(p2) = O[exp (E/2 + E')/p2It ] for all E' > o. 
(3.8) 

(3.2) follows immediately from (3.7) and (2.19). 
QED 

Theorem 3 then follows. 

Theorem 3: In a causal theory the inhomogeneous 
propagator ~i(x) is determined up to a distribution 
concentrated on the origin x = 0 of the light cone. 

Proof' It is well known14 that (3.2) is necessary and 
sufficient for the fact that the inverse Fourier transform 

00 

L Ci - D)lI.b(x) (3.9) 
0 

of 
00 

u(l) = ! Cip2)1I. (3.10) 
0 

from (3.2) can be extended to all test functions 'IjJ(x) 
which are analytic at x = O. Therefore the support of 
(3.9) is the point x = O. QED 

Theorem 2 yields, of course, only an upper bound 
for the growth of Lli:, which can often be improved if 
we know the high energy behavior of p. 

Theorem 4: If the order of growth of pis (1 and its 
type is T, i.e., 

p(x2) = O[exp (X2)<J+f], 

x2 __ 00, E > 0 arbitrary, 

p(x2) = O[exp (T + E)(X2YJ, 
x 2 

-- 00, E > 0 arbitrary, (3.11) 
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then 
~~(p) exp [_lp21!(Ir+£)] -+ 0, p2 -+ 00, 

€ > 0 arbitrary, 

~i(p) exp [-(r + €)lp210"/2] -+ 0, l-+ 00, 

€ > 0 arbitrary. (3.12) 

Therefore ~i is defined up to an entire function U(p2) 
satisfying (3.12) with ~~ replaced by u. The proof goes 
as in Theorem 2. QED 

4. UNRENORMALIZABLE SPECTRAL FUNCTIONS 
AS A LIMITING CASE OF RENORMALIZABLE 

ONES 

It is often desirable to represent P as 

P = lim Pa' (4.1) 
«-+«0 

where the Pa can be treated more easily. In pertur
bation theory, e.g., we have in case of a NR spectral 
function 

n 

P = lim Pn' Pn = ! p(i), (4.2) 
n-+C() i=O 

and each p(i) and therefore each Pn is of R type. To 
establish the relation of the propagators ~~a and ~~ 
corresponding to the Pa and to the exact spectral 
function P, respectively, we first have to give a 
precise meaning to (4.1) : We shall assume in Theorems 
5-8 that 

lim fdx2paC(2)cp(a}) =fdx2p(x2)cp(x2) (4.3) 
IX-+«O 

for all cp for which the rhs of (4.3) exists. [A sufficient 
condition for (4.3) is that the Pa ' considered as 
ordinary functions, converge uniformly towards P in 
every finite interval of the x 2 axis.] Now we prove the 
following theorem. 

Theorem 5: Let Ia(p2) be an indicatrix of p,.. Assume 
that 

I = lim I" (4.4) 

exists uniformly in every compact domain D of the 
complex p2 plane. Then I is an indicatrix of p. 

Proof: Suppose that 

p(cp) = J dx2p(x2)cp(x2
) (4.5) 

exists and that cp is analytic for x 2 E Tp. Then also 

(4.6) 

exists for IX sufficiently close to 1Xo, according to (4.3). 

We have 

50 dp21a(p2)cp(p2) = 27Tif dx2paC(2)cp(x2), (4.7) 

using the definition of Ia' Because of the uniform 
convergence of (4.4), we obtain 

!~~J dl1aCp2)cp(p2) = f dp21(p2)cp(l). (4.8) 

Therefore, taking the limit IX -+ 1X0 in (4.7), we arrive at 

QED 

Theorem 6: Let I be an indicatrix of p. Then there 
exists a sequence of indicatrices lIZ of Pa with 

(4.10) 

uniformly in every compact domain D of the p2 plane 
minus Tp. 

Proof: I can be written in the form 

l(p2) = W(p2) J dx
2 W(X2);~:? + ( 2) + u(/). 

(4.11) 
Define 

I (p2) = W(P2)Jdx 2 pi(
2
) + u( 2). 

a W(x2)( _ p2 + ( 2) P 

(4.12) 

Then If/. is an indicatrix of Pa and (4.10) holds, the 
limit being uniform with respect to p2, p2 ED, since 
both Ia and I are analytic for p2 E D. QED 

An immediate consequence is the following theorem. 

Theorem 7: Let Ia and I be indicatrices of Pa and P 
respectively. Then there exist entire functions Ua such 
that 

If/. + Ua -+ I, IX -+ 1X0, (4.13) 

uniform in every compact domain D of the complex 
p2 plane minus Tp. 

Proof: Ia differs from the special indicatrix (4.12) at 
most by an entire function -Ua • QED 

An important case is the one in which each p" is of 
R type [e.g., in perturbation theory, cf. (4.2)]. We 
prove the following theorem. 

Theorem 8: Let ~~" be an indicatrix of Pac of mr and 
let the order Nf/. of Pac be finite for all IX. (For the 
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definition of the order of a spectral function, see Ref. 
10.) Suppose 

(4.14) 

where N is the order of p (i.e., N = 00, if p is of NR 
type). Then there exists a sequence of indicatrices Lliex 
of mr of Pex such that 

(4.15) 

uniformly in every compact domain D of the p2 plane 
minus Tp. 

Proof' Let Lli be given in the form 

Ll'(p) = W(p2)fdX2 p(x
2
) + U(p2) 

I W( x 2
)( -l + x 2

) , 

(4.16) 

Without restriction we may assume that W possesses 
an order of growth < 1 and that W(O) = 1. Then from 
the theory of entire functions it follows that W is given 
by 

where x: , Ix~1 :s;; Ix~1 :s;; Ix:1 :s;; ... , are the zeros of 
W. We define 

Ll' ( ) - W( 2)fdx2 p..(x
2
) + U ( 2) 

lex p - ex P W..( x2)( _ pZ + x2) ex p , 

(4.18) 

(4.19) 

Then Lli .. is an indicatrix of mr of Pex' Furthermore we 
have 

I f
d 2 p..(x

2
) fd 2 p(x

2
) I 

x Wa( x2)( _ p2 + x2) - x W( x 2)( _ p2 + x 2) 

:s;; I f dx
2 

Wa( _ ;: + x 2) - f dx
2 

W· ( -;~ + x 2) I 

+ If dx
2 

W· (-;~ + x 2) - f dx
Z 

w· (_;2 + x 2) I 
(4.20) 

arbitrary small for IX sufficiently close to IXo. Therefore 

ILl' - Ll'I lex I 
(4.21) 

is arbitrary small and (4.15) follows. Similarly as in 
Theorem 6 one sees that the limit is uniform with 
respect to pZ, p2 E D. QED 

Note that Theorems 5-7, but not Theorem 8, 
can be applied to a cutoff formulation, for in such a 
theory one always has N .. < 0 and therefore (4.14) 
cannot hold if the spectral function is of R (0 :s;; N < 
(0) or NR (N = (0) type. We remark that Theorems 
5-8 permit us to apply all the calculation methods for 
the indicatrices of spectral functions of R type, 
developed in Ref. 4, also to NR theories. 

S. A SIMPLE EXAMPLE 

Suppose15 

p( x 2
) = x( XZ)O( x 2

), 

X(x 2
) = .2 C" (x 2t-1

• (5.1) 
,,2:1 v! (v - I)! 

The requirement of causality (1.5) is here equivalent 
t02 

(5.2) 
" .... '" 

Let us test the various methods to obtain the corre
sponding propagator. First we look for an indicatrix I 
of p. In (2.14) we choose16 

W(pZ) = WO(p2) = (1 + aZp2)x(pZ), u = 0, (5.3) 

and obtain 

I(l) = (1 + a2l)x(p2) dx2 -----=----i '" 1 
o (1 + a2x 2)( _ p2 + x 2) 

= -x(l) log (_a 2p2). (5.4) 

It is easily seen that (5.4) is already of mr: If WE .A<,p, 
then (2.15) holds and therefore 

-x(l) log ( _a2p2) = O(W(l) Ilrf
'), 0 < E' < E. 

(5.5) 

In the simple case (5.1) the calculation methods of 
Sec. 4 may also be used to obtain explicit results for 
the propagator Lli. We write 

p = lim P .. , (5.6) 
ex"" '" 

~ C" (2)"-1 (5 7) 
p", = 4t I ( _ 1)' x, . 

1 V. V • 

Nfl. = IX, (5.8) 

the convergence being uniform in every finite interval 
of the x 2 axis because of (5.2). Using now any 
method of Ref. 4 for calculating the indicatrix Lli .. of 
mr of P .. , we always obtain a result of the form 

Ll~ex(p) 

= _ ± C" (p2)V-110g (-a2l) + u .. (l), 
1 v! (v - I)! 

(5.9) 
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Ua, being a polynomial of degree ~ (t - 1. For example, 

Uip2) = - i Cv (p2y-1 ~ (f(v, z)/(v + z - 1)!).=0 
1 v! dz 

(5.10) 

if to each term in the sum (5.7) the residue prescription 
developed in Ref. 4 is applied. Of course, ~~a. need not 
converge for (t -+ 00 {if, e.g., 

(dldz)[f(v, z)/(v + z - 1)!].=0 (5.11) 

grows sufficiently rapidly for v -+ oo}. However, 
Theorem 8 guarantees the existence of a polynomial 
Ua. of degree ::; (t - 1 such that 

(5.12) 

where ~~ = I is given by (5.4). This is, of course, 
easily accomplished by choosing 

(5.l3) 
We obtain 

~' + U = _ ~ C" ( 2)V-1 log (-a 2l) 
la, a. £.. '( -1)' p 1 v. V • 

-+ _X(p2) log (_a2p2). (5.14) 

Furthermore, we see that the above considerations 
yield an explicit illustration of Theorems 5, 6, and 8 
since the Ihs of (5.14) is an indicatrix of mr of Pa.' 

It seems worth mentioning that these techniques 
allow us immediately to calculate the momentum 
space representation of the Feynman propagator ~~ 
for a large class of entire functions of free fields. The 
basic idea3 is to obtain first the corresponding Wight
man function and from there the spectral function p, 
and then apply the indicatrix method. To sketch this 
method for the case of exponentials of free fields, let 

~~(y - y') = (ilg2) (01 T(:ey<J)(y) - 1: :ey<J)(Y') - 1: 10), 

(5.15) 

with g a constant and <I> a free scalar field of mass m. 
(The factor 1/g2 has been introduced in order that ~~ 
approaches the free propagator for g -+ 0.) Then the 
positive frequency part of the corresponding commu
tator ~' is the Wightman function 

i~~(y - y') = (1jg2) (01 :ey<l>(y) - 1: :ey<l>(y') - 1: 10), 

which is readily evaluated to yield 
(5.16) 

i~~(x) = (ljg2){exp [ig2~+(X)] - 1} 

= (ljg2) L (ljv!)g2v[i~+(x)]V, (5.17) 
v2:1 

where i~+(y - y') = (01 <I>(y)<I>(y') 10). In momentum 

space (5.17) reads 

i~+(p) = (11 g2)(27T)4 2 (llv !)(g/47T2r[*i~+(p)]V, 
v2:1 

(5.18) 

where [*i~+(p)]V is the v-fold convolution product of 
i~+(p) = 27TO(pO)/J(p2 - m2) with itself. These con
volution products can in principle be calculated17 and 
the series in (5.18) can be summed up. Since 

(5.19) 

the spectral function p can then be obtained. Despite 
the fact that no closed form solution results, the 
asymptotic high energy behavior of p can be estimated 
using the results of Ref. 2. We have 

(5.20) 

where X(x2) is given by (5.1) with c" = (gI47T)2VI 
(v + I)!. It follows that the causality condition (5.2) is 
satisfied and that we can again use the weight function 
Was given in (5.3) to calculate the indicatrix of mr of 
p and the momentum space Feynman propagator 
~~(p). 

For the zero mass limit the calculation can be 
carried out explicitly. We have from (5.17) that 

i~~(x) = (1/g2) lim L Olv!)(g/27T)2V[ -(x - i€17)2]-V, 
£ ...... 0 v~l 

(5.21) 

where 17 is a unit vector of the forward light cone, 
whence2 

i~~(p) = 27TO(l) 

X (/J(p2) + L (gj47T)2V (p2)V-1(J(p2»). 
\ v2: 1(v+1)!v!(v-1)! 

Therefore, 
(5.22) 

p(x2) = /J(x2) + X(x2)O(x2) (5.23) 

according to (5.19), where X is the same function as in 
(5.20). With W(p2) given by (5.3) and the convenient 
choice of the arbitrary entire function u according to 

U(p2) = [W(p2) - W(0)]!p2 W(O), (5.24) 
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from above. The result is 

~~(p) = 1j(_p2 - iO) - X(p2) log [a2(_p2 - iO)] 

1 (g/47T)2V 

-l- iO -vt1 (v + 1)! v! (v - 1)! 

X (ly-llog [a2( -l - iO)]. (5.25) 
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We see that Ll~(p) has a pole of first order with 
residue -1 at the square of the free field mass m2 = 0, 
a result which is of a general nature.2.10 

6. CONCLUSIONS 

We conclude that, from the point of view of 
divergences, unrenormalizable field theories are in no 
way worse than renormalizable ones and in fact can 
be dealt with in terms of the same indicatrix techniques 
as the latter ones. We shall show in a forthcoming 
paper that the mathematical problems posed by equal 
time commutators also are entirely within the pos
sibilities provided by the formalism of Refs. 4 and 10. 
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It is pointed out in this note that two series studied by Rosenbaum [J. Math. Phys. 8, 1977 (1967)] 
and later given rapid, elementary proofs by the present writer [J. Math. Phys. 10,49 (1969)] are virtually 
the same series because of properties of the factorial ratio involved. This shows that the very complicated 
generalized series introduced by Srivastava [J. Math. Phys. 11, 2225 (1970)] is not needed, besides 
which his general series seems not possible to sum in general and serves no purpose other than to subsume 
the two original series in a single series. Since the series are, in fact, almost identical, this is simpler than 
Srivastava's formula makes out. Finally, the proofs in the writer's previous note are again discussed for 
their value as elementary techniques avoiding complicated infinite series and unnecessary generalizations. 

By means of rather involved considerations of 
commutation relations Rosenbauml was able to sum 
the two series 

and noting that (2) has the value 0 because it is 
nothing but a difference of order IX of a polynomial of 
degree less than IX. 

A=ic-1y(n+€-I)( €) (1) 
n=O n IX - n 

and 

B = !(_1)n(n + E" - 1) (IX), 
n=O IX - 1 n 

(2) 

involving binomial coefficients, showing that A = ° = 
B for some special cases of the parameters. Then the 
present writer2 gave a very simple approach to both 
series, using the finite Vandermonde series to sum (1) 

Srivastava3 has now published a note proving the 
results again and claiming to unify the work. He 
introduces the series 

s~:!:;n = IC-1)n( y + n ) ( ;, ), (3) 
n=O mp + nq - r m - n 

and is then able to sum the series in the very special 
cases p = 0, q = 1 and p = I, q = 0, thereby 
obtaining Rosenbaum's results. He uses Gauss' 
theorem for summation of a certain 2F1 hypergeo
metric series. Along the way, Srivastava finally 
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obtains the fact that 

ocA = EB for aII integers oc ~ 1. (4) 

We shall remark first of all that introduction of 
series (3) is a needless complication. The only way 
in which this unifies things is that it does contain both 
A and B as special cases. But the general series of 
Srivastava does not seem possible to get in closed 
form. I assert this on the basis of many years work with 
hundreds of different binomial sums. It turns out that 
Srivastava's general sum is not necessary because in 
fact the two sums A and B are virtually the same 
series anyway. This is so because the product of 
binomial coefficients in series A is really just 

E(n + E - l)!/n! (oc - n)! (n + E - oc)!, (5) 

while the product in series B is merely 

oc(n + E - l)!/n! (oc - n)! (n + E - oc)!, (6) 

from which it is evident that relation (4) foIIows at 
once. We can then omit the lengthy derivation of (4) 
given by Srivastava and go at once to the heart of the 
matter, which is that in both cases the series are zero 
because they are preCisely differences of order oc of 
polynomials of degree less than oc as explained in my 
paper.2 

Since, moreover, the ratio of factorials in (5) and 
(6) can be separated a third way and is in fact equal to 

(
n + E)(2n + E - OC)_l, (7) 
oc-n n n+e 

we hereby obtain a third form of the basic summation 
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which is not covered by the parameters introduced by 
Srivastava in series (3). It would seem more fruitful 
to begin a useful generalization by examining the 
factorial ratio. However, as already pointed out, a 
"generalization" here seems needless. 

This brings us to the question of the purpose of 
Ref. 2. The purpose I had in mind was to avoid use 
of infinite series and complicated generalizations. 
Proof was given to show how some very elementary 
considerations would suffice. I could have noted (5) 
and (6) as above but felt that two different finite 
methods of approach would make a very useful 
pedagogical note. 

Let there be no misunderstanding; I have pointed 
out to Professor Srivastava (a former coIIeague here) 
in private remarks in 1969 that his series (3) would be 
of interest if it were indeed possible to sum it in 
general, or if there were really some unifying principle 
behind it. But as we have seen above, the two series 
originaIIy studied are virtually one and the same so 
that the general series (3) is totally uncalled for. If we 
merely wish to exhibit a general formula that shall 
contain both A and B on demand for special choices 
of parameters, we can consider the expression qA + 
pB which yields A and B for the same values of p and 
q as in (3). A "generalization" to be useful and 
interesting must contain some really unifying principle 
other than a multiplicity of parameters. 

1 D. M. Rosenbaum, J. Math. Phys. 8, 1977 (1967). 
2 H. W. Gould, J. Math. Phys. 10,49 (1969). 
S H. M. Srivastava, J. Math. Phys. 11,2225 (1970). 
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Using a group-theoretic approach similar to methods previously used in the pure Coulomb problem, 
we derive representations for the off-shell "nuclear" T matrix-the difference between the complete T 
matrix and the Coulomb T matrix-corresponding to the sum of Coulomb and separable potentials, 
in particular, for the sum of Coulomb and Yamaguchi potentials. These representations have some 
analogous properties to those representations already known for the pure Coulomb T matrix, especially 
in the on-shelllimit. 

I. INTRODUCTION 
In the investigation of the three-body problem by 

means of the Faddeev or Schrodinger equations, one 
simplifying consideration has been the use of non local 
separable potentials in place of local potentials. l In 
view of the importance of charged particles in these 

systems, it is natural to investigate potentials con
sisting of a sum of a short-range separable potential 
and the Coulomb potential. Indeed, this problem was 
previously investigated by Harrington2 for the sum of 
a cut-off Coulomb potential and a Yamaguchi 
potential and subsequently applied to the nuclear 
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three-body problem.3 For the pure Coulomb problem, 
on the other hand, there are momentum space 
representations of both the Green's function4•5 and 
the off-shell T matrix6- 10 which do not involve the use 
of such a cutoff. These representations for the off-shell 
Coulomb T matrix have been recently applied to 
atomic scattering problems from the point of view of 
the Faddeev equations,7.8 and a recent paperll relates 
this approach to the eigenfunction expansion ap
proach.12 

In the present paper we discuss somewhat similar 
representations for the off-shell T matrix corre
sponding to the sum of Coulomb and separable 
potentials. These will be derived by the generalization 
of a group theoretic method previously used mainly 
for the pure Coulomb problem. 

The group theoretic approach is a natural framework 
for the treatment of scattering problems involving the 
Coulomb potential because such problems admit 
0(4) as a dynamical symmetry group for negative 
energies and 0(3, 1) for positive energies.13 

This situation was first exploited in nonrelativistic 
scattering theory by Schwinger5 by using an 0(4) 
approach based upon the stereographic projection 
method of Fock.13 The idea was carried further by 
Finkelstein and Levt by employing the connection 
between momentum space and the group space of 
0(3). These authors also point out that the group 
theoretic approach can also be used to advantage in 
problems involving other potentials, even though such 
potentials do not admit 0(4) as a symmetry group. 
Our work is an illustration of this remark. 

Nutt6 derived the off-shell Coulomb T matrix from 
one of Schwinger's results5 for the Coulomb Green's 
function. The identical result is given by the method 
of Finkelstein and Levy9 and also by our approach 
which is closely related to that of Schwinger. 

In using the methods of Finkelstein-Levy and of 
Schwinger, one first obtains the T matrix corre
sponding to a given potential from the Lippmann
Schwinger equation for negative energies and then 
proceeds to positive energies via analytic continuation. 
Perelomov and POpOV14 have discussed a more direct 
approach for scattering problems by giving an 
expansion of the Coulomb Green's function in terms 
of irreducible representations of 0(3, 1).15 They 
explicitly demonstrate that this procedure gives the 
same result as that obtained by analytic continuation 
of Schwinger's 0(4) expansion. These authors also 
point out that the proper symmetry group for the 
special case of zero energy is the three-dimensional 
Euclidean group· E(3). The representatiorts of this 
group can be obtained by contraction from those of 
either 0(3, 1) 14 or 0(4).16 

In Sec. II we give a general discussion of the group 
theoretic procedure for obtaining the off-shell T 
matrix corresponding to the sum of Coulomb and 
separable potentials. Section III is concerned with the 
pure Coulomb off-shell T matrix. This allows us to 
derive some of the known representations for this 
quantity in a systematic way, and also to discuss the 
analytic continuation procedure in. a familiar setting. 
As a byproduct, we obtain a new representation for 
the off-shell Coulomb T matrix which is slightly 
different from those already known. Then, in Sec. IV 
these methods are applied to the derivation of repre
sentations for the off-shell nuclear T matrix corre
sponding to a sum of Coulomb and Yamaguchjl7 
potentials. Section V then consists of some concluding 
remarks where we indicate how the results of the 
preceding section would be changed if the Yamaguchi 
potential were replaced by a separable potential of a 
different type. 

II. GENERAL DISCUSSION 

Our starting point is the Lippmann-~chwinger 
equation in momentum space, 

'. _ 'f V(p, p")T(p", p'; E)d
3
p" 

T(p, p , E) - V(p, p) - ,,2 E 
p -

(1) 

and for convenience we choose units such that Ii = 
1 = 2m, where m denotes the reduced mass. 

The idea is to first solve (1) for negative energies and 
then analytically continue to positive energies, as was 
already mentioned in the Introduction. The con
nection between momentum space and the group space 
of 0(4) is provided by Fock's stereographic pro
jection13 

'i = 2POPi/(P~ + p2) 

= (sin 0( sin () cos p, sin IX sin () sin p, sin 0( cos (), 

'0 = Cp~ - l)/Cp~ + p2) = cos 0(, 

where IX, (), and p denote the polar angles on the unit 
4-sphere and we have set E = - p~. In terms of these 
angles, the 0(4) harmonics are given by 

Yn!mCQ) = N!! sin! IXC~~~( cos ex)Y;"CO, p), (2) 

where C;'~~ and Y[" denote, respectively, a Gegenbauer 
polynomial and the usual spherical harmonic on the 
unit 3-sphere. 

We take the spherical harmonics as normalized to 
unity, 
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so that the normalization constant in (2) is 

22/+l( n - 1)! (n + 1)(1 !)2 
N - ---'----'----'--'-~~ 

nZ- 7T(n+l+1)! 

It is convenient to define the auxiliary functions, 

TiO, 0 ') = (P~ + p2) T(p, Pl)(P~ + pl2), 
2po 2po 

Va(O, 0 ') = (p~ + p2) Yep, Pl)(P~ + pl2) , (3) 
2po 2po 

and to expand these in terms of 0(4) harmonics,s 

TiO, 0 ') = I Y/O)TpVY:(O'), 
pv 

Va(O, 0 ') = I Y/O)VPVY:(O'), (4) 
pv 

where fl and 'JI denote the three quantum numbers n, 
I, and m. 

The Lippmann-Schwinger equation (1) now takes 
the form 

1 
Tpv = Vpv - - I Vpp,Tp'v, (5) 

2po p' 

when we make use of the orthonormality of the 0(4) 
harmonics and the identity 

d3p = [(p~ + p2)j2Po]3 dO., 

where dO denotes the element of surface area on the 
unit 4-sphere, 

dO. = sin2 
IX sin 0 dlX dO dcp. 

Corresponding to the usual partial wave expansion 
for spinless particles 

Yep, pi) = I Y;(p, p')Y~(j3)Y~·(j3'), 
1m 

one finds from (3) and (4) an expression of the form 

Vnlm;n'I'm' = Y;(n, n')bl.l,bm.m" (6) 

Equation (5) can be easily solved for two classes of 
potentials, to which we shall restrict ourselves in the 
present paper. The first class consists of potentials 
which, in addition to having the property (6), are also 
diagonal in the third quantum number 

Potentials which have the further property that V,(n) 
is independent of I have been called "Casimir po
tentials" by Finkelstein and Levy.9 The Coulomb 
potential is an example of such a potential. The second 
class of potentials for which (5) is easily soluble 
consists of potentials which are finite sums of terms 
which are separable in the parameter space of 0(4), 
i.e., potentials of finite rank. For given I and m these 

potentials have the form (6) with VI(n, n') a finite sum 
of the form 

Y;(n, n') = I Ajui.l(n)ui.l(n'). (7) 
i 

We will be interested in the solution of the Lipp
mann-Schwinger equation (5) when the potential can 
be written as the sum of a Coulomb and a separable 
potential, 

V= yc + V'. (8) 

Then the off-shell T matrix can be written in the form 

T= Te + Tes. (9) 

Here P denotes the Coulomb T matrix and ps is 
frequently. called the "nuclear" T matrix. This latter 
quantity satisfies the following equation, which easily 
follows from the substitution of (9) into (5): 

T es V S 1 '" V S T es 
IJV = pv - - ~ JlJL' Il'V 

2po p' 

- _1_ I (V~p' + V~p.)T~~v, (10) 
2po p' 

in which V" is taken to be of the general form (7). The 
solution to (10) has the form 

(11) 

where the I value corresponds to that of (7) and 
Tf8(n, n') has singularities corresponding to bound 
states of the total potential (8). 

Instead of decomposing the T matrix in the form 
(9), one can, of course, also write 

T= T8 + Tse, (12) 

in which T8 denotes the off-shell T matrix corre
sponding to the separable potential (7). One can then 
further decompose pc in (12) as follows: 

Tse = Te + T'se, (13) 

where P again denotes the pure Coulomb T matrix. 
In general, the quantity T'se in (13) is much more 
complicated than the object ps which appears in (9). 
Nonetheless, it is somewhat int~resting that, when one 
separates the T matrix corresponding to the separable 
potential from the total T matrix as in (12), then the 
Coulomb T matrix automatically becomes separated 
as in (13). When one passes to the on-shell limit p2 = 
k 2 = E = p'2, then it is found that T'se contains a term 
which exactly cancels the separable on-shell T matrix 
YO. The decomposition 

T = T8 + Te + T'se 

has previously been given in a momentum space 
representation by Alessandrini et al,3 
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III. OFF·SHELL COULOMB T MATRIX 

Before proceeding to the discussion of the off-shell 
T matrix corresponding to the sum of Coulomb and 
separable potentials in the next section, we want to 
make a few remarks concerning the pure Coulomb 
problem. It will be seen that the group theoretic 
approach affords a unified approach to the derivation 
of the various representations of the off-shell Coulomb 
T matrix, including one slightly different from those 
previously given. Also, the methods of analytic 
continuation to be used are the same for this problem 
as for the more general problem to be considered in 
Sec. IV, so that we have preferred to discuss them in a 
familiar setting. 

Nutt6 has given an integral representation for the 
off-shell Coulomb T matrix which was derived from 
one of Schwinger's representations for the Coulomb 
Green's function. 5 As we discuss below, this repre
sentation can be shown to be equivalent to a repre
sentation derived from Hostler's representation of the 
Green's function. 4 There are corresponding repre
sentations to these in terms of hypergeometric 
functions. 7•1o We will give yet another representation 
of the latter type. A similar representation is given in 
the next section for the off-shell nuclear T matrix 
corresponding to the sum of Coulomb and Yamaguchi 
potentials. 

For the Coulomb potential 

Vc{p - p') = (Ac/21T2) Ip - p'I-2
; Ac = ±e2, 

we find from (3) and (4) 

V~lm;n'l'm' = [Ac/(n + l)]~n.n'~I.l'~m.m" 
In these equations Ac > 0 corresponds to a repulsive 
and Ac < 0 to an attractive potential. The T matrix is 
found from (5) to be 

T~lm;n'l'm' = [Ac/(n + 1 + Y)]~n.n'~l.l'~m.m·' (14) 

with Y = Ac/2po. 

The Coulomb bound states are determined by the 
vanishing of the denominator in (14), 

Po = I Acl/2(n + 1); Ac < 0, n = 0, 1,2, . ". (15) 

The representation of (14) in momentum space is 
obtained by the use of (3) and (4). We find 

T~(O, 0') = ~ I n + 1 sin (n + I)W, (16) 
21T2 n=on + 1 + y sin W 

where the angle W is related to the distance between 
two points on the surface of the unit 4-sphere by13 

and to the polar angles on the sphere by13 

cos W = cos ~ cos ~' + sin ~ sin ~' 

x [cos () cos ()' + sin () sin ()' cos (tp - tp')]. 

The summation in (16) can be converted into an 
integral representation by, for example, using a method 
discussed by Finkelstein and Levy,S 

This representation is of the same type as given by 
Schwinger5 for the Coulomb Green's function and, in 
fact, could have been obtained directly from his work. 
Equation (17) differs from the expression given by 
Finkelstein and Levy9 by a simple integration by parts. 

The summation in (16) can also be expressed directly 
in terms of hypergeometric functions as follows: 

Te(O 0') = Ac [eiW
2F1(1 + y, 2; 2 + y; eiW) - e-iW2F1(1 + y, 2; 2 + y; e-iW)] 

a' 21T2 2i(1 + y) sin W 

Ac [e'w(1- eiW)-\F1(1, y; 2 + y; e'W) - e-iW(1_ e-iWr12F1(1, y; 2 + y; e-iW)] 
(18) 

21T2 2i(1 + y) sin W 

The second expression in (18) is obtained from the 
first by the use of Euler's identity18 

We now want to analytically continue (17) and (18) 
to the positive energy region. In the case of (17), the 
restriction Re y > -1 is removed by use of a trans-

formation given by Schwinger5 and we find 

T C( '. e) _ Ac 
p, p , - 2 2/ '/2 1T p - P 

x [I + 4ift r ill dy ], (19) 
e-21T1l _ 1 JCE{l _ y)2 - 4y 

where ft = Ac/2k, E = (p2 - k2)(p'2 - k2)/k2 /p _ p'/2, 
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and the integration contour, which is the same as that 
described by Schwinger,5 starts at y = 1 + iO, moves 
to and encircles the origin and then terminates at 
y = 1 - iO. This representation agrees with that of 
Nutt6•19 and can be shown to be equivalent to the 
representation derived from Hostler's Green's func
tionS•10 by means of a simple change of variable. 
Shastry and Rajagopalll have given a representation 
of the off-shell Coulomb T matrix which is the 
analytic continuation of the expression for pep, p') 
found from (16) by making use of (3). It is amusing to 
note that they derived this representation by using (19) 
as a starting point, which just reverses the steps of the 
present approach. 

The analytic continuation of (18) is 

C I 2 Ac E 
T (p, P ; k ) = ----''---- ---: 

47T21p - p'I2 (1 + i,u)(1 + E)! 

x [ y+! 2F1(I,i,u;2+i,u;y+) 
(1 + E) + 1 

+ Yi 2Fl(l,i,u;2+i,u;y_)], 
(1 + E) - 1 

(20) 

with y± == 1 + (2/E)(I ± (1 + E)!). We note that the 
hypergeometric functions in this representation have 
different parameters and arguments from those in the 
representations previously given/· lo even though the 
representations are all equivalent. 

We will now use the representation (20) to discuss 
the on-shell limit p2 = k 2 = p'2 of the Coulomb T 
matrix. A similar approach has been used previously 
by Ford1o in connection with a hypergeometric 
function form of Hostler's representation. We want to 
give these details because we use essentially the same 
method in the next section in connection with the 
nuclear Tmatrix corresponding to the sum of Coulomb 
and Yamaguchi potentials. 

In order to pass to the on-shell limit in (20), we note 
that if k 2 has a nonvanishing imaginary part, then 
Iy-l < 1 and consequently ly+1 > 1, since y+y_ = 1. 
Therefore, we express the first hypergeometric 
function in (20) in terms of functions with argument 
y_ by means of the Barnes representation18 and 
obtain, after some manipulation, 

TC(p, p'; k2
) 

Ac (1 + )-! 
4 21 '12 E 7T P - P 
x {2 jr(1 + i,u)12 e1f/l.y~ + E[(1 + E)i + 1]-1 

X [(1 - i,u)-\F1(1, -i,u; 2 - i,u; y_) + (1 + i,ur1 

x 2Fl(l, i,u; 2 + i,u; y_)]). (21) 

The on-shell limit is now obtained by using the small 
argument expansion of the hypergeometric functions 
in (21) and we find 

TC(k, k; k2
) 

= lim [ 2 Ac ,2 !r(1 + i,u)1 2 el1 /1.(.:)i/l. + O(E)], 
£->0 27T lp - p I 4 

(22) 
a result also given by FordlO and Nutt.6 

We note from (22) the well-known result that the 
on-shell limit of the off-shell Coulomb T matrix does 
not yield the correct scattering amplitude. The reason 
for this has been well understood for some time and 
is due to the fact that the above calculations were done 
with momentum eigenstates, which are not the proper 
asymptotic states for the Coulomb problem. This can 
be remedied by computing the T matrix with the 
proper asymptotic states, as Nutt has shown. 

IV. OFF-SHELL T MATRIX CORRESPONDING TO 
A SUM OF COULOMB AND YAMAGUCm 

POTENTIALS 

We now want to consider the solution of (10). 
Unfortunately, it is difficult to make detailed state
ments without specifying the exact form of the 
separable potential. We have carried out the procedure 
discussed below for most of the separable potentials 
normally used in practical calculations and have 
found that most of the characteristics of these solutions 
seem to occur in the simplest example. This is also the 
case treated by Harrington,2 namely, a rank-one 
potential of the Yamaguchi type17 

V y (p, p') = A(p2 + P2)-1(p'2 + P2)-t, (23) 

where )" > 0 corresponds to a repulsive and A < 0 
to an attractive potential. For the reasons given above 
we will not give the details of the calculations for other 
separable potentials but will confine ourselves to a few 
remarks concerning them in Sec. V. 

For the present example (7) reduces to a single term 
with 

( 
_ 2-.)2 7TPO(Po - p)n+1 

u1 •O n) - 2 2 • 

Po - P Po + (:J 

The solution to (10) has the form (11) with 

TO'(n n') = ),,(n + 1)(n' + 1)u1•O(n)u1.O(n') 

0, (n + 1 + y)(n' + 1 + y)Dc,(Po) , 
where 

Dc,(Po) == 1 + ~ i (n + 1)[u1.O(n)]2 
2pon=o n + 1 + y 

(24) 

(25) 

(26) 

The zeros of the function defined in (26) determine 
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the bound states of the total potential (8), V = Vc + 
VY

, and we recognize the factors of the form (n + 
1 + y) in (25) which determine the Coulomb bound 
states. 

The representation of (25) in momentum space is 
obtained by exactly the same procedure as in the case 
of the pure Coulomb T matrix in the preceding 
section. The following results are found: 

T CS( '. k2) _ Ah(p)h(p') (27) 
p, ~ , - Dc.(Po)({32 + l)(fJ2 + p,2) , 

where 

h(p) = 1 _ 4yp~(fJ2 + p2) (1 yY dy , 
Jo a - 2by + cl 

valid for Re y > -I with 

and 

a = (Po + fJ)2(p~ + p2), 

b = (p~ - fJ2)(p~ _ p2), 

C = (Po - fJ)2(p~ + p2), 

T"S(p, p'; k2) = -Ag(p)g(p') , (28) 
4pp'(po + fJ)2 Dc.(Po)(1 + y)2 

with 

( ) _ Po + ip F 
gp-fJ .21 

-IP 

X (1, y; 2 + y; (Po - fJ) (Po + ~P)) 
Po + fJ Po - lp 

Po - ip F 
- fJ + ip 2 1 

x (1, y; 2 + y; (Po - fJfJ) (Po - ~P)). 
Po + Po + lp 

The evaluation of the summation in (26) gives 

D ( ) - 1 A7T2 
cs Po - + fJ(po + fJ)2(1 + y) 

X 2FI(I, y; 2 + y; (;: ~ ;n. (29) 

We note the similarity of (27) and (28) with (17) 
and (18), respectively, and also that (27) and (28) 
both reduce to the correct expression for the pure 
Yamaguchi T matrix when ,I.e = 0, as they should. 

Before discussing the analytic continuation of these 
representations to the positive energy region, we want 
to make a few remarks concerning the bound states 
of the Coulomb plus Yamaguchi potential V = vc + 
V Y. This topic was not discussed by Harrington.2 The 
bound states are determined by solving the equation 

(30) 

where Dcs is given by (29). It is convenient to rewrite 

(30) in the following form: 

2Fl(1, !!. ; 2 + !!. ; (y - 1)2) = ±Kf(y, K), (31) 
y y y + 1 

where 

fey, K) == (y + 1)2(1 + ~), K == 1~37T2' (32) 

and we have defined the new variables 

y == ~o, K == ~p 
The positive and negative signs on the right side of 
(31) correspond, respectively, to attractive and 
repulsive Yamaguchi potentials, and K is positive or 
negative as the Coulomb potential is, respectively, 
repulsive or attractive. 

The solutions of (31) are, of course, obtained by 
numerical methods. We can, however, make some 
qualitative remarks indicating the types of solutions 
which one obtains. By elementary calculus one finds 
that for fixed K the critical points of the function 
fey, K) occur at y = -1 and 

-K ± [K(K + 8)]f 
Y± = 4 (33) 

Thus, for positive real y there are no critical points if 
-8 < K < O. For K > 0 or K < -8 the critical 
points (33) may be either maxima, minima, or 
inflection points depending upon the particular value 
of K. For the special case K = -8, the two points 
coalesce to y± = 2, which is an inflection point. For 
all fixed values of K, fey, K) is a rapidly varying 
function of y in co~parison with the hypergeometric 
function. 

Now, for K < 0, corresponding to an attractive 
Coulomb potential, we note thatf(IKI, K) = o. Then, 
because of the properties of the functions f and 2Fl 
noted above, it turns out that, for a fixed negative 
value of K, there is either no solution or one and only 
one solution of (31), the choice depending upon the 
value of K and the sign on the right side of the 
equation. Thus, there can be solutions for both 
attractive and repulsive Yamaguchi potentials when 
the Coulomb potential is attractive. For example, the 
solution can- always be translated to the point y = 1 
by choosing K to be the reciprocal of f(l, -/KI). We 
list solutions for a fixed value of K in Table I. For 
convenience in these calculations we have chosen 
K = I, thereby locating the bound state of the pure 
Yamaguchi potential at the origin. 

The situation is completely different in the case 
K > 0, corresponding to a repulsive Coulomb 
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TABLE I. SolutionsofEq.(31)forattractiveCoulombpotentials. The integration contour in (34) is the same as that of 

K Y Type of Yamaguchi potential 

-1 0.44 attractive 
-! 0.74 attractive 
-i- 1 attractive 
-1 1.24 attractive 
-1- 1 repulsive 
_2 1.52 repulsive .. 
_l!. 2.06 repulsive .. 
_ll 2.60 repulsive .. 

potential. In this case fey, K) is strictly positive and 
its minimum is generally much greater than the 
maximum value of the hypergeometric function, which 
is also strictly positive. Nonetheless, solutions of (31) 
are possible for the positive sign on the right side if the 
constant K has a sufficiently small value, corre
sponding to a sufficiently attractive Yamaguchi 
potential. In fact, it is clear that if, for a given K > ° 
and a given y> 0, the minimum of Kf(y, K) lies 
below the corresponding value of the hypergeometric 
function, then two solutions may be possible. These 
remarks are illustrated in Table II. It will be noted 
that in some of the results of Table II the constant K 
has been chosen so as to locate one of the bound 
states at the point y = 1. 

We now return to the consideration of the analytic 
continuation of (27) and (28) to the positive energy 
region. This is accomplished by the same two pro
cedures, respectively, that were used in the preceding 
section in the case of the pure Coulomb T matrix with 
the following results. Equation (27) keeps the same 
general form except that now Des(Po) ---* Des( -ik) and 
h(p) is now given by 

4if-tk2(P2 + p2)i lJL d y 
h(p) = , (34) 

e-2lTJL - 1 c a - 2by + cl 
and now 

a = (fJ - ik)2(p2 - k2), 

b = (fJ2 + k2)(p2 + k2), 
c = (fJ + ik)2(p2 - k2). 

TABLE II. Solutions of Eq. (31) for combinations 
of repulsive Coulomb and attractive Yamaguchi 

potentials. 

K K Y 

1 k 0.094,1 
1 .!. 0,075,1.23 • 
2 -~ 0.16, 1 

" 2 ir 0.21, 0.74 
3 _.L 0.19, 1 " 3 -'-- 0.24, 0.71 15 

4 ...L 0.22, 1 2. 
4 1-\- 0.26, 0.75 

(19). In place of (28) we find 

PS(p, p'; k2) = ).g(p)g(pl)j4pp'(fJ - ik)2Dcs( -ik), 

where now 

-i 
g(p) == 1 + if-t g(p) 

__ l_[P-k 
1 + if-t P - ip 

(35) 

x 2Fl(I' if-t; 2 + if-t; (P + ~k) (P - k)) 
P - lk P + k 

+p+k F 
fJ + ip 2 1 

X (1, if-t; 2 + if-t; (! ~ ~~) (~ ~ ~)) ] 
_----"-p_-_k__ F 
(P _ ip)(l + if-t) 2 1 

(36a) 

x (1, if-t; 2 + if-t; (P + ~k) (~)) 
fJ - lk p + k 

p - k (P - ik) 
+ (P + ip)(1 - if-t) P + ik 

X 2Fl (1, if-t; 2 - if-t; (P - ~k) (~)) 
fJ + lk P + k 

+ ~ jr(1 + if-t»)2 elTJL 
P - lk 

x ((P - ~k) (~)yJL. 
fJ + lk p + k J 

(36b) 

We can now easily obtain the on-shell limit of (35) 
by using the small argument expansion of the hyper
geometricfunctions in (36b). For Re k, 1m k > 0, one 

. IfJ+ikP-kl eaSIly shows that -fJ--' -- < 1 so that 
- lkp + k 

g(k) = ~ jr(1 + illW elTJL 
fJ + ik ,-

X (P - ik p - kyJL + O(p _ k), 
P + ik P + kJ 

and therefore, from (35), 

T es( k, k; k2
) 

- lim ). Ir(1 + i ll·)1 4 

- p-k-+O (P2 + k2)2 D es( _ ik) r 
p'-k-+O 
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For the case of real k, the on-shell limits corre
sponding to (37) are discontinuous: 

or 

{

p - k-+-O+, p' - k-+-O+} 
p - k -+- 0-, p' - k -+- 0- . 

p - k-+-O-, p' - k-~O+ 

Analogous results to (38) were given by Ford1o.20 for 
the pure Coulomb T matrix. 

The limits (37) and (38) have some similarities with 
the corresponding results for the pure Coulomb T 
matrix and the ambiguities of these limits21 occur for 
the same reason. Namely, the sum of a short-range 
potential and the long-range Coulomb potential is 
again a long-range potential. Thus, the long-range 
part of the total potential, V = VC + VY

, dominates 
the on-shell behavior of the nuclear T matrix and the 
ambiguities of the limit21 are due to the fact. that 
momentum "eigenstates have been used instead of the 
proper asymptotic states for the problem, exactly 
analogous to the situation in the pure Coulomb case. 
A meaningful limit can be obtained by "folding in" 
the Coulomb asymptotic states, as is done in the pure 
Coulomb problem. 

V. CONCLUDING REMARKS 

In the preceding section we have derived repre
sentations for the off-shell nuclear T matrix corre
sponding to the sum of Coulomb and Yamaguchi 
potentials. We indicated at the beginning of that 
section that the consideration of this example is 
sufficient for the elucidation of the most important 
ideas connected with the representation of the off
shell T matrix corresponding to the sum of Coulomb 
and separable potentials. We now give an indication 
of how the preceding results change when the Yama
guchi potential is replaced by another . separable 
potential. 

In general, the dependence of the various formulas 
on the quantities f3 ± ip, f3 ± ip', and f3 ± ik will 
change, but the long-range behavior of the repre
sentations will still remain. For example, the am
biguities noted above for the Yamaguchi potential in 

the on-shell limit will remain even though the 
functional form may be changed from that of (37) 
and (38). 

In the bound state problem treated in Sec. IV, we 
noted that, for an attractive Coulomb potential, at 
most one bound state can occur for either a repulsive 
or attractive Yamaguchi potential. The number "one" 
in this result corresponds to the fact that a pure 
Yamaguchi potential can support at most one bound 
state. If one uses instead a separable potential of 
higher rank, then this number can change. In a 
similar manner, the number of bound states for the 
combination of a repulsive Coulomb potential and a 
sufficiently attractive separable potential may be 
changed from the number "two" found above for a 
separable potential of the Yamaguchi type. Similarly, 
if one considers a separable potential of the type 
suggested by Tabakin,22 then the attractiveness or 
repulsiveness of the potential is energy dependent, but 
essentially the same conclusions remain. 
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The matrix basis elements of a finite group g(r, mn) are put in a form Irm) (rnl suggestive of a 
dyadic in operator space. It is shown that if a subgroup H exists for which r I H = ~Yi' then these 
operators may be symmetry adapted to the subgroup via Iry;m) Q;ba. Necessary and sufficient 
conditions for constructing the elements Q;, b and a are given. Particular application of the procedure 
to the bipartition representations of the symmetric group is made. 

I. SYMMETRY ADAPTATION 

Application of the representation theory of finite 
groups is facilitated by use of orthogonal matrix 
elements, as a basis of the group algebra, because of 
their simple multiplication rule 

g(f, ij)g(b., kl) = ~(f b.) r5(jk)g(f , il). 

For physical theories which deal with scalar products, 
it is convenient to use a unitary representation for 
which 

g(f, ij)t = g(f,ji). 

For mathematical or physical reasons, one is often 
interested in using a representation symmetry adapted 
to a subgroup or a sequence of subgroups.1 The 
reciprocal relations between representations of a group 
and its subgroups implicit in the subduction and 
induction processes are of interest in themselves for 
analyzing the structure of the group algebra. Often the 
most efficient, if not the only, way of constructing an 
explicit representation of a group is by induction from 
a known representation of a subgroup. In physical 
problems a sequence of subgroups often has a pertur
bative significance and, correspondingly, gives approxi
mately good quantum-number classifications. Melvin2 

discussed the possibility of expressing the matrix basis 
elements (or any algebraic element) as a product of 
matrix basis elements of a subgroup and a coset 
factor, making particular application to the crystal
lographic point groups. The well-known Young 
operators of the symmetric group exemplify the 
construction of persistent algebraic elements by 
factors induced from subgroups.3 Klein4 emphasized 
the importance of symmetry adaption of the permu
tation group of a molecular system to permutation 
subgroups appropriate to the individual constituents 
(if one wishes to treat consistently the problem with 
varying internuclear distances). 

To the author's knowledge, the only detailed 

prescription for constructing a group representation 
by induction from a subgroup is that due to Yaman
ouchi5 for the permutation group S" which results in 
symmetry adaption to the sequence S,,:::> S,,-1 :::> 

... S2' It is the purpose of this paper to give a 
prescription for constructing the matrix basis elements 
of an irreducible representation f of a group G from 
those of a subgroup H for which f ! H = LYi' i.e., 
no irreducible representation of H occurs more than 
once in the reduction of f on H. This allows a one-to
one relation to be established, between the basis 
members of f and LYj. 

It is convenient to identify vectors within the 
operator space 

jrrn) = ~ ocU pig(r, mi), 
i,p 

where U is a unitary matrix so that 

Irrn) (rnl = locl 2 ~ U p;U;:,g(f, mi)g(f, ifn) 

= g(f, mn). 

The number of indices p to be included in the sum
mand and the subsequent fixing of loci is a matter of 
convenience. Any element X of the algebra that can 
be put in dyadic form 

m," 

will be a. persistent factor of the group algebra, i.e., 

XYX = ~(X~Y~mXm)X, 
m," 

In Sec. II we will prove a theorem giving the necessary 
and sufficient conditions for constructing such a 
persistent factor. This allows the construction of 
symmetry adapted operators 

Iryjrn) = IYjrn) Q; I Xi Iri). 

The process can be carried on symmetry adapting to 
chains of subgroups. 
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II. CONSTRUCTION OF PERSISTENT FACTORS 

Consider the group sublattice chain 

7' B~ 
G L, 

~A?' 

where L == A n B, and let the irreducible represen
tations be denoted by r, Gt, (3, and A, respectively. 
Let Ar and Br be unitary transformations taking the 
representation Gr to forms symmetry adapted to the 
chains G -- A -- Land G -- B -- L, respectively. 

Theorem: Gt i G n (3 i G = rand el! L n (3 ! 
L = A, where r and A occur once and only once in the 
induction or subduction, are necessary and sufficient 
conditions such that 

b«(3, bmAmU, biA;q)a(el, aiAir, akAks)b«(3, blAlt, bnAnV) 

= !5(AiAi)!5(AiA)!5( AkAI)!5( A).)!5( qr )!5( st) 

x I B!::.;",.t",uB[".tnv.ng(r, mn), (1) 
m.n 

where bm and aj denote the multiplicities with which 
Am and Ai occur in the reduction of (3 and Gt on L, 
respectively. 

Proof' By use of the orthogonality relations, a 
matrix basis element of a subgroup when extended to 
the full group can be shown to have the form 

a( lXi' a iAir, akAkS) 

I A!:.fi~iall1rA~:".aklks."g(r k' mn). 
rkE<%i t G;fi;m.n 

Such an element is not in general a persistent factor 
of the algebra because more than one irreducible 
representation occurs in the induction (sum over r k) 

and with multiple frequency (sum over j;). Convo
lution such as in Eq. (1) of matrix basis elements 
satisfying the conditions of the theorem does produce 
a persistent element of the ;llgebra. The first condition 
is seen as necessary and ,sufficient to obviate the sums 
over the irreducible representations and their multiplic
ities. The second condition is necessary for the result 
to be nonzero as we now show. By Schur's lemma the 
matrix AB-l is in block diagonal form with respect to 
the irreducible representations of L. An intertwining 
number theorem6 requires 

i (IX t G, (3 j G) = ! i (Gtd ! L d , (3 ! L d ), 
d 

where. the sum on d is over the double-coset repre
sentatives G = Uti' A dB, with La = d-1Ld and 

eld(d-1ad) = el(a). The left-hand side intertwining num
ber is, by hypothesis, 1. If i (el! L, (3! L) = 0, all 
elements of An-I for that particular (el, (3) pair 
vanish. We therefore require the second condition: 
Normalize to the nonzero constant multiplier, and 
the theorem follows. We note the combined con
ditions i (eld ! La, (3! Ld) = b dE are equivalent to 
those given by Burrow.? 

For factors satisfying the conditions of the theorem, 
a persistent element of the group algebra can be 
constructed as (equivalent up to a nonzero numerical 
factor)8 

X( Gt(3, pp') = b«(3, p·)a( (1., ·-·)b«(3, .p') 

r-...I L Bf.p!B~I>·.igcr, ij). 
i.1 

It can be made Hermitian simply by setting p' = p 
or by separately summing over these indices. 

Our task is completed if we show that the inner 
indices and the elements Qj can be chosen so that 

jrYin) = jYin) QJb«(3, p.)a«(1., ._.) 

f"-..J I A~k.mg(r, Yin, m). 
m 

This is equivalent to requiring that (BQi)pl>.Yjn' can 
be chosen to be nonzero and thus normalizable. That 
such a choice is possible follows from the intertwining 
number theorem used above. Let G = Uq BqH and 
Lq = q-lBq n H. Because i «(3 j G, Yi j G) :;l: 0, there 
is certainly some q for which i «(3q ! Lq , Yi ! Lq) :;l: O. 
Taking this element to be Qj guarantees the existence 
of choices for p and n' such that (Bqj)pl>.Yjn' :;l: O. By 
individually summing over the inner indices one 
obviously obtains a nonzero, and therefore normal
izable, result. However, it is well to note the above 
procedure is not necessary to obtain a nonzero result 
and there may be more convenient choices for Qi' P, 
and n'. 

III. DISCUSSION AND EXAMPLES 

We have established the following procedure for 
constructing unitary matrix basis elements for an 
irreducible representation r of a group G from the 
elements of a subgroup H for which r ! H = 1:Yi: 

(i) Establish a core by identifying irreducible rep
resentations oc and fJ of subgroups A and B for which 
oc j G n (3 j G = r and IX! (A (") B) n fJ! (A n B) = 
A. Construct the convolution b({3, p.)a(lX, .-.)b«(3, .p'). 

(ii) For each index Yin, select p' and Q j such that 
< ry;n I == a «(1. , .-.)b({3, .p')Q; (Yinl is nonzero. One 
way of doing this is by summing over p' and letting 
Qj be any double-coset representative for which 
fJQ ! La n Yj ! La :;l: O. 
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(iii) a and Qi can be properly renormalized so that 

g(r, Yim, Yin) 

= IrYim)(rYiol 

= IYim) Qrb({3, po)a(lX, o_o)b({3, 'P')Qi (Yiol. 

As an example of the procedure, consider the 
bipartition representation [nl' n2] of the permutation 
group S(n ,+n2) and its reduction in the subgroup 
Sn, ® Sn2: 

[nl, n2]! Snl ® Sna =! [nl - jl,jl] ® [n2 - j2,j2]' 

o :::;;; jl + j2 :::;;; n2 , 0:::;;; jl - j2 :::;;; nl - n2 • 

A persistent factored element of the group algebra is 
given by Young's operator X = PNP, where P is the 
(row) symmetrizer for the group Sn, ® Sn2 (i.e., in 
this case the subgroups Band H are identical), and 
N is the (column) antisymmetrizer of a group (S2tz• 

The double-coset representatives can be chosen as 
jth-order products of mutually commuting transposes 
which combine elements from the set (n1) and those 
from (n 2), e.g.,9 

; 

q j = IT (i, nl + i) for 0:::;;; j :::;;; n2 • 
i=1 

The irreducible representations [ntJ ® [n 2] and [nl - A, 
jl] ® [n2 - h, h] will intertwine on any subgroup 
Snd ® Sj ® Snz-i ® S1' withh :::;;;j:::;;; n2' 

Taking Q i == qi, will give the operators IrYio) '"'-' 
Iy;o) qjPN, which obviously yield the desired orthog
onality. The required normalization can be found 
by considering 

I ry;m) (rYkP I rYkP) (rYiO I 

= Iy;m) qj{PNPqk (YkP I YkP)qkPNP}qi (Yiol. 

Since PNP is a persistent factor of the algebra and in 
this case is some multiple IX of g(r, 11), the quantity 

in curly brackets is 

IXU~~1.n2](qk(YkP I YkP)qk)PNP. 

The coefficient uf~l'nz](hqjh') = (-I)jG')-I. The 
element (YkP I YkP) belongs to the subgroup algebra 
and therefore to the j = 0 double coset. Let n(j, k) 
be the number of elements from the jth double coset 
appearing in the expression qk(YkP I PYk)qk' Then the 
normalizing coefficient is easily evaluated as 

U~~1.n21(qk(YkP I YkP)qk) = I(-l)jn(j, k)(n.l)-l. 
j=O J 

The following table represents a possible reduction 
scheme for the five-dimensional representation [3,2] 
of S5: 

/' [3] ® [2] 
[3,2] 

"" [2, I] ® ([2] + [12]) _ ({2] + [12]) 

® [1] ® ([2] + [12]) 

13,2) '"'-' P(123H45)N(14H25) == PN, 

12,1,2) '"'-' P(12H45)N(l3) (14)PN, 

u= 1, 

=2, 

12,1,12) '"'-' P(l2)N(13H45) (14)PN, = 6, 

112,1,2) '"'-' N(l2) (13)P(12)(45)NU3) (14)PN, = 6, 

112,1,12) '"'-' N(12) (13)P(l2)N(13)(45) (14)PN, = 18, 

IX = 2\' 
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In this paper the body-centered cubic lattice Green's function 

1f 

P(I, z) = ~ f f f (1 - z cos Xl cos XI cos XS)-l cos 11Xl cos lax. cos laxa dXl dXa dXa, 
o 

where 11,1., and la are all even, or all odd, is studied. A complete analytic continuation for P(z) == P(O, z) 
is derived of the form 

P(z) = ~ B,,(1 - Z2)" - (1 - z2)l ~ C .. (1 _ z2)n, 
n=O _0 

where 11 - z21 < 1. Explicit formulas, recurrence relations, and asymptotic expansions are established 
for the coefficients B .. and C ... A similar analytic continuation in powers of 1 - z is also investigated. 
The generalized Watson integral 

" 
[em, n) = ~ f f f (l - cos Xl cos X2 cos Xa)-l cos'" Xl cos'" XI dXl dx. dXa, 

o 

where m ~ 0 and n ~ 0, is evaluated in closed form. U~ing this result, we show that P(I, 1) can, in 
principle, be evaluated for arbitrary I. Exact expressions and numerical values for P(I, 1) are given for 
o ::;; 11 ::;; I. ::;; 13 ::;; 8. Detailed applications of the above results are made in the theory of random walks 
on a bOdy-centered cubic lattice. In particular, a new asymptotic expansion for the expected number of 
distinct lattice sites visited during an n-step random walk is obtained. The closely related Green's function 

" 
.~+ ~ f f f (go - iE - cos Xl cos X. cos xa)-l dXl dx. dXa, 

o 

where go is real, is expressed in terms of complete elliptic integrals for all go > 0, and evaluated numeri
cally in the range 0 < go ::;; 1. The behavior of this Green's function in the neighborhood of the singular
ities at go = 0 and 1 is also discussed. No attempt is made, in the present paper, to discuss P(I, z) for the 
general case I "" 0 and z "" 1. 

1. INTRODUCTION 

In the study of nearest neighbor lattice statistics on 
the body-centered cubic lattice the Green's function 

P(I, z) == P(ll' 12 , 'a; z) 
1f 

_ 1. iff cos 11X1 cos 12x2 cos laxa d d d - a Xl X2 Xa , 
~ 1 - ZCOSX1COSX2COSXa 

o (1.1) 

where Izi ~ 1 and 11 , 12 , 13 are all even, or all odd 
integers, is of frequent occurrence. For example, 
P(l, z) appears in the theories of ferromagnetism such 
as the Ising model,l-a Heisenberg model,4-6 and 
spherical model.7- 9 The integral P(I, z) also plays 
an important role in the theory of random walks on 
a body-centered cubic lattice, as a probability gener
ating function.10- 12 In view of the physical importance 
of P(l, z) it was felt that a detailed investigation of its 
properties would be a worthwhile project. 

We shall restrict our attention in this paper to the 

particular Green's functions 
1f 

P(z) == P(O, z) = .l iff dX1 dX
2 dXa , 

~a 1 - z cos Xl cos X2 cos xa 
o 

(1.2) 

and P(I, 1). No attempt will be made to study the 
Green's function (1.1) for I #= 0 and z #= 1, since it is 
hoped to discuss this most general case in Paper II of 
this series. In order to provide a background for the 
following sections, we now briefly review the results 
for P(z) that are already available in the literature. 

By inspecting the integrand in Eq. (1.2) we see that 
the integral (1.2), in fact, represents a single-valued 
analytic function throughout any closed domain of the 
Z2 plane, cut along the real axis from + 1 to + 00. 

Thus for the sake of generality we shall take this 
analytic function in the cut plane as our basic definition 
of P(z). [It is convenient to consider the Z2 plane since 
P(z) = P( -z).] 

1390 
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A power series for P(z), valid when Izl < 1, may 
be readily established by expanding the integrand in 
Eq. (1.2) in powers of z and integrating term by term,l3 
We find 

<:IJ 

P(z) = La~z2n, Izl < 1, (1.3) 
n=O 

where 

an = r(n + t)/7Ti r(n + 1) = mn/(I).n' n ~ 0, 

(1.4) 

and (oc)n = r(n + oc)tr(oc). The coefficients a; can 
be interpreted as the probability that a random walker 
will return to his origin point (not necessarily for the 
first time) after a walk of 2n steps on a body-centered 
cubic lattice. Since 

a~ "-' (7Tnrl, as n -+ 00, (1.5) 

it follows (Abel's limit theorem) that the range of 
validity of Eq. (1.3) can be extended to include all 
points on the circle Izl = 1. In particular, 

<:IJ 

pel) = La~. (1.6) 
n=O 

The evaluation of P(z) , for z = 1, was first carried 
out by Van Peijpe14 and later by Watson.IS Their 
results are 

P(l) = (1/47TS)[f(t)]4 = (4/7T2)K~, (1.7) 

where Ko denotes the complete elliptic integral K(2-i-) 
and rex) is the gamma function. The method devel
oped by Watson for the case z = 1 may be simply 
generalized by comparing the series (1.3) with the 
expansion15•16 

<:IJ 

K2(k) = !7T2 L a![4w(1 - wW, (1.8) 
n=O 

where w = k 2 is in the left-hand half of the lemniscate 
Iw(1 - w)1 = t. It is found17 

singular point z = 1, it has been shown that9.19.20 

P(z) = P(l) - 2i (1 - z)l + 0(1 - z), z:(; 1. 
7T 

(1.11) 

However, the nature and range of validity of this 
expansion has not been established and there appear 
to be no results available for the higher-order coeffi
cients in the expansion. These higher-order coeffi
cients are of considerable importance since they 
enable one to investigate in detail the critical properties 
of the spherical model,21 while in the theory of random 
walks they are required in certain asymptotic 
formulas. 12 • 

The main aims of the present paper are as follows: 
to establish, in detail, complete expansions for P(z) 
which are valid in the neighborhood of z = ± 1; to 
develop a procedure for evaluating the Green's 
function P(I, 1) exactly; and, finally, to apply the 
results obtained to the theory of random walks. 

2. ANALYTIC CONTINUATION OF P(z) 

We begin by considering the generalized hyper
geometric function22•23 

(2.1) 

This function, which is analytic throughout the Z2 

plane cut along the real axis from + 1 to + 00, is 
defined for Izl ~ 1 by the series 

F (1. .1 1.. 1 l' Z2) = ~ (tMtMt)n z2n. (2.2) 
3 2~' 2. l!. ., -:- (1) (1) , 

n-O n n n. 

It follows therefore from the basic definition of P(z) 
given above and Eq. (1.3) that 

P(z) = 3F2(t, t, t; 1, 1; Z2). (2.3) 

Thus the inegral (I.2) must be just an integral 
representation of the SF2 function. In fact (1.2) can be 
reduced to a standard representation by performing 
the integration over Xa. We find 

P(z) = (4/7T2)K2(k), Izl ~ 1, 

k2 = t - t(1 - z2)i. 

(1.9) ,,/2 

where 
(LlO) P(z) = :2 JJ(1 - Z2 cos2 

Xl Ct>S2 x2ri- dX1 dX2, (2.4) 
o 

[The square root in Eq. (1.10) is defined so that its 
value is real and positive when ° ~ Z2 < 1.] This 
result is particularly convenient for the numerical 
calculation of P(z) , because K(k) can be readily 
evaluated using the arithmetic-geometric mean pro
cedure.1s 

Since the coefficients a;' in the series (1.3) are 
positive real numbers, it is clear that P(z) must have 
singular points at z = ± I. In the neighborhood of the 

where Z2 is in the cut plane. The substitutions t1 = 
cos2 

Xl and t = cos2 x2 in Eq. (2.4) yield 
1 

P(z) = ~2 Jft-iltsl (l - t1)-l(1 - t2)-l 
o 

x (1 - z2tlt2rl dt1 dt2, (2.5) 

which is the multiple Euler integral24 for (2.1). It is 
interesting to note that because the series (2.2) is 
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"well-poised," the evaluation of P{l) can be carried 
out directly using Dixon's theorem (Watson's theorem 
and Whipple's theorem can also be used).25 

To establish the analytic continuation of P(z) to the 
neighborhood of Z2 = 1, we first apply Clausen's 
identity26 

2Fl(a, b; a + b + ~-; ~)2 
= 3F2(2a, 2b, a + b; 2a + 2b, a + b + !; z) (2.6) 

to Eq. (2.3), with a = b = 1. Hence 

P(z) = 2Fl(t, i; 1; z2)2. (2.7) 

The standard analytic continuation formula 27 

2FIU, 1-; 1; Z2) 

_ [r(!)]2 . 1. 2 
- 217~ 2Fl(t,!' 2' 1 - z) 

- 27T1[ru)t2(1 - Z2)12F l(i, it; ~; 1 - Z2), (2.8) 

may now be used in Eq. (2.7) to obtain the following 
analytic continuation formula for P(z): 

P(z) = 1>I(Z) - (l - Z2)~1>2(Z), /arg (I - Z2)/ < 17, 

(2.9) 
where 

1>tCz) = [(4K~/172)2Fl(i-, 1-;~; 1 - Z2)2 

and 

+ (l/4K~)(1 - Z2)2Fl(1, {; i; 1 - Z2)2] 

(2.10) 

(~) .1 1.1. 2 33.1.. 2 ¢2(Z) = 17 2Fl(4' 4' 2, 1 - Z )2Fl4' 4' 2, 1 - z ). 

(2.11) 

This basic result is valid throughout the cut Z2 plane, 
provided that Z2 is not on the real negative axis and 
Z2 ¢ O. 

Finally, we replace the 2Fl functions in Eq. (2.10) 
by their hypergeometric series and expand 1>1 (z) in the 
form 

00 

1>1(Z) = IBn{l - z2)n, /1 - Z2/ < 1, (2.12) 
n=O 

where 

B - 4K~ B = 1 (4K~ + l..) 
o - 172 ' 1 4 172 Kg' 

B = l..(28K~ +~) B = l..(25K~ + .2...) 
2 48 172 K~' 3 60 172 K~' 

B = _1_ (26 300K~ + 10143). (2.13) 
4 80 640 172 K~ 

In a similar manner, we find from Eq. (2.11) that 
00 

1>2(Z) = ! Cn(1 - z2)n, /1 - Z2/ < 1, (2.14) 
n=O 

where 

2 
Co =-, 

17 

1 
C1 =-, 

17 
C --±!. 

2 - 6017' 

C - 1L C - ~ (2 15) 
3 - 4017' 4 - 224017 . . 

Equations (2.9), (2.12), and (2.14), which give the 
complete analytic continuation of P(z) into the region 
/1 - Z2/ < 1, enable one to investigate in detail the 
behavior of P(z) in the neighborhood of Z2 = 1. 

Explicit formulas for Bn and Cn can be derived 
from Eqs. (2.10) and (2.11), respectively, in terms of 
terminating generalized hypergeometric series. We 
give the final results below: 

where 

and 

Bn = B~O) + B~l), n ~ 1, 

F [-n + 1, I - n, !. 1; 
X 43 .;!5 5 • 

2,"4 - n,"4 - n, 

(2) (1)n n 2 
Cn = - ~ I aman_ m 

17 (2)n m=O 

(2.16) 

= 2 3F2[-n, t,!; IJ. (2.17) 
(2n + 1)17 t - n, 1; 

The formula for Bn follows directly from a general 
product theorem,28 while that for Cn is obtained by 
applying one of Orr's theorems. 29 It is interesting to 
note that both the terminating 4Fa series in Eq. (2.16) 
are "well-poised" and "SaalschUtzian." 

An analytic continuation formula for a general 3F2 
function has been derived by 0lsson.3o The direct 
application of this result to the particular case (2.1) 
enables us to give the following alternative expres
sions31 for the coefficients Bn and Cn: 

( .1)2 00 a3 

Bn = ~ ! m ,n > 0, (2.18) 
n! m=O(! - m)n -

and 

C = (~)(l)n F [-n, t, I; J. 
n (it) 3 2 1 l' 1 

7T 2 n , , 
(2.19) 

We see that this direct procedure does not yield the 
exact closed form result (2.16) for the coefficient Bn. 
In fact, (2.16) provides us with an exact summation 
formula (which may be new) for the infinite series in 
Eq. (2.18)! 

This observation has useful consequences. For 
example, Byrnes et al.32 have recently investigated 
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the integral 

(2.21) 

and have obtained, using the series (2.21), the 
numerical estimate 12 = 0.55147 ± 0.00045. However, 
if we write the summation (2.21) as 

00 1 00 a3 

12=:2 a!--I n, (2.22) 
n=O 2n=o(! - n) 

we see immediately from Eq. (2.18) that 

12 = Bo - 2BI · 

Hence, we have the exact result 

(2.23) 

12 = (2~~ - ~) "'"' 0.55115135063850. (2.24) 
1T 2Ko 

The application of the method of Darboux33 to Eq. 
(2.9) provides us with an interesting check on the 
coefficients Co, C1 , ••• , C N' In this method we form 
[from the singular part of (2.9)] the function 

N 
INez) = -I Cz(1 - z2y+l, (2.25) 

1=0 

and expand it into the series 

00 

IN(Z) = I Dn(N)z2n, (2.26) 
n=O 

where 

(2.27) 

It may be shown that DnCN) gives the asymptotic 
representation 

a! f"'o.I DnCN), as n ~ 00, (2.28) 

for the coefficients in the power series (1.2). The 
substitution of the asymptotic expansion 

(
ex) ~ (_1)n [1 + (ex)2 + (ex)aC3ex + 1) + Cex)z(IX)4 
n r( _1X)n1+<x 2n 24n2 48n3 

+ (lX)s (151X3 + 30ex2 + 51X - 2) + ... J 
5760n4 

' 

(2.29) 
in Eq. (2.27), with N = 4, leads to 

a~--l--+--+--3 1 [ 3 9 7 
n (1Tn)! 8n 128n2 1024n3 

165 ] 
- 32 768n4 + .... (2.30) 

This result is in agreement with that obtained by 
applying Stirling's series to Eq. (1.4). For the simple 
cubic lattice (with nearest neighbor interactions) this 
procedure is of considerable importance, since it 
enables one to derive an asymptotic formula for the 
probability of return to the origin after a 2n-step 
random walk, without using the method of steepest 
descent.34 

An asymptotic expansion for Cn may also be derived 
using the method of Darboux providing the behavior 
of the function cP2CZ) is known in the neighborhood 
of the singularity at Z2 = O. This behavior is readily 
established by substituting the analytic continuation 
formula 

2FI(a, a; 2a; 1 - Z2) 

r(2a) 00 (a)~ 2 2n 
= --2 :2 -2 [21J1(n + 1) - 21J1(n + a) -In z]z , 

rea) n=o(n!) 
(2.31) 

in Eq. (2.11). [In this formula 1JI(x) denotes the 
logarithmic derivative of the gamma function.] If the 
singular part of the resulting expression is formally 
developed as a power series in 1 - Z2, then the 
coefficient of (1 - z2)n yields, for large n, the following 
asymptotic expansion for en: 

1 1 
Cn ~ -2 g(n) - -2 2 [5g(n) - 4] 

1T n 81T n 

1 + 7681T2n3 [273g(n) - 277] + .. " (2.32) 

where 
g(n) = y + 6 In 2 + In n, (2.33) 

and y is Euler's constant. In a similar manner one 
finds, using Eq. (2.10), that 

B(Ol} 1 1 
B~ll ,....., 21T2n [g(n) ± 1T] - 161T2n2 [g(n) ± 1T] 

-15-36..::..
1
1T-2n-3 [15g(n) ± 151T - 59] + .... 

Hence 
(2.34) 

From these results asymptotic expansions for the 
terminating hypergeometric series in Eqs. (2.16), 
(2.17), and (2.19) can be readily derived. In Table I 
the approximate values of B~O) and B~l) which were 
obtained using the asymptotic representation (2.34) 
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TABLE I. Comparison between the exact and asymptotic values of the coefficients B~OI and B~ll. 

n Exact B~OI Asymptotic B~OI Exact B~11 Asymptotic B~11 

0 1.393 203 929 685 676 9 
1 0.348 300982421 419 2 0.345299 6 
2 0.203 175 573079 161 2 0.2029594 
3 0.145 1254093422580 0.1450809 
4 0.113595 1864792079 0.1135808 
5 0.093 683 634 780 761 2 0.093677 6 
6 0.079919 1022469602 0.0799162 
7 0.069 810 681 638 857 5 0.0698091 
8 0.062058363 910840 0 0.0620574 
9 0.0559158497649164 0.0559153 

10 0.050 923 423 254 356 2 0.0509230 

are compared with the exact values. Similar results 
for the coefficients Cn are given in Table II. 

We now attempt to obtain recurrence relations for 
the coefficients B~), B~ll, and C n directly from the 
explicit formulas (2.16) and (2.19). For the coeffi
cients Cn we apply Sister Celine's technique35 to the 
polynomials 

y,,(x) = ~ 3F{ -~: i; t; xl (2.36) 

This procedure leads to the relation 

4n3Yn(x) + [4n(n - l)(x - 3) + (x - 4)]Yn_l(X) 

+ 4(n - 1)(3 - 2X)Yn_2(X) 

+ 4(x - I)Yn_3(X) = O. (2.37) 

From this result and Eq. (2.19) we see that Cn satisfies 
the recurrence relation 

2n(4n2 - l)Cn - (2n - 1)(Sn2 - Sn + 3)Cn_1 

+ S(n - l)3Cn_ 2 = O. (2.3S) 

In order to investigate the existence of recurrence 
relations for the coefficients B~O) and B~l), we first 

TABLE II. Comparison between the exact and asymptotic 
values of the coefficients en. 

n Exact en Asymptotic en 

0 0.636619772 367 581 3 
1 0.318309886 183 790 7 0.364644 
2 0.217 511 755 558 923 6 0.221636 
3 0.167 112690246490 1 0.168064 
4 0.1365606252779566 0.136891 
5 0.115932060481 3732 0.116076 
6 0.101 005 694 865 241 2 0.101079 
7 0.089 670 877 933 811 4 0.089712 
8 0.080 750 946 694 120 6 0.080776 
9 0.073 536231 904 598 9 0.073552 

to 0.067572 393 051 7999 0.067583 

0.072 7253071021677 0.072 9955 
0.054 543 980 326 625 8 0.0545288 
0.043635 184261 300 6 0.0436288 
0.036589920135778 1 0.0365872 
0.031 658 2352479124 0.0316569 
0.027 999 243 234 334 6 0.0279985 
0.025 166787738874 I 0.0251664 
0.0229027764147178 0.0229025 
0.021 0474020002664 0.0210472 
0.0194962587195326 0.0194961 

apply the transformation36 

F [ 
-n,u - X,U - Y,z; 

, 3 
W, 1 - v + z - n, 1 - w + z - n; 

(2.39) 

where 
U + v + w = 1 + x + y + z - n, (2.40) 

to the Saalschiitzian ,F3(1) hypergeometric series in 
Eq. (2.16). The resulting simplified expressions for 
B(O) and B(1) are given below n n,...l 

B(O) = (4K~)(i)n F [-n, n, t, t; ] 
n 2, 4 3 .l 1 1 1, n ~ 0, 

7T n. ~'2'~; 
(2.41) 

B(1) = (~)(Dn F [-n, n + 2, 1, 1; 1J. (2.42) 
n+l K2 ,4 3 2, Q 2,. 

o n. 2,2,2, 

We see that B~O) and B~~l are basically just generalized 
Jacobi polynomials 

[
-n, n + A, (1, (1; J 

fn(x) == 4F3 2 2 2' X 
(1, (1, (1, 

(2.43) 

with unit argument. 
By applying Sister Celine's technique to the poly

nomialfn(x), it is found that there exists a recurrence 
relation of the form 

2 

fix) + ! (A2r+1 + A2r+2X)!n-r-lx) + A,fn-ix) = 0, 
.=0 

(2.44) 

where Al ... A7 depend on n, A, (1, but not on x. 
Unfortunately, because of the large amount of alge
braic manipulation that is involved, it has not been 
possible to derive explicit formulas for Al ... A7 . 
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However, the following indirect procedure may be 
used to establish the required recurrence relations. 
We first note that the series sF2(1,1,1; 1, l;x) is a 
solution (about x = 0) of the differential equation 

8x2(1 - X)ylll + 12x(2 - 3x)y" 

+ 2(4 - 13x)y' - y = O. (2.45) 

Next we apply the method of Frobenius to this equa
tion about the regular singular point x = I, and hence 
obtain a general series solution in powers of I-x. 
The comparison of this general series solution (for 
x = Z2) with the analytic continuation (2.9) yields the 
recurrence relation 

4n(n - 1)(2n - I)B~) - 2(n - 1)(8n2 
- 16n + 9)B~.!.1 

+ (2n - 3)3B~.!.2 = 0, (2.46) 

where i = 0, 1. The initial conditions are 

B~O) = (4K~/1T2), mOl = (K~/1T2), i =0, 
(2.47) 

B~lJ = 0, Bill = (1/4K~), i = 1. 

For the coefficients Cn one obtains the relation (2.38). 
We see from Eq. (2.46) that the five-term recurrence 
relation (2.44) must be an iteration of a three-term 
relation when x = 1. 

The basic results given above, which establish the 
behavior of P(z) in the neighborhood of Z2 = 1, will 
be frequently used in the following sections. We 
finally note the summation formula 

00 [ r(D) J2 
P(± i) = n'.?o( -1)na! = r(t);(t) 

~ 0.909 172 794 546 93, (2.48) 

which follows directly from Eq. (2.7) by applying 
Kummer's theorem.a7 

3. RELATED INTEGRALS 

In this section we shall study the integrals 

" 
R(~) = ~ Ilf dXI dX2 dX3 (3.1) 

1T
a ~ - cos Xl cos X 2 cos Xs 

o 
and 

1T 

E(t) = ~3 fffexp (t cos Xl cos x2 cos xa) dX I dX2 dxa. 
o 

(3.2) 

It is seen by inspection that the first integral defines 
an analytic function R(~) throughout the ; plane cut 
along the real axis from -1 to + 1, while the second 
integral defines ali entire function E(t). 

Although R(~) is clearly related to P(z) by the 
equation 

~R(~) = pG) = 2FI(!'!; 1;?r (3.3) 

it is worthwhile considering the analytic continuation 
of R(~) separately since Ra) occurs naturally in the 
theory of the spherical model with ~ as the saddle
point parameter.8 •9 The analytic continuation formula 

~R(~) =JoBn(~2; If- e2~-:-1)! JoCne2~-:-lr 
(3.4) 

which is valid for 1(~2 - 1)/;21 < 1, Re ~2 > t, 
follows directly from Eqs. (2.9) and (3.3). An alter
native procedure is to substitute the standard result27 

2FI(!'!; I;?) 
= (~2)t(r(!r aFI(!,!; t; 1 _ ~2) 

21T 

2 t! )" - r(~)2 (~2 - 1) 2FI(I, I; i; 1, _ ~2) , 

I arg el < 1T, (3.5) 

in Eq. (3.3). [The condition larg ~21 < 1T is not unduly 
restrictive since R(-~) = -R(;).) This yields the 
analytic continuation 

00 
R(~) = 1 (-I)n[B~o) - B~l)](e - l)n _ (~2 - I)! 

n=O 
00 

X 1 (_l)nCn(~2 - l)n, B~l) == 0, (3.6) 
n=O 

which is valid in the ~2 plane cut along the real axis 
from 0 to +1, providing larg ~21 < 1T and 1~2 - 11 < 
1. General expressions and numerical values for the 
coefficients in (3.6) have already been given in Sec. 2. 

It is now shown that the analytic continuation (3.6) 
can also be constructed from the integral transforms8 

where larg ;21 < t7T, and Re;2 ~ 1. We first note 
that the hypergeometric function 2F2(t) in the integrand 
of (3.7) is an entire function which has a dominant 
asymptotic representation 
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where M ~ 0, larg tl < tn-, and the coefficients dk 

satisfy the recurrence relation 

4k2dk - (Sk2 - Sk + 3)dk_ l + 4(k - 1)2dk _ 2 = 0, 

(3.9) 

with do = 1. This asymptotic representation was 
established using the powerful general theorems 
derived by Hughes39 and Riney.40 

We next follow a method developed by Maradudin 
et al. for the simple cubic lattice Green's function4l 

and divide the range of integration in (3.7) into two 
parts (0, T) and (T, (0). In the range (T, (0) the 
2F2(t) hypergeometric function may be replaced, to a 
good approximation, by its asymptotic representation 
(3.S), provided that T is sufficiently large. Hence; we 
obtain 

(3.10) 
where 

and 
1 M k! dk 2 

12 c=. 1TiT! k~ """"Tk <J)_k_![(; - I)T], (3.12) 

with 

<J)m(x) = LX)tme-xt dt, Re x ~ 0, m < -1. (3.13) 

To derive an analytic continuation formula for 
R(;), which is valid in the neighborhood of ~2 = 1, 
we develop the expressions (3.11) and (3.12) as a 
power series in ~2 - 1, using the expansion 

00 (l)n n 
<J) (x) = x-m-1r(m + 1) - L - x , 

m n~O n! (n + m + 1) 

(3.14) 

(m not equal to a negative integer). We finally find that 

R(~) = ! (-l)nen(e - 1)n - (e - l)! 
n~O 

x ! (_1)nOn(~2 - l)n, (3.15) 
n~O 

with 

and 

It follows from Eqs. (3.9) and (3.1S) that the 
coefficients On satisfy the recurrence relation 

2n(4n2 - I)On - (2n - 1)(Sn2 - Sn + 3)On_l 

+ S(n - 1)30n_ 2 = 0, (3.19) 

with 0 0 = (2/1T). Hence, we see that the integral 
transform method enables one to analyze the Singular 
part of the analytic continuation (3.15) exactly. 
However, the coefficients en have to be calculated 
numerically by evaluating the expression (3.16) for 
increasing values of T, with a fixed value of M ~ n.42 

By comparing the two equivalent analytic continua
tions (3.6) and (3.15) it is clear that we must have 

(3.20) 

[This result may be proved directly since the recur
rence relations (3.19) and (2.3S) are identical with 
the same initial conditions.] It is interesting to note 
that the relation (3.20), when combined with Eqs. 
(2.19) and (3.1S), gives the solution of the three
term recurrence relation (3.9) as 

d = F. [-n, t, t; IJ (3.21) 
n a 2 1,1; . 

Thus we have the explicit asymptotic expansion 

F [l,t; 
2. 2 1 l' , , 

t ""fl- L ~ aF 2 -n, 2'.2' 1, 
] 

too, [ .1 1· ] 

1Tt n~O t 1, 1, 
(3.22) 

(provided that larg tl < t1T) which may be a new 
result. 

The integral transform technique (which is closely 
related to Borel's method of analytic continuation) 
provides an alternative procedure to that developed by 
0lsson30 for deriving the analytic continuation of a 
HlFq generalized hypergeometric function. From the 
particular example given above we see that, although 
the integral transform method makes use of divergent 
asymptotic series, the final continuation formula 
involves Taylor series with a finite radius of conver
gence. 

We now investigate the second integral (3.2) which 
is related to R(~) by the Laplace transform 

R(~) = 100 

e-€tE(t) dt, (3.23) 

provided that Re ~ ~ 1. If the integrand of (3.2) is 
expanded in powers of t, we find 

00 a3 
E(t) = L _n t2n

, It21 < 00, (3.24) 
n~O (2n)! 
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where an is defined in Eq. (1.4). Thus, E(l) is just the 
exponential probability generating function for all 
random walks on a body-centered cubic lattice which 
start and finish at the same lattice point. From Eq. 
(3.24) and the duplication formula 

(3.25) 
it foUows that 

E(t) = F 2'2' lt 2 
[ 

.1.1.. ] 

23 1,1,1; 4 • 
(3.26) 

It may be shown by applying the general results of 
Hughes39 and Riney40 to the 2Fa function in Eq. (3.26) 
that E(l) has a dominant asymptotic representation 

2iet M 8 
E(t),..." (-)3 L :' as \tl- 00, (3.27) 

7Tt ~ k=O t 

where M ~ 0, larg tl < t7T, and the coefficients Ok 
satisfy the recurrence relation 

32(k + 1 )0.1:+1 - 4(20k2 + 20k + 9)Ok 

+ 16k(4k2 + l)Ok_l - (2k - 1)40k_ 2 = 0, (3.28) 

with 80 = 1. The values of the first few coefficients Ok 
which were obtained from (3.28) are listed below: 

(J - 281 8 _ 6419 () _ 780219 
2 - 128' 3 - 1024' 4 - 32768 ' 

() _ 29 732 967 
s - 262144 ' 

() _ 2731467213 (3.29) 
11 - 4194304 . 

The asymptotic expansion (3.27) is of considerable 
importance and will be used in Sec. 7 to derive an 
analytic continuation formula for R(;) in powers of 
; - 1. 

We conclude this section by demonstrating that 
the function E(t) can be evaluated in terms of Mathieu 
functions. We shall assume that t is real and positive. 
The integral (3.2) is written in the alternative iterated 
form 

.. 
E(/) = ~3 IIf K(Xl' xz)K(xz, xa) dX1 dX2 dx3 , (3.30) 

o 
where 

K(x i , Xi) = exp Ht cos Xi cos Xj), (3.31) 

and the homogeneous integral equation 

(3.32) 

is introduced. 
This integral equation possesses a complete set of 

nontrivial solutions43•44 

V'2n(X) = ce2n(x, _h2), n = 0, 1,2, ... , 

V'2n+1(X) = ce2n+!(x, _h2), (3.33) 

where h = it, and cen(x, -h2) are periodic even 
Mathieu functions defined by the Fourier series 

00 

ce2n(x, q) = 2 A~~n)(q) cos 2rx, 
r=O 

00 

ceZ>l+l(X' q) = 2 A~;~tl)(q) cos (2r + l)x. (3.34) 
r=O 

It is also known that the eigenfunctions (3.33) satisfy 
the orthogonality relation 

2 i" - V'n(x)V'm(x) dx = om.n. 
7T 0 

(3.35) 

The eigenvalues corresponding to the eigenfunctions 
(3.33) are43 

A2n = A~an)(h2)/ce2n<O, h2), 

A2n+l = hBi2n+1l(h2)/se2n+1(O, hZ), (3.36) 

where the periodic Mathieu function se2n+1(x, h2) is 
given by the Fourier series 

00 

se2n+1(x, q) = :2 B~~~tl)(q) sin (2r + l)x. (3.37) 
r=O 

For finite values of h > 0 the eigenvalues are positive 
and nondegenerate with 

Ao > Al > A2 > . . . . (3.38) 

However, for large h SipS45 has shown that the eigen
values become asymptotically degenerate in pairs as 
follows: 

A2n ,....., Aan+!, as h ~ 00. (3.39) 

Since K(Xi' Xj) is a continuous, symmetric, and 
positive-definite kernel, we can use Mercer's expansion 
theorem to write 

ex) 

K(xi , Xi) = 2:2 AnV'(X,)V'(Xj)' (3.40) 
n=O 

This expansion is absolutely and uniformly convergent 
with respect to the variables Xi and X j • If Eq. (3.40) 
is substituted in Eq. (3.30), the integrations may be 
readily performed using the orthogonality relation 
(3.35) and Eq. (3.34). The final result is 

00 

E(t) = 2 '2 [A~2n)(h2)/ce2n(O, h~]2[A~2n)(h2)]2, (3.41) 
n=O 

with h = it. 
For small t the nth term in the series (3.41) is 

O(t4n). Thus we should expect the Mathieu function 
expansion to converge more rapidly than the hyper. 
geometric series (3.26) when t is small. In order to 
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investigate the behavior of the Mathieu function 
expansion for large t, we now obtain an asymptotic 
representation for the first term in (3.41). From the 
work of Sips4s we find 

A (O)(h2
) ett ( 1 1 ) 

Ao = 0 '" -- 1 + - + - + . .. . (3.42) 
ceo(O, h2

) (ht)t 4t 4t2 

It may also be shown46 that 

and 

ceo(!, h2
) '" (trrt)!(l _2- - 95

2
+" .). 

2 16t 512t 
(3.44) 

From these results the asymptotic formula 

A(O)(h2) t"-..J (1.)!(1 + ~ + 305 + ... ) 
o rrt 16t 512t2 

(3.45) 

is readily derived by multiplying (3.42)-(3.44) together. 
The combination of Eqs. (3.42) and (3.45) gives the 
required asymptotic representation 

2 ( A~O)(h2~ )2 [A~O)(h2)]2 
ceo(O, h) 

t"-..J ../2 e
t (1 + ! + 277 + ... ). 

(rrt)! 8t 128t2 
(3.46) 

By comparing this expression with Eq. (3.27) we 
see that the behavior of E(t) for large t is described, 
to a good approximation, by the first term in the 
Mathieu function expansion (3.41). [For large t, the 
nth term in (3.41) behaves asymptotically as et/t!+2n.] 

We conclude from the above arguments that the ex
pansion (3.41) shoul/d converge fairly rapidl~ fot ~Il 
t > O. Thus Eq. (3.41) provides us (at least 10 pr1O
ciple) with a powerful method for the numerical 
evaluation of E(t). 

For numerical purposes it is particularly convenient 
to convert Eq. (3.41) to the Mathieu function notation 
adopted by the National Bureau of Standards.47 In 
this notation we find 

0() 

E(t) = 2 L [De~2n)(s)]4[A2nCS)]2, (3.47) 
n=O 

where s = it2 , and A2n(S) is a conversion factor 
defined by the relation48 

(3.48) 

TABLE III. Terms in the Mathieu function 
expansion (3.47) for s = 100. 

o 7.319321 55 (+05) 
1 9.041 499 72 ( +01) 
2 2.846 392 94 ( -01) 
3 6.574466 78 ( -03) 
4 1.376 54008 (-05) 
5 4.77439983(-10) 
6 2.81829393 (-15) 
7 4.298501 79 (-21) 

[The conversion factor should not be confused with 
the Fourier coefficient A~2n)(h2).] Since the Fourier 
coefficients De~2n)(s) and A2n(S) have been tabulated47 

for 0 ~ S ~ 100, the converted expansion (3.47) can 
be used to calculate E(t) in the range 0 ~ t ~ 20. 

As an illustration we evaluate E(t) when t = 20. 
The numerical values of the terms in the expansion 
(3.47) are listed, for s = 100, in Table III. Hence we 
obtain 

E(20) ~ 1464 045.72. (3.49) 

The expected . rapid convergence of the Mathieu 
function expansion is clearly shown by the results in 
Table III. The most accurate estimate for E(20) that 
can be obtained, in principle, from the asymptotic 
expansion (3.27) is 

E(20) ~ 1464045.717. (3.50) 

This value is achieved by taking the asymptotic 
representation M = 20. 

4. sF2(l) SUMMATION FORMULAS 

It has been shown in Sec. 2 that the comparison of 
the analytic continuation (2.9) with Olsson's general 
results30 yields the exact summation formula 

B(O) + B(t) = (t)! ! a!, (4.1) 
n n n! m=o(t - m)n 

In the present section this comparison procedure is 
developed in a more systematic manner. Further 
summation formulas, similar to (4.1), are derived and 
some applications of the results are discussed. 

We first rewrite Eq. (4.1) in the standard hyper
geometric form 

B(O) + B(ll = (!)n F [t, t, i - n; 1J, (4.2) 
n n n! 3 2 1, 1; 

using the relation 

(4.3) 
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For n > 0, Eq. (4.2) gives a summation formula for 'a 
nearly poised aF2(I) series, which appears to be new. 
[Ifn = 0, Eq. (4.2) reduces to a special case of Dixon's 
theorem for a well-poised 3F2(1) series.] The applica
tion of the basic transformation49 

aF2[a, b, c; 
d, e; J 

r(d)r(e)r(s) 
1 -

- r(a)r(s + b)r(s + c) 

x aF2[d - a, e - a, s; IJ, 
s + b, s + c; 

(4.4) 

where 8 == d + e - a - b - c, Re (8) > 0, and 
Re (a) > 0, to the aF2(1) series in Eq. (4.2) leads to 
another nearly poised summation formula 

If a direct comparison is made between the analytic 
continuation formula (3.6) and Olsson's equation 
(8),30 it is found that 

B(O) _ B(l) = (t)n F [t, t, n +!; IJ. (4.6) 
n n , 3 2 1 l' n. , , 

This relation does not give a summation formula since 
the hypergeometric series for the aF2(1) function is 
divergent for n > O. However, it does provide the 
analytic continuation (with respect to a parameter) 
of the aF2(1) function in Eq. (4.2) when n < O. 

A direct transformation of Eq. (4.6) using the 
relation (4.4) is not possible because of the occurrence 
of an indeterminate expression. However, we can 
avoid this difficulty by applying the transformation 
to the function50 

f', [1 + €, t, n + t; IJ 
3 2 1 l' . , , 

(4.7) 

After some simplification the limit € -+- 0 may be taken, 
and we find 

B~) _ B~l) = ~ ! (t);'(t - n!m( -m)n. (4.8) 
n! m=n (I)m 

The conversion of this equation to hypergeometric 
form yields the nearly poised summation formula 

B~O) _ B~) = (t)! 3F 2[t, n + t, n + t; IJ. (4.9) 
(n !)3 n + I, n + 1; 

A second application of the relation (4.4) to the 3F2(1) 
series in Eq. (4.9), (with a = n + t) leads to a further 

nearly poised summation formula: 

B~O) _ B~) = (t)~ aF2[ t, t, 1; IJ. (4.10) 
(n !)2 1, n + 1; 

The numerical values and asymptotic behavior (for 
large n) of the nearly poised aFl(1) series given above 
are readily obtained from Table I and Eq. (2.34), 
respectively. It is interesting to note that Eq. (4.10) 
provides directly the asymptotic expansion 

B(O) _ B(l) "" -.l..(l _1. __ 5_ - ... ) (4.11) 
n n 7Tn 8n 256n2 ' 

as n -+- 00. Since this result agrees with the Darboux 
analysis given in Sec. 2, we have an excellent check on 
Eqs. (4.10) and (4.9). 

We now show that the aF2(1) summation formulas 
can be used to evaluate the generalized Watson 
integral 

" 
l( ) - - COS Xl COS X2 d d d 1 Iff 2m 2n m,n - Xl X2 Xa, 

7T
a 1 - cos Xl COS X2 COS Xa 

o 

(4.12) 

where m ~ 0 and n ~ O. Since f(m, n) = l(n, m), it 
is convenient to take n ~ m. If we expand the inte
grand of Eq. (4.12) as a geometric series and integrate 
term by term, we find 

00 

l(m, n) = ~ azaz+maz+n' (4.13) 
z=o 

The conversion of this series to hypergeometric form 
yields 

f(m, n) = (t)m(t)n 3F2[t, m + t, n + t; IJ. (4.14) 
(l)m(1)n m + I, n + 1; 

The comparison of Eq. (4.14) with Eqs. (4.5) and 
(4.9) immediately gives 

1(0, n)} = ~ [B~O) ± B~o]. 
len, n) mn (4.15) 

Using this result and the expressions (2.13) the 
following list of integrals is readily derived: 

1(0, I)} = !(4K~ ~) 
1(1, 1) 2 7T2 ± Kg , 

(4.16) 

1(0, 2)} = 1- (28K~ ~) 
/(2,2) 18 7T2 ± K~ , 

(4.17) 

1(0, 3)} = .! (25K~ ~) 
1(3, 3) 75 7T2 ± K~ , 

(4.18) 

1(0,4)} = _1_ (26 300K~ 10 143). (4.19) 
/(4,4) 22050 7T2 ± K~ 
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The asymptotic formulas 

J(O, n) I""-.J ~[g(n) - _1_ {21g(n) - 59} + .. 'J, 
(~3n) 768n2 

(4.20) 

J(n, n) I""-.J _1_[1 - _7_ + . "J, 
(~n)! 256n2 

(4.21) 

as n -+ 00, are obtained directly from Eqs. (4.15) and 
(2.34). 

In order to investigate the case n > m > 0, we first 
apply the transformation (4.4) to the 3F2(l) series in 
Eq. (4.14). This procedure leads to the simplified 
expression 

J(m, n) = 2 n 3F 2 2' 2' 2, 1 . (4.22) (1) [1 1 n - m + 1· J 
n! 1, n + 1; 

The alternative form 

J( ) Wm F [t, t, m - n + t; IJ m,n = -3 2 
m! 1, m + 1; 

(4.23) 

is also of interest. Next we note the foIlowing con
tiguous function relations1 : 

(21 - 1) 3F2[ t, t, 1 + t; IJ 
l,m+l+l; 

= 2(m + 1) 3F2[t, t, 1 - t; IJ 
I,m + /; 

_ (2m + 1) 3F2[ t, t, 1 - t; IJ, (4.24) 
l,m+l+l; 

where I is a positive integer. The substitution of Eq. 
(4.22) in Eq. (4.24) gives the recurrence relation 

(21 - l)f(m, m + I) 
= (2m + 21 - I)f(m, m + I - 1) 

- (2m + I)f(m + I, m + I). (4.25) 

FinaIly we consider the set of equations formed 
from Eq. (4.25) by taking I = 1,2,3, .... If all the 
integrals f(m, n) which have m =F n are eliminated 
successively from the right-hand side of these equa
tions. we find 

J(m, m + I) = (m + t)l ± (l)(-ln(m + r, m + r). 
Ct)l r-O r 

(4.26) 

The substitution of Eq. (4.15) in Eq. (4.26) leads to 
the general explicit formula 

TABLE IV. Numerical values of I(m, n) for 
4 ~ n ~ m ~ O. 

m,n 

0,0 
0,1 
1, 1 
0,2 
1,2 
2,2 
0,3 
1,3 
2,3 
3,3 
0,4 
1,4 
2,4 
3,4 
4,4 

I(m, n) 

1.393 203 929 685 676 9 
0.8420525790471739 
0.551151 3506385029 
0.687252 142415432 1 
0.464401 309 895 225 6 
0.396350914006761 1 
0.604033 899 531 3877 
0.416091 214420221 8 
0.357910 968 7384876 
0.324768 720259063 5 
0.549248 389 906234 7 
0.383498 567 376 070 9 
0.331 715221 353 7326 
0.302046223421 643 1 
0.281 6192597702574 

which is valid for n ~ m ~ O. General expressions 
for the coefficients B~O) and B~l) are given in Eq. (2.16). 

Using Eq. (4.27), we may now readily esta!>lish the 
foIlowing list of integrals for the case n > m > 0: 

J(I. 2) = (4K~/3172), (4.28) 

J(I, 3)} = l(100K~ i..) 
J(2, 3) 90 172 ± K~ , 

(4.29) 

J(2, 4) = (20K~/21 ~2). (4.30) 

J(I, 4)} = _1_ (3100K~ ± 441). 
J(3,4) 3150 ~2 K~ 

(4.31) 

The numerical values of the integrals f(m, n) for 
4 ~ n ~ m ~ 0 are given in Table IV. 

In the remainder of this section we shaIl derive 
more recurrence relations for f(m, n), and give an 
alternative proof of the recurrence relation (2.46). We 
begin by substituting Eq. (4.23) in the contiguous 
relations1 

(21 - 1) 3F2[t. t, t - 1; IJ 
1, m + 1; 

= (21 + 2m - 1) 3F2[t. t, t - I; IJ 
1, m + 1; 

_ 2m 3F2 [t. t, t ~ I; IJ. (4.32) 
. 1, m. 

This procedure leads to the relation 

(21 - l)f(m, m + I - I) 

= (2m + 21 - I)J(m, m + I) 
- (2m - l)J(m - 1, m + 1- 1). (4.33) 
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For the special case m = 1, Eq. (4.33) becomes 

/(0,1) = (21 + 1)/(1, I + 1) - (21 - 1)/(1,1). 
(4.34) 

The elimination of the integrals /(m, m + I) and 
/(m - 1, m + 1- 1) from Eq. (4.33) via Eq. (4.25) 
gives a further relation 

(2m + 1)(2m + 2/- l)[(m + 1, m + I) 
- [8m2 + 8m(l- 1) + 1]/(m, m + 1- 1) 

+ (2m - 1)(2m + 2/- 3)/(m - 1, m + 1- 2) = 0. 

(4.35) 
If I = 1, this equation reduces to 

(2m + 1)2/(m + 1, m + 1) - (8m2 + 1)/(m, m) 

+ (2m - 1)2/(m - 1, m - 1) = 0, (4.36) 

which is a recurrence relation for the "diagonal" 
integrals /(m, m). 

We proceed by noting the recurrence relation for 
1(0, I): 

(21 + 1)2/(0, I + 1) - (812 + 1)/(0, I) 

+ (21 - 1)2[(0, I - 1) = 0, (4.37) 

which is readily obtained from Eq. (4.34), and Eq. 
(4.25) with m = 0. Finally, we substitute Eq. (4.15) 
in the recurrence relations (4.36) and (4.37). This 
procedure yields 

4n(n - 1)(2n - l)B~) - 2(n - 1)(8n2 - 16n + 9)B~~ 
1 

+ (2n - 3)3B~~2 = 0, (4.38) 

where i = 0, 1. This recurrence relation for the coeffi
cients B~O) and B~l) was derived in Sec. 2 using the 
method of Frobenius. 

5. EVALUATION OF THE GREEN'S FUNCTION 
P(ll' 12 , Is; 1) 

In this section the results of Sec. 4 will be used to 
evaluate the Green's function P(/1' 12 , Is; z), for 
z = 1, where 11, 12 , Is are all even, or all odd integers. 
[This Green's function is defined in Eq. (Ll).] Since 
P(lv 12 , Is; z) is a symmetric, even function with 
respect to Iv 12 , Is, it will be assumed for convenience 
that Is ~ 12 ~ 11 ~ 0. 

We consider initially the particular Green's function 

peO, 2m2 , 2ms; 1) 

(5.1) 

where m2 and ma are positive integers, with ma ~ m2 • 

If the numerator of the integrand in Eq. (5.1) is 
expanded as a finite sum of terms of the type 
I:!.rs cos2r X2 cos2s xs , it is seen that (5.1) can be written 
as a sum of integrals of the type I(m, n). Thus it is 
possible, at least in principle, to evaluate P(0,2m2, 
2m3 ; 1) exactly for arbitrary values of m2 and ms. 

For example, it is readily found that 

P(O, 0, 2; 1) = 2/(0, 1) - 1(0,0), 

P(O, 2, 2; 1) = 4/(1, 1) - 4/(0, 1) + 1(0,0), 

P(O, 2, 4; 1) = 16/(1,2) - 16/(1,1) - 8/(0,2) 

+ 10/(0, 1) - 1(0,0). (5.2) 

Using the results given in Eqs. (4.16), (4.17), and 
(4.28), we obtain 

1 
P(O, 0,2; 1) = 2' 

Ko 

(4K~ 4) P(O, 2, 2; 1) = -2 - -; , 
7T Ko 

( 
9 64K~) P(0,2,4; 1) = -; - --2 • 

Ko 97T 

(5.3) 

In a similar manner the Green's function (5.1) has 
been evaluated for 4 ~ ma ~ m2 ~ 0. The final results 
are given in Appendix A. It is interesting to note that 
P(O, 2m2, 2m3; 1) is expressible, for m2 ¥: 0, as a 
difference of two squares.52 

Although the procedure described above for 
evaluating (5.1) is not particularly elegant, it has the 
practical advantage that it only involves elementary 
algebraic manipulations. In Paper II more general 
methods will be developed which enable one to express 
P(O, 2m2, 2m3; z) in terms of 2Fl hypergeometric 
functions (even when z ¥: 1). By using these more 
powerful techniques, it is possible to evaluate 
P(O, 0, 2m; 1) in terms of gamma functions. We quote 
the final result below: 

P(O, 0, 2m; 1) = ..!..(r(!m + 1»)2, (5.4) 
27T" ram + !) 

where m = 0, 1, 2, .... This expression may be sim
plified as follows: 

P(O, 0, 4m; 1) = (1. 5 ·9· .. (4m - 3) \2(4K~), 
3·7·11'··(4m-l») 7T

2 

P(0,0,4m + 2; 1) = (3' 7 ·11··· (4m - 1»)2(1.). 
1'5'9"'(4m+l) K~ 

(5.5) 

[When m = 0, the products in (5.5) are replaced 
by 1.] 
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TABLE V. Numerical values of the Green's function P(I" la,/a; 1) 
for 8 ~ /3 ~ la ~ I, ~ O. 

1,,/2 ,/3 P(I,1) 

0,0,0 1.393 203 929 685 677 
1, I, I 0.393 203 929 685 677 
0,0,2 0.290901 228408 671 
0,2,2 0.229599016050993 
2,2,2 0.190926 774420746 
1,1",3 0.188598527131 665 
1,3,3 0.147995080254964 
3,3,3 0.124429443520405 
0,0,4 0.154800436631 742 
0,2,4 0.141 304069570169 
2,2,4 0.130353606349838 
0,4,4 0.113174214285823 
2,4,4 0.106 945 285 442 139 
4,4,4 0.092612098 366566 
1, 1,5 0.121002346131 819 
1,3,5 0.107620324762228 
3,3,5 0.097567723980431 
1,5,5 0.089461 127363873 
3,5,5 0.083300534912552 
5,5,5 0.073 862 566 733 171 
0,0,6 0.104 724 442 227122 
0,2,6 0.099930995 617 171 
2,2,6 0.095670153471168 
0,4,6 0.088331 194895560 
2,4,6 0.085 253 078 465 954 
4,4,6 0.077509205839691 
0,6,6 0.075 179 758 105 345 
2,6,6 0.073221 214354647 

The asymptotic behavior of P(O, 0, 2m; I), as 
m ~ 00, is readily established using the expansion5s 

r(z + t),..., z_!iB~ht)· Wk (5.6) 
r(z + !) k~O (2k)! Z2k ' 

where BW)(p) is a generalized Bernoulli polynomial. 
We find 

P(O, 0, 2m; 1) 

~ 7T~ ( 1 - 8~2 + 12~~4 - 10~:~6 + .. -). (5.7) 

as m --+ 00. 

We now turn to the evaluation of the Green's 
function P(/) , 12 , Is; I), when 11 ¥: 0. It can be shown12 

that the Green's function P(I, z) satisfies the partial 
finite difference equation 

P(ll' 12 , la; z) 

- tz I P(l} ± 1, 12 ± 1, la ± 1; z) = 151•0 , (5.8) 
± 

where the summation is over all eight possible 
arrangements of the plus and minus signs. For z = 1, 
this difference equation is of considerable importance 
in potential theory, since it is a discrete analog of 
Poisson's equation with a unit-source function b(r).54.55 

I" la, 13 P(J,1) 

4,6,6 0.068 101 112525 776 
6,6,6 0.061 457480402404 
I, 1,7 0.088446 538 322424 
1,3,7 0.082654773252212 
3,3,7 0.077 794 423 305 790 
1,5,7 0.073 588 554 203 926 
3,5,7 0.070037165946620 
5,5,7 0.064 173 530 979 794 
1,7,7 0.064 080 796 649 657 
3,7,7 0.061 675815610 001 
5,7,7 0.057 548 589 097 653 
7,7,7 0.052630916253723 
0,0,8 0.078979814608032 
0,2,8 0.076 789534214936 
2,2,8 0.074 756 836 608 861 
0,4,8 0.071 076843915612 
2,4,8 0.069429548 828437 
4,4,8 0.065053935937817 
0,6,8 0.063713709757158 
2,6,8 0.062 503 085 308 694 
4,6,8 0.059226 146 311 942 
6,6,8 0.054 713 107983 003 
0,8,8 0.056 329 520 539 998 
2,8,8 0.055 482 290 065 564 
4,8,8 0.053 143444 692747 
6,8,8 0.049808 166570407 
8,8,8 0.046 026 025 967 152 

Let us suppose that P(O, 2m2 , 2ma; 1) is known for 
N ~ ms ~ m2 ~ ° and that we require P(lu 12 , la; I) 
for 2N ~ /a ~ 12 ~ 11 ~ 1. If Eq. (5.8), with z = I, 
is applied to the row of lattice sites (0,0, 2ms), we 
obtain the set of relations 

P(I, 1, 1; 1) = P(O, 0, 0; 1) - I, 

P(1, 1, 2ma + 1; 1) = 2P(O, 0, 2ms; 1) 
(5.9) 

- P(1, 1, 2ma - I; 1), 

ma=1,2,· ... 

By solving these equations successively it is seen that 
P(I, I) can be found along the row (l, 1, 2ms + 1). 
Application of this procedure to the rows (0, 2, 2m3), 
(0,4, 2ma), ••• enables one to evaluate all the Green's 
functions P( 1, 2m2 + 1, 2m3 + 1; 1) that are of 
interest. The Green's functions for the next plane of 
lattice sites (2, 2m2 , 2ms) can now be obtained 
by applying (5.8) to the rows (1, I, 2ms + 1), 
(1,3, 2ma + I), .. '. It is evident that repeated 
applications of these arguments will yield all the 
required Green's functions. 

In this manner P(l}, /2' Is; 1) has been evaluated for 
8 ~ Is ~ .[2 ~ 11 ~ 1. The final explicit formulas are 
listed in Appendix A, and the numerical values are 
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given in Table V. Numerical estimates for the partic
ular Green's functions P(O, 0, 2; 1) and P(O, 2, 2; 1) 
have been derived by Yussouff and Mahanty,56 and 
more recently by Byrnes et al.32 However, their results 
are in poor agreement with the exact values given in 
Table V. 

When III == (/~ + I~ + Ii)! is large, it can be 
shown57 that 

P(/l' 12 , 13 ; 1) 

"-' (2/1T) IWI [1 - t IIr2 + i IW6 (l~ + l~ + l~) 
+ ¥ IIr6 (l~l~ + l~l~ + l~l~) + ... ]. (5.10) 

This asymptotic formula (which agrees with (5.7) for 
11 = 12 = 0, and 13 = 2m] provides a useful check on 
the results in Table V. For example, it gives 

P(7, 7, 7; 1) ~ 0.0526266, 

P(6,8, 8; 1) ~ 0.0498053, (5.11) 

P(8, 8, 8; 1) ~ 0.0460238. 

Finally, we note that P(I, -1) is obtained using the 
general relation 

P(/10/2' 13 ; -z) = (-1)h+h+13P(/1 , /2' 13 ; z). (5.12) 

6. EVALUATION OF R(~o - i£) 

In Sec. 3 a Green's function R(;) was introduced 
which for small 1;1 describes the behavior of P(z) at 
infinity. It was noted that R(';) is an analytic function 
in the'; plane, cut from -1 to + 1. For most physical 
applications .; is real with I ~I ~ I. However, in the 
theory of scattering of phonons from an impurity 
atom in a body-centered cubic lattice, Yussouff and 
Mahanty56 have encountered the Green's function 

lim R(';o - iE), (6.1) 
<-+0+ 

where ;0 is real. (For convenience, we shall assume 
;0 > 0.) Although these authors expressed (6.1) in 
the interesting form 

where 

lim R(';o - iE) = Rlao) + iR2(';0), 
<-+0+ 

RI(~O) = 2 LX> J~(x)J o(Uox) dx, 

R2(~O) = -2 LXlJ~(X)Yo(2~ox) dx, 

(6.2) 

(6.3) 

and Jo(x) and Yo(x) are Bessel functions of the first 
and second kind, respectively, no further exact results 
were obtained. The main aim in this section is to 
analyze the behavior of Rl(~O) and R2(;0) for 
o < ~o ~ 1. 

When $0 ~ 1, the limit E - 0+ can be taken 
without difficulty, and we find, using Eqs. (1.9) and 
(3.3), that 

Rl (;0) = (4/1T2~0)K2(k), (6.4) 
where 

k2 = t - tel - $(2)i, ;0 ~ 1. (6.5) 

[It is evident that R2(;0) = 0, for ;0 ~ 1.] The 
behavior of RI (;0) for ;0 ;<t 1, 

follows directly from the analytic continuation (3.6). 
It is interesting to note that Eq. (6.4) may be derived 
from the integral representation (6.2), using a general 
result due to Bailey.58 

The evaluation of R1(;0) and R2(;0) for 0 < ;0::;; 1 
may be readily carried out by substituting; = ;0 - iE 
in the analytic continuation (3.5). We find 

RMo) = (4K~/1T2) 2F1(l, i; t; 1 _ ;~)2 

and 

- (1/4K~)(1 - $~) 2F1(!,!; j-; 1 _ ;~)2 

(6.7) 

Rl;o) = (2/1T)(1 - $~)i 2FI(t.l-; t; 1 - ~~) 

x 2FI(!, 1; j-; 1 - $~). (6.8) 

Apart from a change of sign in (6.7), we see that 
R1(~0) and R2(';0) are identical to the regular and 
singular parts, respectively, of the basic analytic 
continuation (2.9) for P(z). 

For ~o ,.; 1, the behavior of RI (';0) and R2($o) is 
described by the expansions 

R2(~O) = (2tj1T)(1 - ~o)! 

x (1 + 1(1 - ~o) + !~~(1 - ';0)2 

+ 0(1 - ;0)3]. (6.10) 

The behavior of RI(;o) and R2(~0) when ;0 is small and 
positive can be established by substituting (2.31) in 
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Eqs. (6.7) and (6.8). We give the final results below: 

RMo) = -(1/17) In ~~ + (6/17) In 2 + O(~~ In ~~), 
(6.11) 

R2(~0) = (1/2172)(1n ~~)2 - (6 In 2/172) In ~~ 

+ (1/2172)(6 In 2 + 17)(6 In 2 - 17) 

+ O(~~(1n ~~)2). (6.12) 

Next we apply the following quadratic transforma
tions59 to Eqs. (6.7) and (6.8): 

(4Ko/17) 2Fl(1, 1; i; 1 - ;~) 
= 2Fl(t, !; 1; k!) + 2Fl(i, i; 1; k~), (6.13) 

(1{Ko)(1 - ~~)! 2F l(1, 1; j; 1 - ~~) 
= 2Fl(i, t; 1; k!) - 2FIG, t; 1; k~), (6.14) 

where 

k! = t ± t(1 - ~~)!. (6.15) 

This procedure yields 

R1(;0) = (4/172)K(k+)K(k_), (6.16) 

R2( ~o) = (2j172)[K(k+)2 - K(k_)2], (6.17) 

where 0 < ~o ~ 1. Thus we have evaluated indirectly 
the integrals (6.2) and (6.3) in terms of complete 
elliptic integrals for 0 < ~o < 00. The application of 
the quadratic transformations to the basic analytic 
continuation (2.9) leads to the interesting results 

CPl(Z)} = ~ [K(Z+)2 ± K(Z_)2], (6.18) 
(1 - Z2)!CP2(Z) 172 

where 

and Izi ~ 1. 
Complete expansions for Rl(~O) and R2(~0) about 

~o = 0 may now be obtained from Eqs. (6.16) and 
(6.17) using Watson's expansions15•16 for the products 
K(L)2, K(k_)K(k+), and K(k+)2. The final results are 

RMo) = - 1. In ~~ ~ a~~~n 
17 n=O 

3 00 

where lJI' (z) is the derivative of the digamma function. 
[The leading order terms in these expressions agree 
with those given in (6.11) and (6.12).] A complete 
expansion for CPl(Z) about Z2 = 0 is formally derived 
from (6.21) by replacing ;0 by z and adding the series 
L a~z2n. 

The application of Darboux's method33 to the 
singular parts of (6.20) and (6.21) yields directly 
asymptotic expansions for the coefficients B<:) - B~) , 
and Bn = B<:) + B~), respectively. [Note the singular 
parts of the expansions for Rl~o) and CPl(Z) about 
;() = 0 and z = 0 are formally identical.] Thus we 
have an alternative simpler procedure for deriving 
Eqs. (2.34) and (2.35). 

Since the complete elliptic integral K(k) is readily 
calculated,18 the expressions (6.16) and (6.17) provide 
the most convenient means of evaluating R1ao) and 
R2{;0)' A short table of values for Rl(~O) and R2(~0) 
in the range 0 < ~o ~ 1, which was obtained using 
(6.16) and (6.17), is given in Appendix B. [Numerical 
values of Rl(~O) = R(~o) for ~o ~ 1 can be found in 
Ref. 19.] Yussouff and Mahanty56 have calculated 
R1{;0) and R2(~0) by integrating (6.2) and (6.3) 
numerically. However, their results are, in some 
cases, only correct to two significant figures. In Fig. 1 
we give a graph showing the variation of R1{;o) and 
R2ao) with ;0' 

For the sake of completeness we next investigate 
the behavior of R{;) in the neighborhood of ; = 0, 
for the general case, in which; is not necessarily on a 
cut edge. This behavior is essentially determined by 
the analytic continuation of the series 

3F2(t, i. i; 1, 1; x), (6.22) 

into the region Ixl > 1. First we note that (6.22) is a 

+ - L a![lJI(n + 1) - lJI(n + m~~n, (6.20) 
17 n=O 2 

FIG. 1. Real part 
R,(;o) and imaginary 
part R 2(;o) of the 
Green's function 

RMo} = ~ (In ;~)2 I a~~~n 
217 n=O 

3 00 

+ '2 In;~ L a![lJI(n + t) - lJI(n + 1)]~~n 
17 n=O 

1 00 

+ -2 L a!{31J1'(n + i) - 31J1'(n + 1) - 2172 
217 n~ 0 

+ 9[1JI(n + !) - lJI(n + 1)]2};~n, (6.21) 

0.5 1.0 

fo 

lim R(;o - iE) 
<--+0+ 

for 0 < ;0 ::::; 1.5. 
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solution of the differential equation 

[03 - x(O + !)3]y = 0, 0 == x ~. (6.23) 
dx 

The application of the transformation w = l/x to 
this equation gives 

d 
[wd3 - (d - !)3]y = 0, d == w -. (6.24) 

dw 

We now derive the general series solution of (6.24) 
about the regular singularity at w = 0, using the 
method of Frobenius. The particular solution Sew), 
which corresponds to the analytic continuation of the 
series (6.22) into the region Ixl > 1, is readily found 
by "matching" the general solution with the standard 
expansion60 

(
1. 1 1. .1.) 

3F22'2'2,1,I,w 

= 2F 1 ( t, !; 1; ~)2 
= (1/21T2)(we-i~"i 

X (! (1);2 [In (we-i~lT) + "P(! - n) 
n=O (n!) 

+ "P(! + n) - 2"P(n + 1)]wnf (6.25) 

where b = ±l, Iwl < 1, and 

- (1 - !5)1T < arg w < (1 + b)1T. (6.26) 

After replacing w in Sew) by ~2 and using Eq. (3.3), 
we finally obtain the expansion61 

00 

X !a~["P(n +!) - "P(n + 1)]~2n 
n=O 

00 

+ ! a~{3"P'(n + !) - 3"P'(n + 1) - 1T2 
n=O 

+ 9["P(n + !) - "P(n + 1)]2};2n), (6.27) 

where (J = ±1, I~I < 1, and 

-(1 - b)!rr < arg ~ < (1 + b)!rr. (6.28) 

This result clearly reveals the nature of the discon
tinuity in the imaginary part of R(~) across the cut 
from -1 to + 1. If we substitute ~ = ~oe-f£ in (6.27) 
(where 0 < ~o < 1 and € > 0) and take the limit 

€ --+- 0, we find agreement with the expansions (6.20) 
and (6.21). 

We conclude this section by noting the following 
formulas for the derivatives of Rl(~O) and R2(~O): 

~~1 = - 1T:~O (~~ - 1)-![2K(k)E(k) - K(k)\ 

~o > 1, 

= - + (1 - ~~r![K(k_)E(k+) - K(k+)E(L) 
1T ~o 

+ (1 - ~~)tK(k+)K(k_)], 0 < ~o < 1, 

(6.29) 

.dR2 = _ + (1 _ ~~rt[K(k+)E(k+) + K(k_)E(k_) 
d~o 1T ~o 

- k=-K(k+)2 - k!K(k_)2], 0 < ~o < 1, 

(6.30) 

where E(k) is the complete elliptic integral of the 
second kind, and k and k± are defined in Eqs. (6.5) 
and (6.15), respectively. The behavior of the deriva
tives in the neighborhood of ~o = 0 and l-1S readily 
found from the expansions given above. 

7. ANALYTIC CONTINUATIONS IN POWERS 
OF 1 - z AND ~ - 1 

For most applications, one requires analytic 
continuations for F(z) and R(~) in powers of 1 - z 
and ~ - 1, respectively. These analytic continuations 
are readily derived by direct expansion of Eqs. (2.9) 
and (3.6). We give the final results below: 

00 

P(z) = ! [U~1l) + U~l)](1 - z)n 
n=O 

tOO 
- (1 - z) !VnCl - z)n, 11- zl < 1 (7.1) 

n=O 

and 
00 

R(~) = ! (_l)n[u~) - u~)](~ - 1)n 
n=O 

- (~ - I)! I( -1)nVn(~ - l)n, I~ - 11 < 1. 
n=O 

(7.2) 

The coefficients in these expansions are related to 
the basic set of coefficients B~) and en by the equations 

Uw = 2n[~] (_l)m(n - m)BW . = 0 1 
n k 2 n-m' I , (7.3) 

m=O 2 m m 

v = 2n+! i (_l)m(n - m + !)c (7.4) 
n m=O 22m m n-m' 
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TABLE VI. Expressions for the coefficients u~O), U!l), and V ... 

n 

0 
1 
2 
3 
4 
5 

a(O) .. 
4K:/1T2 
2K:/1T1 
4K:/31T2 

K:/1TZ 

I01K!/1261T2 

169 K:/2521T2 

0 

a(l) .. 

1/2K: 
1/2K~ 
9/20K: 
2/5K: 
143/400K~ 

V .. 

2y2/1T 
3y2/21T 
281 \l2/2401T 
917 y2/9601T 
28 897y2/35 8401T 
100 111y2/143 3601T 

6 89K~/1541T2 129/400K: 303496 35.7Y2/492 011 5201T 

where (:) denotes the binomial coefficient and [nI2] 
is equal to in when n is even and t(n - I) when n is 
odd. Explicit expressions for the first few coefficients 
U~O), U~l), and Vn are listed in Table VI. 

To obtain recurrence relations for U~) and Vn , we 
first apply the transformation x = (1 - e)2, with 
e = 1 - Z, to the differential equation (2.45). This 
procedure yields the differential equation 

e(2 - e)(1 - e)2ylll + 3(1 - E)(2e2 - 4e + I)y" 

- (7E2 - 14e + 6)y' + (I - e)y = O. (7.5) 

We now. use the method of Frobenius to derive the 
general series solution of this equation about the 
regular singularity at E = O. The. comparison of 
the general solution with the particular solution 
(7.1) leads to the recurrence relations: 

n(n + 1)(2n + l)U~~1 - n(5n2 + l)U~i) 
+ (2n - 1)(2n2 - 2n + I)U~~1 - (n - 1)3U~~2 = 0, 

n ~ 1, i = 0, 1, (7.6) 

with the initial conditions 

u~o) = 4K~/7T2, U~O) = 2K~/7T2, 
U~l) = 0, uil) = 1/2K~, (7.7) 

TABLE VIII. Comparison between the exact and asymptoti c 
values of the coefficients V ... 

n Exact V .. Asymptotic V .. 

0 0.9003163161571061 
1 0.675 237 237 117 829 6 0.789626 
2 0.527 060 176 750 305 8 0.558076 
3 0.4299948239146178 0.440 317 
4 0.362952575 1672976 0.366748 
5 0.314353957613 016 3 0.315836 
6 0.277 679 191 435 743 1 0.278284 
7 0.249071 715831 021 3 0.249327 
8 0.226140724577821 7 0.226252 
9 0.2073409148290742 0.207390 

10 0.191 636025585644 8 0.191659 

and 

4(n + 1)(2n + 1)(2n + 3)Vn+1 

- (2n + 1)(20n2 + 20n + 9)Vn 

+ Sn(4n2 + I)Vn_1 - (2n - l):Wn- 2 = 0, n ~ 0, 

(7.S) 

with the initial condition Vo = 2i /7T, and V_I = 
V_2 == O. 

The application of the method developed by 
Maradudin et al.62 to the Laplace transform 

R(~) = LXle-stE(t) dt, (7.9) 

where E(t) is defined in Eq. (3.2), provides an alter
native procedure for constructing the analytic contin
uation (7.2). Although this approach does not lead to 
exact expressions for the coefficients U~), it does 
yield the relation 

Vn = (2i /7TWnWn, (7.10) 

where () n are the coefficients in the asymptotic expan
sion for E(t). The substitution of Eq. (7.10) in the 
recurrence relation (3.2S) provides a useful confirma
tion of the recurrence relation (7.S). 

The asymptotic behavior of U:!') - U~) and 

TABLE VII. Comparison between the exact and asymptotic values of the coefficients U!O) and U!l'. 

n Exact U~OI Asymptotic U~OI Exact U!ll Asymptotic U~ll 

0 1.393 203 929 685 676 9 
1 0.696 601 964 842 838 4 0.80064 0.145450614204 335 5 
2 0.464 401 309 895 225 6 0.48328 0.145450614204335 5 0.14508 
3 0.348 300982421 4192 0.35224 0.130905552783901 9 0.13414 
4 0.279 193 644 639 391 6 0.27987 0.116360491 3634684 0.11823 
5 0.233 582 801 703 253 4 0.23352 0.103997189 1560999 0.104 92 
6 0.201 290 827 503 287 7 0.20111 0.093815646161 7964 0.09427 
7 0.1772289089846363 0.17706 0.085 433 588 330405 5 0.08565 
8 0.158590 121 4860875 0.15847 0.078 468 741 611 774 8 0.Q7858 
9 0.143708484543253 1 0.14362 0.072 611 570974261 9 0.072 67 

10 0.131 536464 595 3070 0.13147 0.067 625 280404 734 3 0.06765 
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U~) + U~l) for large n may be obtained by applying 
the method of Darboux to the singular parts of the 
expansions (6.20) and (6.21), respectively. From this 
analysis we find 

U(O)} 
'71) "" (l/1T2n)[2go(n) ± 1T] - (1/1T2n2

) 

Un 
+ (1/121T2n3)[6go(n) ± 37T - 20] + ... , 

(7.11) 
where 

go(n) = y + 3 In 2 + In n. (7.12) 

To investigate the asymptotic behavior of the coeffi
cient Vn , we formally replace ~o by z in Eq. (6.21) 
and apply Darboux's method to the expansion of 
(1 - z)-l R2(z) about z = O. The final result is 

Vn ,,-, (4/1T2n)go(n) - (2/1T2n2)go(n) 

+ (1/61T2n3)[12go(n) - 17] + .. '. (7.13) 

In Table VII the approximate values of U~O) and U~1l 
for n ~ 10, which were derived using the asymptotic 
representation (7.11), are compared with the exact 
values. Similar results for the coefficients Vn are given 
in Table VIII. 

Since we have now complete analytic continuations 
for P(z) in powers of 1 - Z2 and 1 - z, and exact 
expressions for P(O, 1), the main mathematical aims 
have been achieved. In the remainder of the paper 
we shall discuss some applications of these results in 
the theory of random walks. Applications in the theory 
of ferromagnetisql (such as the spherical model) which 
are of more specialized interest will be considered in 
detail elsewhere. 

8. RANDOM WALK GENERATING FUNCTIONS 

A general theory of random walks on lattices has 
been developed in a clear and systematic manner by 
Montroll and Weiss.12 In the following sections we 
shall use their results to investigate the particular case 
of a body-centered cubic (bcc) lattice with jumps to 
nearest neighbor lattice sites. 

Consider first a random walk on an infinite simple 
cubic lattice with unit lattice spacing and lattice sites 

(8.1) 

where 11, 12 , la are integers 0, ±1, ±2,'" and 
e i • e; = (Ji;, and suppose that the probability 
p(I' - I) that the walker will make a step from I to l' 
(where I' is not necessarily a nearest neighbor site of I) 
is 

p(l'-I)=t, for l'-I=(±I,±I,±I), 

= 0, otherwise. (8.2) 

A random walker starting from I = 0 with transition 

probabilities (8.2) can only reach lattice sites for 
which 11, 12 , 13 are all even or all odd, and thus this 
random walk is equivalent to a random walk on a bcc 
lattice with nearest neighbor jumps. We shall adopt 
this alternative formulation for random walks on a 
bcc lattice since it leads to considerable mathematical 
simplifications. 

Many of the properties of random walks can be 
described in terms of the probability generating 
function 

00 

P(l, z) = ~ Pn(l)zn, (8.3) 
n=O 

where P n(l) is the probability that a random walker, 
starting at the origin I = 0, will reach the site I (not 
necessarily for the first time) after a walk of n steps. 
For random walks on a bcc lattice we can ShOW,12 
using the equivalent simple cubic random walk (8.2), 
that 

7t 

Pn(l) = ~3 jjj(COS Xl cos X2 cos X3t 

o 
x cos fi xi cos f2x2 cos l3X3 dX1 dX2 dxa. (8.4) 

If this integral is substituted in (8.3) and the order of 
summation and integration is interchanged, we see 
that the fundamental Green's function (Ll) gives an 
integral representation for the generating function 
(8.3). 

An explicit expression for (8.4) may be readily 
derived using standard results. We find 

P n(l) = A n(lI)An(l2)An(l3), (8.5) 
where 

A (I) _ r(n + 1) 
n - 2n f(in + if + l)f(in - il + I) , 

I + n even, n ~ Ill, 
= 0, otherwise. (8.6) 

Equation (8.6) shows directly that P n(l) is zero if 
11, f2' and f3 are not all even or all odd. We also note 
that the first nonzero term in the series (8.3) occurs 
when n = max {\Ill, 1/21, Ifal}. Asymptotic expansions 
for P n(l), valid when n » 111 2, can be obtained from 
Eqs. (8.5) and (8.6). For the interesting case I = 0 we 
find 

P2 (0) = a3 = (mn)3 
n n (l)n 

1 ( 3 9 7 
"" (1Tn)~ 1 - 8n + 128n2 + 1024na 

165 ) 
- 32 768n4 + . .. , (8.7) 

with P2n+l(0) = O. 
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TABLE IX. Values of F~r)(o) for the bee lattice, where F~r)(o) is the probability that a random walker 
will return to the origin for the rth time at step n. [Note that Fi;~l(O) = 0.] 

n/r 2 

2 1/8 0 
4 19/83 1/82 

6 79/84 38j84 
8 25 715/87 1625/86 

10 145393/88 75446/88 

We now introduce a further generating function 

00 

F(I, z) = IF n(l)zn, (8.8) 
n=l 

where Fn(l) is the probability that a random walker, 
starting at the origin, will reach the lattice site I for 
the first time at step n. It can be shown that11.12 

F(I, z) = [P(l, z) - bl.o]/P(O, z). (8.9) 

If the random walker continues to walk indefinitely, 
then the probability that he will eventually reach the 
lattice site I is just F(I, I). For the bcc lattice it is 
possible to evaluate F(I, I) exactly using the results 
listed in Appendix A. Some examples are given below: 

F(O, 0, 2; I) = r:t.14w, F(O, 2, 2; I) = (w - r:t.)/w, 

F(2, 4, 6; I) = [(2639/25)r:t. - (l103/9)w + 12]/w, 

(8.10) 

where r:t. = IIK~ and w = K~/7T2. The probability of 
eventual return to the origin F(O, 1) has been calcu
lated previously for the bcc lattice by Montrolpo.l1 
The results in Appendix A can also be used to evaluate 
the first passage time11.12 on the bce lattice. 

Next we investigate the asymptotic behavior of 
F2n(O) for the bcc lattice, by applying the method of 
Darboux33 •63 to the generating function F(O, z). [It is 
clear from (8.9) that F2n+1(O) = 0.] We first note that, 
in the Z2 plane, F(O, z) has one singularity on the 
circle of convergence, at ZZ = 1. The behavior of 
F(O, z) in the neighborhood of this singularity may be 
obtained by inverting the basic analytic continuation 
(2.9) for P(z) == P(O, z). It is found that 

F(O, z) = 1 - (7T2/4K~)[1 + (7T/2K~)(1 - Z2)! 

+ (1/16K~)(37T2 - 4K~)(1 - Z2) 

+ (7T3/16K~)(1 - Z2)! + (1/768Kg) 

x (157T4 + 367TZK~ - 64Kg)(1 - Z2)Z 

+ (7T12560K~O)(157T4 + 807T2K~ - 16K~) 

x (1 - Z2)t + ... ]. (8.11) 

The formal expansion of the singular part of this 
expression in powers of ZZ finally yields the asymptotic 

3 4 5 6 

0 0 0 0 
0 0 0 0 

1/83 0 0 0 
57/85 lj84 0 0 

2979/87 76/86 1/85 0 

representation 

FznCO) "" (7T!/16K~)n-! 

X [1 + (3/16Kg)(2K~ - 7T
z)n-1 + (1/1024K~) 

X (457T4 - 1207TzK~ + 152Kg)n-2 + .. ']. 
(8.12) 

Montroll and Weiss also considered the generating 
function 

F(r)(I, z) = iF~)(l)zn, (8.13) 
n=l 

where F~)(I) is the probability that a random walker, 
starting at the origin, will reach I for the rth time at 
step n. This generating function may be expressed in 
terms of F(I, z) as follows: 

F(r)(I, z) = [F(O, z)]r-lF(I, z). (8.14) 

An asymptotic analysis of F~",{ (0) for the bcc lattice 
(valid when n » r) could be readily carried out using 
Eqs. (8.11) and (8.14). In Table IX the exact values of 
F(~~O) are listed for n ~ 5. The relation 

n 

I F~~(O) = PZn(O) (8.15) 
r=1 

provides a useful check on the results. 

9. EXPECTED NUMBER OF VISITS TO A 
LATTICE POINT DURING AN N

STEP RANDOM WALK 

The expected or mean number of times a lattice 
site I is visited during an n-step random walk is 

n 

Mn(l) = I Pi l). (9.1) 
k=O 

It follows directly from (9.1) that 

lim M n(l) = P(I, 1). (9.2) 

This limit can therefore be evaluated for the bcc lattice 
using the results in Sec. 5 and Appendix A. If we 
multiply (9.1) by zn and sum over n, we see that the 
generating function 

M(I, z) == ~ Mn(l)zn = (1 - z)-lp(l, z). (9.3) 
n=O 
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For the bcc lattice [and other "loose-packed" lattices 
which have P2k+1(O) = 0] 

(9.4) 

Thus, when I = 0 and the lattice· is loose-packed, it 
is convenient to introduce an alternative generating 
function 

co 

E(z) == IM2n(O)z2n = (1 - Z2)-lP(l, z). (9.5) 
n=O 

For the bcc lattice we find 

£(z) = 1 + (9/8)Z2 + (603/83)Z4 + (4949f84)Z6 

+ (2576763/87)Z8 + (20864151/88)zlO + .... 
(9.6) 

We now derive an asymptotic expansion for M2n (O) 
on the bcc lattice. The generating function £(z) has, 
in the Z2 plane, one singularity on the circle of con
vergence, at Z2 = 1. In the neighborhood of this 
singularity the behavior of £(z) is described by the 
analytic continuation 

co co 

E(z) = IBnCl - z2t-1 
- 2:Cn(1- z2t-!, (9.7) 

n=O n=O 

where the coefficients Bn and Cn are defined in Sec. 2. 
The application of Darboux's method to the singular 
part of (9.7) yields the required asymptotic expansion 

M2nCO)......, (4KU7T2) - (2/7T)(7Tnr! 

X [1 - (3/8)>>-1 + (109/640}>>-2 

- (57/1024)>>-3 - (37/32768)>>-4 + .. -]. 
(9.8) 

It should be noted that it is possible to derive an 
asymptotic expansion for M nCO) on the bcc lattice 
using the generating function M(O, z). However, the 
Darboux analysis in this case is more complicated 
since M(O, z} has, in the z plane, two singularities on 
the circle of convergence, at z = ± 1. The final result 
is presented below: 

(9.9) 
where 

M~+) = (4K~/7T2) - (2 i /7T)(7Tnri 

x [1 - (1/2)n-1 + (49/160)n- 2 

- (9/64)n-3 + (19/2048)n-4 + ... ] (9.10) 
and 

M~-) = (2i /7T)(7Tn)-!(-y' 

X [(1/4)n-1 
- (3/8)n-2 + (39/128)n-3 

+ (7/256)n-4 + ... ], (9.11) 

are the asymptotic contributions from the singularities 
at z = + 1 and -\, respectively. When n is even, the 
expansion (9.9) agrees with (9.8). The asymptotic 
analysis of Mn(O) given by Montroll and Weiss12 is 
incomplete since the contribution M~) was not 
discussed. Furthermore, their formula for M~+) is in 
disagreement with (9.10). 

An alternative direct procedure for deriving (9.8), 
which is closely related to the techniques developed 
by Domb64 and Byrnes et al.32 is now briefly described. 
First M 2n(O) is written in the form 

4K~ co 
M2n(O) = -2 - I P2k(O). (9.12) 

7T k=n+1 

Since we are concerned with the case of large n, we 
may replace P2k(O) by its asymptotic representation 
(8.7). If the resulting summations 

co 

2: k-m- i , m = 0, 1, ... , (9.13) 
k=n+1 

are evaluated using the Euler-Maclaurin summation 
formula, we finally obtain the asymptotic expansion 
(9.8). 

The probability n~) that a random walker will 
return to his starting point at least r times during an 
n-step walk is 

n 
n~) = 2:F1r)(O}, r ~ 1. (9.14) 

k=l 

[Note that n~) and Mn(O) are formally rather similar.] 
It is readily seen from (8.14) that for the generating 
function 

n(r)(z) == I o~)zn = (1 - z)-l[F(O, z)t. (9.15) 
n=l 

For loose-packed lattices we also define the generating 
function 

1 or~z2n = (1 - Z2)-1[F(O, z)r, (9.16) 
n=O 

since, for this type of lattice, 

O~~+1 = Or~· (9.17) 

The asymptotic behavior of O~~ on the bcc lattice 
may be determined from (9.16) by using the analytic 
continuation (8.11) and the method of Darboux. For 
the particular case r = 1, it is found that 

O~~:,...., [1 - (7T2/4K~)] - (7T!/8K~)n-i 

X [1 - (1/16K~)(7T2 + 2K~)n-1 + (1/5120K~) 
x (457T4 + 1207T2 K~ - 8Kg)n -2 + ... ]. 

(9.18) 

[This expansion could also be derived directly from 
(8.12) using the Euler-Maclaurin summation formula.} 
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TABLE X. Values of €I:;' for the bee lattice, where €I:;' is the probability that a random walker will 
return to his starting point exactly r times during an n step walk. (Note that eJ~~l = e~·~.) 

n/r 2 

2 1/8 0 
4 75/83 1/82 

6 641/S' 94/8' 
S 340907/8' 7185j86 

10 2797203/8" 511 454/8" 

In the limit n -+ 00, n~l) becomes the probability of 
eventual return to the origin F(O, 1). The probability 
of not returning to the origin during an n-step walk 
is 1 - n~l). 

We conclude this section by considering the proba
bility e!,") that a random walker will return to the 
origin exactly r times during an n-step walk. It is clear 
that 

e;) = n;) - n!,"+1). (9.19) 

The generating function for e~ll is therefore 
ro 

e(r)(z) == :2 e;>zn 
n=O 

= (1 - zr1[F(O, z)r[1 - F(O, z)]. (9.20) 

[Note that when r = 0, Eq. (9.20) gives the correct 
generating function for the probability of not returning 
to the origin 1 - n~l).] For loose-packed lattices we 
also introduce the generating function 

ro 
I e~~z2n = (1 - Z2)-1[F(O, z)r[1 - F(O, z)]. (9.21) 
n=O 

Asymptotic formulas for e~';t on the bcc lattice are 
readily obtained using Eqs. (S.ll) and (9.21). In 
Table X the exact values of e~~ are listed for n :::;; 5. 

10. EXPECTED NUMBER OF DISTINCT LATTICE 
SITES VISITED DURING AN N-STEP 

RANDOM WALK 
The problem of finding the expected number of 

distinct lattice sites Sn visited during an n-step random 
walk was first studied by Dvoretsky and Erdos. 65 

These authors proved that for a three-dimensional 
lattice with nearest neighbor jumps, the behavior of 
Sn' when n is large, is 

Sn = a1n + O(nt), (10.1) 

where a1 is a constant which depends on the lattice 
structure. The values of a1 were later calculated 
exactly for the three cubic lattices by Vineyard.66 A 
more extensive analysis by Montroll and Weiss12

•
11 

showed that the higher-order terms in (10.1) were of 
the form 

Sn "" aln + a2nt + a3 + a4n-t + .. :. (10.2) 

MontroU and Weiss also calculated a2 for the three 

3 4 5 6 

0 0 0 0 
0 0 0 0 

1/83 0 0 0 
113/S~ 1/8' 0 0 

9603/8' 132j86 1/85 0 

cubic lattices, and a3 and a4 for the simple cubic lattice. 
However, it appears that the only correct higher-order 
coefficient is a2 on the simple cubic lattice. 

In this section our main aim will be to derive the 
asymptotic expansion (l0.2) for the bcc lattice. We 
begin with the generating function12 

00 

S(z) == I Snzn = (1 - zr2[p(O, z)r1
• (10.3) 

n=O 

This function has, in the z plane, two singularities on 
the circle of convergence, at z = ± 1. The behavior 
of S(z) in the neighborhood of the singularity at 
z = + 1 is readily established by inverting tiJe analytic 
continuation (7.1), We give the final result below: 

S(z) = (7T2/4K~)[(1 - zr2 + (7T2f/2K~)(1 - zr~ 

+ (1/SK~)(37T2 - 4K~)(1 - zr1 

+ (7T2f /SKg)(7T2 - K~)(1 - Z)-f 

+ (1/192K~)(157T4 - 16K~) + (7T2t/640K~O) 
X (lh4 + 207T2K~ - 26Kg)(1 - Z)f + ... J. 

(10.4) 
In the neighborhood of the singularity at z = -1, 
we find 

S(z) = (7T2/16K~)[1 + (7T2f/2K~)(1 + Z)f + ... ]. 
(10.5) 

The application of the method of Darboux to the 
singular parts of (l0.4) and (l0.5) yields the required 
asymptotic expansion 

Sn '" (7T2n/4K~) 

X {I + (1/K~)(27T/n)t + (1/SK~)(37T2 + 4K~)n-l 
+ (1/SK~)(7T2 + 2K~)(27T/n3)f - (1/12S0K~o) 

x [157T4 + 407T2Kg + 24K~ + ( - )nSOKg] 

x (27T/n5)f + ... }. (10.6) 

We see that the "weak" cusplike singularity at z = -1 
gives rise to significant contributions to the expansion 
(10.6) of the type (-tlnm+!, where m = 0, 1,2, .... 
The existence of these oscillatory terms was not 
discussed by Montroll and Weiss.12 

It is interesting to note that the behavior of S(z) on 
the bcc lattice is qualitatively similar to that of the 



                                                                                                                                    

BODY-CENTERED CUBIC LATTICE GREEN'S FUNCTION. I 1411 

TABLE XI. Values of S~) for the bee lattice, where s~r) is the expected number of lattice sites visited at least 
r times during an n-step walk. 

nlr 2 3 4 5 6 

0 1 0 0 0 0 0 
1 2 0 0 0 0 0 
2 23/8 liS 0 0 0 0 
3 30/8 2/S 0 0 0 0 
4 2349/S3 203/S3 l/S" 0 0 0 
5 277S/S3 27S/S8 2/S' 0 0 0 
6 25577/S' 2S65/S' 222/S' 1/S8 0 0 
7 2S 930/S' 3506/S' 316/8' 2/S8 0 0 
S 16503 ISIf81 2}35979/S7 27409/S" 241f85 liS' 0 

high-temperature susceptibility of the Ising model on 
a loose-packed lattice.67 The divergent singularity at 
z = 1 corresponds to a ferromagnetic singularity 
while the "weaker" singularity at z = -1 corresponds 
to an anti ferromagnetic singularity. In fact, since 
Eqs. (lOA) and (10.5) describe the exact "critical 
behavior" of the series (10.3), we have a useful 
example with which to test the accuracy of series 
extrapolation techniques.6s ' 

Following Montroll and Weiss,12 we now define 
S~' to be the expected number of lattice sites visited 
at least r times during an n-step walk. The generating 
function for S~' can be written in the form 

00 

s(rl(z) == I S:)zn = [F(O, z)r-lS(z). (10.7) 
n=O 

Thus it would be possible to derive an asymptotic 
expansion for S~' on the bcc lattice using Eqs. (S.l1), 
(lOA), and (10.5). We list in Table XI the exact 
values of s~) on this lattice for n :::;; S. 

We finally consider the expected number of lattice 
sites W~) that are visited exactly r times during an 
n-step walk. It is clear that 

w:) = S:) - S:+1). (10.S) 

Hence the generating function for W!:" is 
00 

w(rl(z) == I w:'zn 
n=O 

= [F(O, z)y-l[(l - z)S(z)t (10.9) 

The following asymptotic expansion for W~l) on the 
bcc lattice: 

W~ll '" (7T4n/16K~) 

x {I + (2/K~)(27T/n)1 + (57T2/4K~)n-l 
+ (57T2/SKg)(27T/n3)1 - (1/960K~O)(27T/n5)1 
x [1057T4 

- 4Kg + (-)n120K~] + ... }, 
(10.10) 

may be readily obtained using Eqs. (10.9), (lOA), 
and (10.5). For loose-packed lattices W!:" and S~) 

satisfy the simple relations 

W(rl 1[w(r) + w(r) ] 2n = 2 2n+l 2n-l , 
s(rl - 1[s(rl + s(r) ] 2n - 2 2n+l 2n-l . (10.11) 

This last result may be verified in Table XI. 

11. CONCLUDING REMARKS 

The results derived in this paper find direct applica
tion in discrete potential theory, random walks with 
traps, spin wave theory, the spherical model, and 
scattering theory. For example, the expressions listed 
in Appendix A essentially give the critical point 
correlations for the spherical model with nearest 
neighbor interactions. Some of these applications 
will be discussed elsewhere. It is also hoped that the 
exact analytic continuations, which describe the 
"critical behavior" of the various random walk 
generating functions in Secs. S-lO, will help indirectly 
to elucidate the nature of critical point singularities. 

Note added in proof Recently Katsura and Hori
guchi69 have derived expansions for the real part 
Rl(~O) and imaginary part R2(~O) of the Green's 
function (6.1) which are valid in the range 0 < ~o :::;; 1. 
However, these authors did not obtain the formulas 
(6.16) and (6.17) which express Rl(~O) and R2(~O) in 
terms of complete elliptic integrals. Hence, their 
"combined subroutine" for calculating Rl(~O) and 
R2(~O) is not as convenient as that described in Sec. 6 
of the present paper. 

Further work on lattice Green's functions for cubic 
lattices has been carried out by Iwata,70 Horiguchi and 
Morita,71 and Joyce. 72 

APPENDIX A 
In this Appendix exact expressions for the body

centered cubic lattice Green's function 
P(ll, 12 , 13 ; 1) 

1T 
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where 11' 12 , and 13 are all even or all odd, are given 
for 0 ~ 11 ~ 12 ~ 13 ~ 8. For convenience, the follow
ing notation will be introduced: 

w == (K~/7T2) and ~ == (l/K~), 

where Ko denotes the complete elliptic integral K(2-i ); 

P(O, 0, 0; 1) = 4w, P(1, I, I; I) = 4w - I, 

P(O, 0, 2; I) =~, P(O, 2, 2; I) = 4w - 4~, 

P(2, 2, 2; I) = 16w + 9~ - 8, 

P(I, 1,3; I) = 2~ - 4w + I, 

P(I, 3, 3; I) = 20w - 20~ - I, 

P(3, 3, 3; I) = 76w + 126~ - 63, 

P(O, 0, 4; I) = (4/9)w, 

P(O, 2, 4; I) = 9~ - (64/9)w, 

P(2, 2, 4; I) = 16 - 4~ - (380/9)w, 

P(O, 4, 4; I) = (484/9)w - 64~, 

P(2,4,4; I) = (1664/9)w - 111~ - 32, 

P(4, 4, 4; I) = (1476/9)w + 1344~ - 448, 

P(I, 1,5; I) = (44/9)w - 2~ - I, 

P(1, 3, 5; I) = 5~~ - (444/9)w + I, 

P(3, 3, 5; I) = 191 - 230~ - (3204/9)w, 

P(1, 5, 5; I) = (2644/9)w - 348~ - I, 

P(3, 5, 5; I) = (17100/9)w - 298~ - 575, 

P(5, 5, 5; I) = 1221O~ - (30564/9)w - 2369, 

P(O, 0, 6; I) = (9/25)~, 
P(O, 2, 6; I) = (100/9)w - (324/25)~, 

P(2, 2, 6; I) = (656/9)w - (I Il/25)~ - 24, 

P(O, 4, 6; I) = (5329/25)~ - (16oo/9)w, 

P(2, 4,6; I) = (10 556/25)~ - (4412/9)w + 48, 

P(4, 4,6; 1) = 1952 - (21 888/9)w - (94 951/25)~, 

P(O, 6, 6; I) = 1156w - (34 596/25)~, 

P(2, 6, 6; I) = (20 624/9)w - (62 399/25)~ - 72, 

P(4, 6, 6; I) = (165 636/9)w + (140764/25)~ - 8048, 

P(6, 6, 6; I) = (2 270 961/25)~ 
- (677 232/9)w - 216, 

P(I, I, 7; 1) = (68/25)~ - (44/9)w + I, 

P(1, 3, 7; 1) = (844/9)w - (2714/25)~ - 1, 

P(3, 3, 7; 1) = (7652/9)w + (7472/25)~ - 383, 

P(1, 5, 7; 1) = (31 330/25)~ - (9444/9)w + 1, 

P(3, 5, 7; 1) = (68 860/25)~ - (50 444/9)w + 1151, 

P(5, 5, 7; I) = 17025 - (823OO/9)w 

- (l 189 400/25)~, 

P(I, 7, 7; I) = (57 860/9)w - (192 344/25)~ - I, 

P(3, 7, 7; I) = (207 164/9)w - (491 078/25)~ - 2303, 

P(5, 7, 7; I) = (1396 876/9)w 

+ (3 560 470/25)~ - 95489, 

P(7, 7, 7; I) = (10 749 228/25)~ 

- (9331 020/9)0) + 236033, 

P(O, 0, 8; I) = (100/441)w, 

P(O, 2, 8; I) = (441/25)~ - (64oo/441)w, 

P(2, 2, 8; I) = 32 + (412/25)~ - (46492/441)w, 

P(O, 4, 8; 1) = (184 9OO/441)w - (12 544/25)~, 

P(2, 4,8; I) = (456 384/441)w - (25 471/25)rx - 64, 

P(4, 4,8; I) = (3606 052/441)w 

+ (184 256/25)rx - 4992, 

P(O, 6, 8; 1) = (137 641/25)rx - (2027 776/441)w, 

P(2, 6, 8; 1) = 96 + (232 I 24/25)rx 

- (3541 340/441)w, 

P(4, 6, 8; 1) = 20288 + (166ool/25)rx 

- (28 133 184/441)w, 

P(6, 6, 8; 1) = (38423 268/441)w 

- (12488 996/25)rx + 114976, 

P(O, 8, 8; I) = (12687 844/441)w - (861 184/25)~, 

P(2, 8, 8; I) = (19611 136/441)w 

- (I 320 103/25)rx - 128, 

P(4, 8, 8; I) = (lIS 819 460/441)w 

- (3 483 136/25)~ - 50 944, 

P(6, 8, 8; 1) = (436243 968/441)w 

+ (54 201 161/25)~ - 975232, 

P(8, 8, 8; I) = 4469248 - (41413 632/25)rx 

- (5048577 180/44I)w. 

APPENDIX B 

We give below a table of values for the real part 
Rl ao) and the imaginary part R2ao) of the Green's 
function 

" 
I" .' 1 Ilf dX1 dx! dX3 1m 3 ' 

<-+0+ 7T ~o - ie - cos Xl cos X2 cos X3 
o 

in the range 0 < ~o :::;; 1. 
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~o Rl(~O) R2(~O) 

0.02 3.81442779 6.77454088 
0.04 3.37349752 5.18900409 
0.06 3.11585984 4.351 879 16 
0.08 2.93332779 3.79835654 
0.10 2.791 987 13 3.39208188 
0.12 2.67672612 3.07504968 
0.14 2.57948020 2.81742508 
0.16 2.495433 18 2.60193559 
0.18 2.421 47680 2.41773188 
0.20 2.35548751 2.25757849 
0.22 2.29594969 2.11642293 
0.24 2.241 74351 1.99060601 
0.26 2.192 01799 1.877 39774 
0.28 2.146 III 13 1.774710 47 
0.30 2.10349780 1.680914 12 
0.32 2.06375432 1.59471291 
0.34 2.02653390 1.51506061 
0.36 1.991 54904 1.441 10087 
0.38 1.95855875 1.372 124 14 
0.40 1.92735897 1.30753602 
0.42 1.89777542 1.24683356 
0.44 1.86965804 1.18958726 
0.46 1.84287669 1.135427 19 
0.48 1.81731778 1.08403205 
0.50 1.792881 58 1.035 12066 
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The interaction Hamiltonian A. f :1jiIO'(X)1pIO,(X) :g(x)d'x,g(x) E 8(.'R.') is studied. An ultraviolet cutoff 
is introduced. We remove this cutoff, and take the Iimitg ...... 1 in 8(.'R.'), by working with the Heisenberg 
fields. The limiting fields are well defined on the Fock space associated with the bare mass mo. In the 
limit we get a new representation of the canonical anticommutation relations which is given by a (general
jzed) Bogoliubov transformation. The new representation is not always unitarily equivalent to the 
bare mass Fock representations. 

I. INTRODUCTION 
The existence of many inequivalent representations 

of the canonical anticommutation relations (CAR) 
was pointed out by Friedrichsl and van Hove2; it was 
treated rigorously by Garding and Wightman ,3 
Wightman and Schweber,' and Golodes. 5 It is well 
known by now that there is an uncountable number 
of inequivalent representations of the CAR which 
are both the hope and the harm of the Hamiltonian 
approach to quantum field theory. The problem is to 
find the right representation which makes bona fide a 
given Hamiltonian. The point is that when one works 
in the Fock space, translations are not unitarily 
implementable because of Haag's theorem6 and/or 
ultraviolet divergences.7 The usual approach to find 
the "correct" representations is to butcher the 
Hamiltonian by introducing enough cutoffs to develop 
a well-defined theory in the Fock space, and then try 

to recover the correct theory by some limiting pro
cedure. This approach has been suggested by Wight
man7 and forms the nucleus of the work of Glimm and 
Jaffe.s 

In this note we exemplify Wightman's suggestion in 
the quadratic fermion interaction Hamiltonian. The 
method is the same one used by Guenin and Velo.9 

For space-time dimensions s + I, this model leads 
to a new representation of the CAR which is given 
by a (generalized for s + 1 ~ 4) Bogoliubov trans
formation. For s + 1 ~ 4 in finite or infinite volume, 
and for s = 2 in infinite volume, the new represen
tation of the CAR is equivalent to the bare mass Fock 
representation. In all other cases the two represen
tations are equivalent. 

In Ref. 10 the same model has been studied by 
Glimm's methodll in the form used by Heppl2 and 
Fabrey.l3 
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fields. The limiting fields are well defined on the Fock space associated with the bare mass mo. In the 
limit we get a new representation of the canonical anticommutation relations which is given by a (general
jzed) Bogoliubov transformation. The new representation is not always unitarily equivalent to the 
bare mass Fock representations. 

I. INTRODUCTION 
The existence of many inequivalent representations 

of the canonical anticommutation relations (CAR) 
was pointed out by Friedrichsl and van Hove2; it was 
treated rigorously by Garding and Wightman ,3 
Wightman and Schweber,' and Golodes. 5 It is well 
known by now that there is an uncountable number 
of inequivalent representations of the CAR which 
are both the hope and the harm of the Hamiltonian 
approach to quantum field theory. The problem is to 
find the right representation which makes bona fide a 
given Hamiltonian. The point is that when one works 
in the Fock space, translations are not unitarily 
implementable because of Haag's theorem6 and/or 
ultraviolet divergences.7 The usual approach to find 
the "correct" representations is to butcher the 
Hamiltonian by introducing enough cutoffs to develop 
a well-defined theory in the Fock space, and then try 

to recover the correct theory by some limiting pro
cedure. This approach has been suggested by Wight
man7 and forms the nucleus of the work of Glimm and 
Jaffe.s 

In this note we exemplify Wightman's suggestion in 
the quadratic fermion interaction Hamiltonian. The 
method is the same one used by Guenin and Velo.9 

For space-time dimensions s + I, this model leads 
to a new representation of the CAR which is given 
by a (generalized for s + 1 ~ 4) Bogoliubov trans
formation. For s + 1 ~ 4 in finite or infinite volume, 
and for s = 2 in infinite volume, the new represen
tation of the CAR is equivalent to the bare mass Fock 
representation. In all other cases the two represen
tations are equivalent. 

In Ref. 10 the same model has been studied by 
Glimm's methodll in the form used by Heppl2 and 
Fabrey.l3 
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The model leads to linear field equations whose 
solution is trivial. However, working with the Hamil
tonian, the model is far from trivial. 

II. FORMAL AND CUTOFF HAMILTONIAN 

We consider a Dirac field of bare mass rno in 
(s + I)-dimensional space-time whose free Hamil
tonian Ho is 

Ho = I d"s :ip(O)(x)( -iy· +rno)v,(O)(x): 

= ~ I dpw(p)[a*(p, r)a(p, r) + h*(p, r)b(p, r)], 

where 

(0)( ) 1 I dp ('" ( ) ( ) ill'x 1p X = ----;;; I £., a p, r U p, r; rno e 
(27T) y WII r 

+ ~ b*(p, r)u(p, r; rno)e-ill'X
) , 

ip(O)(x) = (2~)"/2 I ;!II (~b(P' r)u(p, r; rno)e
ill

'
X 

+ ~ a*(p, r)u(p, r, rno)e-ill'X) , 

WII = w(p) = (p2 + rn~)I, 
[a(p, r), a*(p', r')]+ = !5(p - p')!5rr" 

[b(p, r), b*(p', r')]+ = !5(p - p)!5rr,. 

All other anticommutators are equal to zero. We 
summarize the properties of the Dirac spinors in an 
appendix. Ho is a self-adjoint operator on the usual 
Fock space .remo ' associated with a fermion of mass 
rno. 1p(O)(x) and ip(O)(x) are densely defined bilinear 
forms in .remo x .remo ' and bounded operators when 
smeared out with test functions in £2. 

We add now to Ho a new term: 

HI = A j:ip(o>cX)1p(O)(X): dx 

= I dxHrCx) 

= A ~ IdP[U(P, r l ; rno)u( -p, r2; rno) 
r"r2 (WpWp)1 

x a*(p, rl)b*( -p, r2) 

+ u(p, rl ; rno)u( +p, r2; rno) *( ) (+ ) a p, r l a p, r2 
Wp 

which, formally, is the fermion mass renormalization. 
However, HI' and therefore Ho + HI' are not well 
defined on .remo for two reasons: first, because of a 
simple manifestation of Haag's theorem, namely, if 
we let Q o be the Fock vacuum, then 

II(Ho + HI)QoI12 = L~YO~OdX dy[Qo, HrCx)HI(y)QO] 

= I dx dyF(x - y) = 00. 

In the second equality we have used translation 
invariance. Second, because of ultraviolet divergences, 
namely, if g(x) E!D is a form factor which takes 
care of the infinite volume divergence, then 

IIHI(g)QoI12 

,....., IIHIlg)QoI12 

= A2 ~ IdPl dP2\ U(Pl' rl ; rno)u( +P2' r2; rno) 12 
rl.r2 (W W )1 

Pl P2 

x Ig(Pl + P2W 

diverges for s > I since IU(Pl' rl ; rnO)U(P2' r2; rno)1' 
- (I IS 

W P1W 1I2)' 

bounded. Thus we must introduce an ultraviolet 
cutoff K. We do this by restricting the momentum 
integrations in (-K, K). Then our cutoff Hamiltonian 
reads 

H,,(g) = Ho + HIJg) 

= Ho + AI dx :ip~O)(x)1p~O)(x): g(x) 

= Ho + A I dpl dp2g(Pl + P2)xiPl' P2) 

X (U(Pl' rl)V(P2, r 2) *( )b*( ) 1 a Pl,rl P2,r2 
(WP1WP2) 

+ U(-P2,rl)U(Pl,r2) *( ) ( ) 
t a PI, r~ a -P2, r2 

(WP1W P2) 

_V(-P2, rl)v(Pl, r2) b*( )b( ) 
( )

1 PI' r2 -P2, rl 
W P1 W P2 

+ V(-Plrl)u(-P2' r2) 

1 (WP1WP2) 

X b(-Pl' rl)a(-P2, r2») , 

where g is the Fourier transform 

and 
xApl' P2) = I for IPll, Ip21 :::;; K, 

= 0 otherwise. 
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Simple estimations show that Hh(g), K < + 00, is a 
self-adjoint bounded operator for real g(x). Thus, 
HK(g) = Ho + Hh(g), K < + 00, is a self-adjoint 
operator with domain D[HK(g)] = D(Ho). 

III. HEISENBERG FIELDS 

Since HK(g) is a self-adjoint operator, eitHK(g) is a 
well-defined unitary operator. Thus we can define 

Let us write 

"PKuCX , t) = ~ f ~p (I agK(p, r, t)u(p, r, mo)eiP
'
X 

(27T) V Wp r 

+ I bg~(p, r, t)v(p, r, mo)e-iP-X); 

then 
agip, r, t) = itHK(o)a(p, r)e-itHK(o) 

satisfies the Heisenberg equations of motion, namely, 

(1) 

with the initial conditions 

agK(p, r, 0) = a(p, r), b:,cCp, r, 0) = b(p, r). 

To solve these linear equations, we make the following 
ansatz: 

aKip, r, t) = ~ f KiK9)(t, p, r, p', r')a(p', r') dp' 

+ ~ f K~K.O)(t, p, r, p', r')b*( -p', r')dp'. 

(2) 

Substituting (2) into (1), we find that Kil<·g) and K~K.9) 

D")(t, p', r', p", r") 

satisfy a system of integro-differential equations 

OK(K,O)(t p r p' r') 
i 1 "" 

at 
= w(p')KiK,O)(t, p, r, p', r') 

+ A. f dp"g(p" - p')X,cCp", -p') 

x (I u(p", r"; mo)u(p', r'; mo) 

r" (w'w")! 

X KiK,o)(t, p, r, p", r") 

( "" ) (" ) + I v - p , r , mo up, r , mo 
r" (w'w")! 

X K~K.O)(t, p, r, p", r"») 

. oKhc.g)(t, p, r, p', r') 
l at 

= -w(p')K~"·o)(t, p, r, p', r') 

+ A. f dp"g(p" - P')XK(P", -p') 

x (I u(p", r", mo)v( -p', r', mo) 

r" (w'w")! 

X Ki",O)(t, p, r, p", r") 

(p"")(" ) + I v - ,r, mo v - p , r , mo 
r" (w'w")! 

X K~I<·O)(t, p, r, p", r"») , 

with initial conditions 

Ki",g)(O, p, r, p', r') = 15(p - p')15rr" 

K~K.9)(0, p, r, p', r') = o. 
Define 

K(K.9)(t, p, p', r') = e. ,1 , p, r, p, r 
( 

i(f)~'tK(",g)(t ") ) 

e-I(f)~ tK~",g)(t, p, r, pi, r') 
and 

(3) 

(4) 

(5) 

( 

i«(f)'-(f)"l! u(p", r"; mo)u(p', r'; mo) 
e I " , 

1 (" ') w w = - XI< P , -p _II " I , 

A. -;«(f)'+(f)")t u(p , r , mo)v( -p, r, rno) 
e , 

m'mI! 

-( "" ) (' I ») ei«(f)'+(f)"lt u -p , r , mo up, r, mo 
w'w" 

_( "" ) ( I ') • ( 6) -i«(f)'-(f)"ltV -p ,r ,rno v -p, r 
e 

co'ro" 

Then (3) can be written in the compact form 

.£. K(K,9)(t p r pi r') at ' , , , 
= A. f dp"g(p" - p') ~ E")(t, p', r', p", r") 

X K(K.9)(t, p, r, p", r"). (7) 

Theorem 1,' (7) with initial conditions (4) has a 
unique solution, which, smeared out in p with test 
functions in S(:R/), belongs to S(:R,s) in p'. Further
more, this solution, when smeared out in p with test 
functions in S(:R,s), converges in the S topology as 
K -- + 00, and g -- 1 and the limit is the solution of 
(7) withg = 1 and K = +00. 
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Proof: Let 
f(p) E S(:Jl8

). 

Then 

K(K,g)(t, r, p', r') = f dp!(p)K(K,g)(t, p, r, p', r') 

is a solution of 

K(K,g)(t, r, p', r') = K(K,g)(O, r, p', r') + fdt f dp"g(p" - p') ~ I.5K)(t, p', r', p")K(K,g)(t, r, p", r'), 

with initial condition 

(8) 

K(K,g)(O, r, p', r') = (bTT'~(P'») 

Iterating (8) we get the Neumann series 

K(K,g)(t, r, p', r') 

= K(K,g)(O, r, p', r') + Y,?"fdPl ' .. dPn {tdtl {
t1

dt2 .. , (in-l dtng(PI - P')g(P2 - PI) ... gn(P - Pn-l) 
n~l Jo Jo Jo 

x C,~,rnI.5K)(t1' p', 1", PI' r1)£K)(t2' PI' r1 , P2' r2)'" £K)(tn, Pn-l, rn-IPn' rn)K(K,g)(O, r, Pn' rn»). 

From (6) we have 

II£K)(t, p, r, p', r')11 S CI , (9) 

where CI is independent of t, p, r, p', r', and K. Thus 
we get 

IK(K,gj(t, r, p', r')1 

S L c~:n II K(K,g)(O, r, p', r')11 00' (10) 
n~O n. 

where the constant C2 is independent of t, p, r, p', 
r', K, andg. Therefore the convergence of the Neumann 
series is uniform in p', K, and g. The same kind of 
estimates we can make for 

proving the convergence in S(:R 8) as K --+ + 00, g --+ I. 

IV. LIMITING SOLUTION AND THE ASSOCIATED 
BOGOLIUBOV TRANSFORMATION 

For K = +00, andg = l,g(p" - p') = b(p" - p'), 
(3) becomes 

,oKI(t, p, r, P: r') 
I ot 

= -w(p')K1(t, p, r, p', r') 

Amo ( ") + -- K1 t, p, r, P , r 
w(p') 

+ A L iiC -p', r", mo!u(p, r', mo) 
r" W 

x K 2(t, p, r, p', r"), 

. oK2(t, p, r, p', r') 
I ot 

= -w(p')Klt, p, r, p', r') 

Amo ( " + - K2 t, p, r, p , r ) 
w' 

+ A L ii(p', r", mo)v\ -p', r', mo) 
rn W 

X Kit, p, r, p', r"), (11) 

To solve these equations we make the ansatz 

KI(t, p, r, p', r') 

= AI(p, r, p', r')e-in / + A~(p, r, p', r')eint, 

K~(t, p, r, p', r') 

= A2(p, r, p', r')e-int + A~(p, r, p', r')eint, 

where Q(p) = (p2 + (mo + A)2)!. Then 

KI(t, p, r, p', r') 

(
Qw2 + w2 + Amo -int Qw2 - w2 - Amo int) = e + e 

2Qw 2Qw 

x b(p - p')brr., 

(12) 
K 2(t, p, r, p', r') 

A u(p, r, mo)v( -p, r', mo) (-int int).Il( ') = - e -e u p-p 
20. w 

Theorem 2: 

tiKit, p, r) = ~ J KiKg)(t, p, r, p', r')a(p', r') dp' 

+ ~ J K~Kg)(t, p, r, p', r')b*( -p', r') dp', 
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when smeared out with test functions in S(:R!), 
converges, as K ~ + 00, g ~ 1, to 

aCt, p, r) = ~ f K I (t, p, r, p', r')a(p', r') dp' 

+ ~ f K 2(t, p, r, p', r')b*( -p', r') dp' 

in the norm topology of C(JemJ 

Proof' By Theorem 1, it suffices to prove that if 

In ~ f, then a#(fn) ~ a#(f) uniformly. Indeed 

Ila#(fn) - a#(f)11 = Ila#(fn - 1)11 ~ II In - III ~ 0, 

where II In - I II is some S(:R,s) norm. 
This theorem implies that 1p"g(x, f), when smeared 

out with functions in L 2(:R,s), converges uniformly to 

1 f dp 
1p(x, t) = (21T)'/2 Jw

P 

X ! (a(p, r, f)u(p, r, mol/pox 
r 

in C(JemJ 
After some simple manipulations we obtain 

1 f dp 
1p(x, t) = (21T)'/2 (O(p»! 

X (~a(P' r)u(p, r; m)e-irlHiP'X 

+ ~ b*(p, r)v(p, r, m)eirlt-iP'X) , (13) 

where m = mo + A, and 

_( ) ~ (U(P, r; m)lu(p, r'; mol ( ') 
a p, r = '7 (wO)t a p, r 

u(p, r; m)yOv(-p, r'; mo) b*(- '») 
+ (wO)t p, r , 

b-*(- ) _ ~ (U(-P, r; m)lu(p, r'; mo) ( ') p, r - k tap, r 
r' (Ow) 

D(-p, r; m)yOv(-p, r'; mo) b*(- '») + 1 p, r . 
"(OW)ll 

(14) 

In two- and three-dimensional space-time, the sum 
over r' reduces to a single term and the canonical 
transformation in (14) is the ordinary Bogoliubov 
transformation. For this transformation, it is known, 
Uhlenbrock,u Ezawa,15 Klauder and McKenna,16 and 
Berezinp that the new representation is unitary 
equivalent to the original representation if and only if 

fdsp I u(p; m)yOv( -p; rno) /2 < + 00, S = 1,2. (15) 
(Ow) t 

After simple I' gimmics, the integral can be written as 

.lIdS O(p)w(p) - p2 - mmo 
2 p , 

O(p)w(p) 

which is convergent for s = 1, but divergent for s = 2. 
In space of finite volume with periodic boundary 

conditions, criterion (15) reads 

! 1 u(p; m)yOv( -p, mol 12 < + 00 

P (Ow)! 
or 

t! (O(P)W(P) - p2 - mmo) < + 00, (16) 
P O(p)w(p) 

which is satisfied for s = 1, 2. 
For s ~ 3, we get a generalized Bogoliubov 

transformation. This transformation has been studied 
in 10. This study shows that the transformation (14) 
is unitarily inequivalent to the Fock representation 
associated with a fermion of bare mass mo . 

APPENDIX: CONVENTIONS AND SPINORS 

We use the metric 

goo = 1, gii = -1, gllY = ° for fl ¢ Y. 

The Dirac matrices satisfy 

YIlYy + YvYIl = 2gllv ' 

They form an irreducible Clifford algebra whenever s 
is odd. We assume that the y's are unitary and 
yri = Yo, yt = -Yi' We denote u*(p)yO by u(p). 
The spinors satisfy 

(I' . p - m)u(p) = 0, u(p)(y' p - m) = 0. 

(I' . P + m)v(p) = 0, D(p)(y· P + m) = U. 

They are normalized so that 

u*(p, r)u(p, s) = Wi'r8' u(p, r)u(p, s) = ml5.., 

v*(p, r)v(p, s) = wrA., D(p, r)v(p, s) = ml5rs . 

The orthogonality is expressed by 

! u«(p, r)up(p, r) = (I' . P + m)«p/2, 
r 

! vip, r)vip, r) = (I' . P - m)«p/2. 
r 

We need the following properties 

! lu(p, r)v(p', r')1 2 = p . p' - m2 

r.r' 
= w(p)w(p') - p. p' - m, 

u*(p, r)v( -p, s) = 0 = u*( -p, r)u(p, s). 
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Recent contributions to the Lee-Yang-Mohling theory of single-component quantum nuids have 
enabled us to develop a new theory of the quantum statistics for a multicomponent nonrelativistic 
system of charged and neutral particles in thermal equilibrium. With the emphasis as much as possible 
on the physical content of the theory, this paper presents the new formulation of quantum statistics 
with explicit rules for calculating the grand potential and particle and photon momentum distributions. 
The present formalism not only simplifies and corrects an earlier version, but also it has made possible 
clear and systematic procedures for resolving some divergence difficulties that occur in the many-body 
theory of fully ionized gases. 

1. INTRODUCTION 
Interest in controlled thermonuclear reactions, 

stellar atmospheres and interiors, and, more generally, 
plasmas has focused attention on the physics of fully 
ionized gases. Although a theory of the nonequilibrium 
partially ionized gas should be avidly pursued, the 
more modest goal of developing a precursory theory 
of the nonrelativistic fully ionized gas in thermal 
equilibrium is justified in view of the horrendous 
complexity of the problem. Moreover, a study of the 
equilibrium properties of a system can provide im
portant information about nonequilibrium systems
for example, about linear response and transport 
phenomena. 

A few years ago, Mohling and Grandy! developed 
a formalism for calculating thermodynamic properties, 
momentum distributions, and pair-correlation func
tions for a nonrelativistic, multicomponent, fully 
ionized gas in thermal equilibrium, and that theory has 
been used in several calculations. 2 It was later realized 
that two classes of photon self-energy structures [called 
(0,2) and (2, 0) structures] were accidentally omitted 
in the self-energy analysis in MG, and it was therefore 
of interest to amend MG so as to include the missing 
self-energy structures. However, Mohling, RamaRao, 

and Shea3 have recently developed a simple and 
appealing new master-graph theory of a real quantum 
fluid in thermal equilibrium; the formalism in MRS 
applies to a single-component quantum fluid (de
generate or nondegenerate) with a short-range 
interaction. Moreover, Tuttle4 has demonstrated that 
a powerful counterterm technique can be included 
easily in a quantum statistical theory, such as that of 
MRS, based upon the Ursell expansion. Thus, rather 
than revise and correct MG per se, we propose, in 
this paper, to extend MRS to apply to a muIticom
ponent system of charged and neutral particles and 
concurrently to incorporate the counterterm technique 
of TuttIe. The results of our development are expressed 
in terms of diagrammatic expansions for momentum 
distributions and the grand potential. 

It seems characteristic of any many-body theory to 
be plagued by divergencies and spurious results. For 
the systems of interest here, the developments in 
quantum electrodynamics allow us to take cognizance 
of some prospective troublesome features of the 
theory. Thus, from the beginning, we address our
selves to the tasks of renormalizing bare masses of 
charged particles, of dealing with the infrared problem, 
and of summing the so-called Coulomb ring diagrams. 
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ionized gas in thermal equilibrium, and that theory has 
been used in several calculations. 2 It was later realized 
that two classes of photon self-energy structures [called 
(0,2) and (2, 0) structures] were accidentally omitted 
in the self-energy analysis in MG, and it was therefore 
of interest to amend MG so as to include the missing 
self-energy structures. However, Mohling, RamaRao, 

and Shea3 have recently developed a simple and 
appealing new master-graph theory of a real quantum 
fluid in thermal equilibrium; the formalism in MRS 
applies to a single-component quantum fluid (de
generate or nondegenerate) with a short-range 
interaction. Moreover, Tuttle4 has demonstrated that 
a powerful counterterm technique can be included 
easily in a quantum statistical theory, such as that of 
MRS, based upon the Ursell expansion. Thus, rather 
than revise and correct MG per se, we propose, in 
this paper, to extend MRS to apply to a muIticom
ponent system of charged and neutral particles and 
concurrently to incorporate the counterterm technique 
of TuttIe. The results of our development are expressed 
in terms of diagrammatic expansions for momentum 
distributions and the grand potential. 

It seems characteristic of any many-body theory to 
be plagued by divergencies and spurious results. For 
the systems of interest here, the developments in 
quantum electrodynamics allow us to take cognizance 
of some prospective troublesome features of the 
theory. Thus, from the beginning, we address our
selves to the tasks of renormalizing bare masses of 
charged particles, of dealing with the infrared problem, 
and of summing the so-called Coulomb ring diagrams. 
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The first of these problems will be resolved by means 
of the counterterm technique (mentioned above), the 
infrared problem remains to be analyzed in the 
present formalism, and the Coulomb problem can be 
treated by techniques developed in MG. 

lt is our intention to keep this paper as short as 
possible, but yet of sufficient detail to provide neces
sary technical background for the second paper in this 
series. Thus, it may be necessary for the reader to 
consult MG for notation and a few definitions, MRS 
for historical perspective and detail of the new self
energy analysis, Tuttle for the development of the 
counterterm technique (and its relation to Hartree
Fock theory), and all of these papers for references to 
recent literature on the subject. Further discussion of 
this problem and our objectives are given in the 
following paper. 

In Sec. 2 of this paper we present some background 
material which is important for subsequent develop
ments. In Sec. 3 we summarize the quantum sta
tistical theory and discuss the counterterm. technique. 
The rules for the diagrams and the associated vertex 
functions are given in appendices. An application of 
the theory given in the next paper will then make use 
of most of the features of the present development, 
particularly as discussed in Sec. 3. 

2. PRELIMINARY DISCUSSION 

The investigations described herein apply to a 
volume n of charged and neutral nonrelativistic 
particles (with no internal states) in thermal equilib
rium; periodic boundary conditions will be used, and 
the thermodynamic limit will be imposed eventually. 
The system is considered to be multicomponent, and 
the constituent particle species are designated by 
Greek letters IX, fl, '/], ... (the symbol y is reserved 
exclusively for photons). All particles are treated as 
point particles with mass, charge (including zero) and 
spin (where applicable), but spin-dependent inter
actions are not considered. For the subsequent 
analysis it is not necessary to specify the constituents 
of the system; however, we assume that photons, 
electrons, and heavy ions are present in the repre
sentative system. We complete the definition of the 
system by the specification of the nonrelativistic 
Hamiltonian H. In standard notation, the N-particle 
Hamiltonian has the forms 

N 1 ( eZ.)2 
H = H rad + ! ---wi Pi - -' Ai + V2 (2.1) 

i=12Mi c 

(2.2) 

In Eq. (2.1) the label i runs over all particles of all 

species (except photons). Since photons (and, later, 
quasi pArticles ) are created and annihilated continually, 
it is desirable to remove the dependence of the Hamil
tonian on particle number by the use of Fock-space 
methods (in accord with this formulation, statistical 
averages will be formed over the grand canonical 
ensemble). The Hamiltonian in Eq. (2.1) is given in 
occupation number formalism in MG; here, it suffices 
to state explicitly only the free-particle Hamiltonian 
Ho: 

H 0 = ! ! at (kCl)a(kCl)w(O)(kCl), (2.3) 
Cl k Cl 

where the single-particle momentum representation is 
being used and the notation kCl includes the spin 
degrees of freedom with each momentum state. In 
Eq. (2.3) the sum is over all particles and photons, 
and the (unrenormalized or undressed) free-particle 
energy-momentum relations are 

w(O)(kCl) = (lik)2/2M~O) 
for IX = particles, 

w(O)(kCl) = lick (2.4) 

for IX = y(photons). In Eq. (2.1), V2 includes the 
Coulomb potential as well as short-range potentials.6 

Next, we rearrange the Hamiltonian in Eq. (2.2) by 
the addition and subtraction of a one-particle operator. 
Thus, we introduce the operator 

U == L a \k)a(k)u(k) + ! a \k)a(k)S(k) (2.5) 
k k 

== L L at (kCl)a(kCl)C(kCl) (2.6) 
Cl k Cl 

and add and subtract it in the Hamiltonian in Eq. 
(2.2): 

H = Ho + U + V - U == H~ + V - U, (2.7) 

where 
H~ = L L at(kCl)a(kCl)w'(k') (2.8) 

Cl k Cl 
and 

w'(kCl) == w;(k) = w~O)(k) + uaCk) + SaCk). (2.9) 

It is important to realize that in Eqs. (2.5), (2.6), and 
(2.8) the sum over particle species includes photons. 
Thus, uCl(k) and SCl(k) depend upon the particle species, 
and this dependence is displayed by means of a 
subscript, as in Eq. (2.9). In Eq. (2.5), U consists of 
two parts: a part involving uCl(k) (discussed below) 
and a part involving SaCk) which is to be chosen 
specifically to achieve mass renormalization for 
charged particles. Hence, for charged particles we 
write 

(2.10) 
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where 
(2.11) 

and Ma is the experimentally observed mass. With 
Eqs. (2.10) and (2.11) we see that for charged particles 

w~O)(k) + SaCk) = 1i,2k2/2Ma' (2.12) 

which is the correct free-particle ~nergy. 
The interaction Vy in the Hamiltonian in Eqs. (2.2) 

contains the bare masses M(O) which also must be a. 

mass-renormalized. The mass-renormalization pro-
cedure can be completed if we rewrite Vy as follows: 

Vy = VJ7I'Ia(OI--->Ma(l-Da)-l , (2.13) 

with Da given in Eq. (2.11). Thus, the completion of 
our mass-renormalization program requires the simple 
replacement in Vy of M~O) -+ Ma(1 - Da)-l. Before 
discussing the master-graph theory, we wish to make 
a few qualitative comments about the nature of the 
counterterms, particularly ua(k). 

It is important to stress that the ua(k) are completely 
arbitrary: These functions may be discontinuous, 
temperature dependent, volume dependent, and so 
forth. Moreover, the counterterm can be a sum of 
terms, each of which has a different physical inter
pretation. The manner in which any arbitrariness of 
ua(k) and SaCk) can be exploited will depend in
herently upon the system under consideration.. For 
example, it seems likely that entirely different re
arrangements of the Hamiltonian will be useful for the 
low-temperature electron gas (for which Da = 0) and 
the high-temperature fully ionized gas. Since this 
paper concentrates on systems with electromagnetic 
interactions, it is in order to suggest how counterterms 
can be used in calculations of the properties of such 
systems. In Sec. 3 we present the master-graph 
theory, and there we give a straightforward procedure 
for identifying and selecting counterterms. 

We recall that the masses in Ho and Vy in the 
Hamiltonian in Eq. (2.2) are bare masses, and, as 
indicated in Eqs. (2.10)-(2.12), the counterterm SaCk) 
is introduced to renormalize these masses. Another 
feature of the theory is that the quantized electro
magnetic field leads to the virtual emission and 
reabsorption of photons by charged particles (in M G, 
this is called the one-particle problem), and these 
processes lead to predictions of physical as well as 
spurious unphysical effects-the unphysical contri
butions to the theory are to be cancelled by SaCk). 
With regard to physical contributions, it should be 
noted that the electromagnetic potentials Vy in Eq. 
(2.2) are divergent for small photon momenta (the 
infrared problem), and this feature can lead to 
questions of convergence of the quantum statistical 

theory; however, the careful summation of infinite 
series of selected diagrams, along with the density of 
states factor, usually leads to well-defined physical 
quantities. Finally, we mention perhaps the most 
important application of the counterterm technique: 
If U is selected to contain all of the single-particle 
properties exhibited by V (thus identifying the single
particle self-energies) and thereby V - U is made 
small, then one can interpret H~ as describing quasi
particles with energies w:(k) [see Eq. (2.9)] whose 
interaction potential is given by V - U-this situation 
is very favorable for the use of perturbation theory. 
Many of the applications of counterterms alluded to 
above will be made in the following paper. 

3. THE MASTER GRAPH THEORY 

In this' section we present the extension of the 
master-graph theory in MRS to a multicomponent 
system which now contains charged as well as neutral 
particles. The final form of this theory is a finite 
temperature nonperturbative theory· with interactions 
which include the electromagnetic interactions, the 
Coulomb interaction, and short-range interactions 
(with hard cores, if appropriate). At the same time, we 
have included in this master-graph theory the counter
term technique developed by Tuttle. In this paper, 
phase transitions and transport phenomena are not 
considered; instead, we give diagrammatic expansions 
for the momentum distribution and the grand potential. 
In order to avoid excessive use of primes and other 
affixes, our notation differs slightly from that in MRS. 

The master-graph theory is a formulation of 
quantum statistics in which all self-energy structures 
have been summed; the self-energy contributions are 
contained in line factors which are defined by integral 
equations which are somewhat analogous to Dyson 
equations. Thus, here, we present the integral equation 
for the line factors or the master~graph theory; the 
rules for the master graphs are given in Appendix A, 
and the associated vertex functions are given in 
Appendix B. Also, we indicate, in the appropriate 
places, which quantities were omitted in MG.7 

The basic line factors for master graphs are de
fined by8.9 

~P •• (t2' t1, ka
) = b(t~-) - t1)b~ .• + EaCp •• (t2, t1, ka

), 

(3.1) 

where (fl, v) = (1, I), (2,0), (0,2) (that is, fl + v = 
2), Ea = + I if ~ symbolizes a boson, E .. = -I if ~ 
symbolizes a fermion, and Cp .• (t 2, t 1> k a

) is defined 
below. Next, we define the functions 

.M,P •• (t2, t1 , ka) = EaCa(k)[O(t2 - t1) + E .. v~(k)]bp .• 

+ J\,P •• (t2 , t1 , ka
), (3.2) 
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where10 

X (t t kll) = ~ (all different master) 
1',"12,1, -k , 

(fl, v) L-graphs kll 
(3.3) 

(3.4) 

o (x > 0) = +1, 0 (x ~ 0) = 0, gil is the partial 
thermodynamic (or chemical) potential for (X-type 
particles, gy = 0, f3 == (KT)-I, K is the Boltzmann 
constant, T is the absolute temperature, and w~(k) is 
the quasiparticle energy given in Eq. (2.9). The 
master (fl, v) L-graphs, introduced in Eq. (3.3), are 
defined in Appendix A. The integral equations for the 
line factors introduced in Eq. (3.1) are now defined by 
means of the following equationsll : 

Cl.1(t2, t1 , kll) = f dS[~I.I(t2' s, kll).A(,l,1{s, tl , kll) 

+ d«.Y~2.0(t2' S, kll).A(,0.2(tl , S, kll)], 

(3.5) 

fll -
C2•0(t2, t1 , kll) = dq Jo dS[~2.0(t2' S, kll).A(,l,1(tlo S, _kll) 

+ ~1.1(t2' s, kll).A(,2.0(S, tl , kll)]. (3.7) 

The validity of the preceding equations is established 
most easily by iteration. 

Graphical structures with fl outgoing external lines 
and v incoming external lines, where fl + v = 2, are 
called self-energy graphs, and the line factors 

~1'.v(t2' tl , kll) 

in Eq. (3.1) represent sums of all such self-energy 
structures. We emphasize that, in the present formal
ism, (0, 2) and (2, 0) structures have only photon 
external lines.12 The error in MG stems from the 
omission of and concomitant failure to sum up 
structures with only two incoming or two outgoing 
external photon lines. 

For subsequent applications it is useful to decouple 
the integral equation for the line factod~l,1 (t2, 11' kll) 
from thelinefactors~0.2(/2' t l , kll) and ~2.0(t2' fl' kll). 
A formal decoupling can be achieved with the aid of 
the foIl owing three functions: 

~(t2' t1 , -kY) == ()(t~-) - t1) + E,.[(t2 , t1 , -kY), (3.8) 

C(t2' t 1 , - kY) == J: dS~(t2' S, - kY).M,l,l(s, t1> - kY
), 

(3.9) 

Q(t2' t1, kll) == EIlCaCk)[O(t2 - t1) + Ellv;(k)] 

+ Xl,l(t2' t1 , kll) 

+ dll.y ill dSl dS~2.0(t2' Sl' kll) 

X ~(S2' Sl' -kll)XO•2(tl , S2' kll). 

(3.10) 

Now, in terms of these functions, the integral equa
tions for the line factors become 

~1,l(t2' t1 , kll) = d(t~-) - t1) 

+ Ell 1'J dS~l.l(t2' S, kll)Q(S, t}, kll), 

(3.11) 

~0.2{t2' t1 , kY
) = I J 

ds} ds2J(,ois2, SI' kY
) 

X ~l,l(S2' t 2 , kY)~(s}, t}, -kY), 

(3.12) 

~2.0(t2' t1 , kY
) = f: dSl dS2~1,1(t2' S2' kY

) 

X ~(tl' Sl, - kY)J(,2.0(S2, Sl, kY). 

(3.13) 

Thus, the integral equation in Eq. (3.11) involves, in 
a sense, only (I, I) structures owing to the sym
metrical manner in which Q(t2' f1' kG!) of Eq. (3.10) 
combines (0, 2) and (2, 0) structures. The integral 
equations in Eqs. (3.11)-(3.13) are provided dia
grammatically by Figs. 1 and 2. 

-·f + 

FIG. 1. Diagrammatic representation of Eqs. (3.10) and (3.11). 
The graphical symbol for §l.l(t •• fl. klX) is also defined. 
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FIG. 2 Diagrammatic representation of Eqs. (3.12) and (3.13). 
The graphical symbols for go .• (t •• 'l>k~) and g •. o(t •• '1' k~) are 
also defined. 

In Eqs. (3.6)-(3.13) a bar has been introduced to 
characterize quantities with - k Y lines, and this 
notation will be used henceforth. In the case of photon 
lines, the difference between the kernels in Eqs. (3.8) 
[with Eq. (3.9)] and (3. II ) results in two different line 
factors §l,1(ta, t1 , k Y) and g(ta, t1 , _k1). For the 
same reason the counterterms iiy( - k) chosen for the 
_k1 lines must differ from the counterterms u/k) 
chosen for the +kY lines. Thus, such a notation is 
necessary. For particle lines, the present comments 
are not relevant. 

The physical quantities which are of interest in this 
paper are the momentum distribution (n,,(k» (which 
is the average number of oc-type particles with mo
mentum k), defined by 

and the grand potential j, defined by 

a/({J, g, a) = In Tr p, (3.15) 
where 

P = exp (-Of) exp [(J(G - H)] (3.16) 

is the density operator for the grand canonical 
ensemble. In Eq. (3.14) at(k")a(k~) is the number 
operator for the number of oc-type particles with 
momentum k, in Eqs. (3.14) and (3.15) Tr indicates 
the trace in Fock space, and G is the Gibbs potential. 
Thermodynamic functions can be calculated directly 
from the grand potential by partial differentiation 
[see Eqs. (4)-(10) of MG]. In terms of master (1, 1) 
graphs the momentum distribution is given by 

(nik» = v~(k) J: dtfJl,l({J, t, k"). (3.17) 

The grand potential is given in terms of master (0,0) 

and (1, 1) graphs by the following relation: 

af({J, g, a) 

= aF({J, g, a) + 2 Ert 21n [1 + frtv~(k)] 
rt k" 

+ 2 2 iP 
dt[Li~~(t, t, ka

) - L1.1(t, t, krt)] 
rt k 0 

+ .2 .2 ErtC,.(k) (P dt1 dta[O(tl - ta) + frt')l~(k)] 
rt krt Jo 

X §1,l(t2, t1 , k"), (3.18) 

where 

aF({J Q) = ~ (all different master) 
,g, k (0,0) graphs (3.19) 

and the t-dependent functions, such as L~~~(t2' f1' k"), 
needed to calculate the grand potential are defined in 
analogy with those in Sec. 5 of MRS. Explicit examples 
of master (fl, ')I) graphs, for fl + 'JI = 2, are given in 
the following paper. 

The preceding developments mark the end of the 
presentation of the formal quantum statistical theory, 
thus achieving the main goal of this paper. The 
following paper contains further theoretical develop
ments and the explicit calculations of the photon self
energy and momentum distribution. We present now 
a general procedure for selecting a specific class of 
counterterms. 

We direct attention to Eq. (3.11), the integral 
equation for the line factor §1,l(t2 , t1 , k rt), where the 
explicit dependence on Q(ta, t1, k CZ

) is to be noted. 
Clearly, the convergence or divergence properties of 
iterative solutions of this integral equation depend 
quite delicately upon Q(t2 , t1 , kCZ). Moreover, as 
shown in Eq. (3.10), Q(t2 , t1 , k CZ

) depends in a 
particular additive manner (as well as implicitly) upon 
the arbitrary functions Crt(k).13 Thus, the choice of 
C,,(k) can affect very strongly the iterative solutions of 
Eq. (3.11). Quantities multiplied by [O(ta - t1) + 
fa'JI~(k)], but which are otherwise independent of t2 

and t1 , are said to be temperature independent. Thus, 
in Eq. (3.10) for Q(t2, t1, k"), the C,,(k) can be selected 
to cancel temperature-independent terms originating 
from the second and third terms in that equation.a 

The counterterms !ly( -k) can be determined by a 
similar procedure based on Eq. (3.2) for the -k1 case. 
Using the above scheme, one can often select counter
terms which lead to more convergent iterative solutions 
for the line factors and which also achieve the correct 
mass renormalization. After a selection of counter
terms one must still examine the properties of the 
integral equations for the line factors to see how the 
iterative solutions have been affectedl5-it may occur 
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that additional counterterms, based on further itera
tions of the line factor equations, must be selected. 

The above procedure for cancelling temperature 
independent contributions to the line factors does not 
lead to the neglect of any contributions in the theory, 
since the counterterms reappear elsewhere in the 
theory. In particular, the counterterms reappear in 
the Hamiltonian as definite renormalized energies 
w~(k) (including alteration of the masses M~O), whose 
system-independent renormalization is well known in 
quantum electrodynamics). In the sense that Valone 
leads to a slowly convergent or divergent theory (thus, 
V is large) while V - U gives more convergent results 
(so that V - U is small), one finds already one 
justification for interpreting the w~(k) as quasiparticle 
energies. 
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APPENDIX A: RULES FOR MASTER 
(p, 'jI) GRAPHS 

A Pth-order master (I', v) graph is defined to be 
a graphical structure consisting of P cluster vertices 
(but no I-vertices), defined in Fig. 3 and Appendix B, 
which are entirely interconnected by m internal solid 
lines and to which are attached I' outgoing external 
solid lines and v incoming external solid lines. Each 

" 
'2 

k~ 

~ k2 k.) k~ _ k. k, 
Q Y Y 

a 

a 

" 

.~ 
ky{ 
fl 

.~ (a or fl uncharged 
k! and a",y.fl",yl 

fl 

'3 
k? Y 

k3 
• t ~'Zk' k2k» 

k~ 
k. , 

Q Y Y 

FIG. 3. Symbols for the cluster vertices. The corresponding cluster 
vertex functions are given explicitly in Appendix B. 

external solid line carries a single arrow, and each 
internal solid line carries two arrows-one at each end. 
At the head of each arrow there is a dot. If the 
arrow points toward a vertex, this dot is identical with 
the vertex. Three different types of internal solid lines 
are possible, depending upon whether the two arrows 
point in the same direction, point toward each other, 
or point away from each other. A master (I', v) graph 
is irreducible and proper in the sense that the cutting 
of anyone or two of its internal lines must not produce 
two (or three) disconnected graphs, at least one of 
which is a (I, I) (0,2), or (2, 0) graph. Corresponding 
to each master (I', v) graph there is prescribed an 
analytic term according to the following rules: 

Rule 1: To each external solid line assign a pregiven 
momentum with a particle label; if (I', v) =;6 (0,0), the 
incoming particle (not photon) lines refer to the same 
set of particles as the outgoing !ines. External lines 
with different momentum labels or directions are 
treated as distinguishable. 

Rule 2: Two master (I', v) graphs are different if 
their topological structures (including arrow direc
tions, particle-type labels, and external lines, but not 
including the momentum labels of internal arrows and 
the temperature labels which wiJI be assigned below) 
are different. 

Rule 3: To each arrow of the m internal solid lines 
assign a different integer i, i = 1,2, ... ,2m, and a 
corresponding momentum kf (the possible choices of 
()( will be fixed by the associated cluster vertices). 
Assign a different temperature variable Ii to each of 
the P cluster vertices (encircled dots) and to each of 
the dots which occur at the head ends of internal 
arrows that point away from vertices. To each dot of 
the outgoing external solid lines assign the temper
ature variable p. 

Rule 4: Assign to the entire graph a factor S-l, 
where S is the symmetry number. The symmetry 
number is defined to be the total number of permu
tations of the 2m integers (assigned to the arrows of 
the internal lines) which leave the graph topologically 
unchanged (including the positions of these integers 
with respect to the arrows). 

Rule 5: Associate with the entire graph the appropri
ate product of P cluster vertices with the momentum 
variable assignments of Rules 1 and 3. Assign to the 
graph an over-all sign factor ITa "Fa, where Pa is the 
parity of the permutation of the bottom row momenta 
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of (X-type particles in the vertex functions with respect 
to the corresponding ones in the top row. 

Rule 6: To each inlernal solid line with arrow labels 
i and j assign a line factor and a momentum con
serving Kronecker delta as follows: 

()ki.k;~I.I(t, s, k~) when the arrows point in the 
same direction, 

()ki.-k;~!l.2(t, s, k~)()q when the arrows point toward 
each other, 

()k;.-kj~2.0(t, s, kDoa.y when the arrows point away 
from each other, 

where the temperature labels I and s correspond to 
those assigned by Rule 3. In each case, the arrow 
labeled i points toward the dot labeled I. 

Rule 7: Finally, sum over the 2m internal momenta 
and integrate from 0 to p over the temperature 
variables Ii assigned in Rule 3. 

In one case the Rule 5 above needs to be supplemented: 

Rule 5: If two internal lines connect the same two 
cluster vertices corresponding to pair functions (whose 
vertices have temperature labels t3 and t4) and have 
for the associated line factor product 

~1.I(t3' 11, kD~1,1(t3' 12, k~), 

then we must subtract the wiggly-line double bond 
correction 

which would be assigned by the above rules. 

A master (fl, v) L graph, (fl, v) ¥- (0, 0), is defined 
to be a graph with the same structure as a given 
master (fl, v) graph except (a) the fl external outgoing 
lines are assigned temperature variables t i ::;; p, 
i = 0, I, ... , p.., and (b) there is no integration over 
the v temperature variables Ii' j = 0, I, ... , v, at 
the vertices to which the v incoming external lines 
attach. If a master (fl, v) L graph is a subgraph ex
tracted from a larger graphical structure, then there 
are to be no line factors associated with the fl + v 
external line factors of this L graph. 

APPENDIX B: CLUSTER-VERTEX FUNCTIONS 
FOR MASTER (p, v) GRAPHS 

In this appendix we give the explicit expressions for 
the cluster vertex functions which are involved in 
the diagrammatic expansions of master (fl, v) graphs. 
It should be realized that these vertex functions have 
evolved directly from the interaction terms in the 
Hamiltonian. 

The generalized cluster-vertex functions are explic
itly 

i 1i 2/k1 k2\ 
\k3 kit 

p 

= [&(tl - t) + Eav~(kl)][&(/2 - t) + Epvp(k2)] 

X (kl k2) el [Ca(kl)+Cp(k.)-Ca(k 3)-Cp(k.)] (Bl) 
~ ~t ' 
a p 

t 1t 2/k1 k2\ 
\k3 kit 

y 

2 1i2 Z2 ' , 
= _ 7T (XOEa a e2 • e4 [&( ) '(k )] 

OMa/(1 _ Da) (k
z
k

4
)! tl - t + EaVa 1 

(B2) 
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X et[wa'Ckl>+Wy'CkZ)-wa'Ck3)]!5 !5 
k3.Ckl+k2) ml. m3' 

t112{kl k2} 

k3 k4 t 
a p 

= [O(tl - t2) + £a"~(kl)] 

(B6) 

X 12 [KI k2] '0(t2 _ t) + [0(t2 - t1) + £p"p(k2)] 
Lka k4 t 

a p 

X tl [K1 k21' O(tl _ t) + £a£p"~(kl)"p(k2{ [K1 k21'. 
Lka kJt Lka kJt 

a paP 
(B7) 

In Eqs. (B2)-(B6), 0(0 = e2(lic)-1 is the fine structure 
constant, and the Kronecker deltas conserve momen
tum and spin (mi is the spin projection); the photon 
polarization vector is represented by ei • 

The symbol used in Eq. (BI) is defined by 

(k1 
ka 

k2) = -[(k1' k21 Vit) Ika, k4) 
k4 t 

a p 

+ £a (k1' k21 Vit) Ik4' ka)] for 0( = {J, 

(k1 k2) = -£a£p (k~, k~1 Vit) Ik~, k~) for 0( ¢ {J. 
ka k4 t 
a p (BS) 

In Eqs. (BI) and (BS), 0( and (J are both charged 
particles and 

<k~, k~1 Vit) Ik~, k~) 
= (47TZaZpe2/0q2) 

X exp t[W~0)(k1) + w1°)(k2) - w~O)(ka) - w10)(k4)] 

X !5ckl+kl). Ck3+k4)!5ml. m3!5mz.m" (B9) 

where Vc corresponds to the Coulomb interaction 
between two particles, one of charge Zae and the other 
ofchargeZpe; q = ka - k1 is the momentum transfer. 

In Eq. (B7) the primed bracket symbol (excluding 
hard-core potentials) is 

t2fk k ] I 

Lk: k: t 
a p 

= exp t[ -u..(ka) - uP(k4)] 

X {exp t[u..{k1) + UP(k2)]t
z
[:: 

(BlO) 

a p 

where 

+ £a (k1' k21 R(t1' t) Ik4' ka) 
for 0( = {J, 

2 = £a£p (k~, k~1 R(tb t) Ik~, k~> tl~l kj 
ka k t 

P for 0( ¢ (J. (Btl) 

In Eq. (Bll), the operator R(t1' t) is defined by 

R(t1' t) = - .£ exp [t1H~2)] ot 
X exp [-(t1 - t)HC2 )] exp [- tH~2)], (B12) 

where the" superscript on H~2) and H(2) means "two
particle"-compare Eq. (2.1) with N = 2. The 
operator R(t1, t) is discussed in detail in MI, and its 
matrix elements (called pair functions) will not be 
analyzed here. It is worth observing that the pair 
function represents the effective interaction for short
range forces and, being expressible in terms of wave
functions or reaction matrices, is well behaved even 
when a hard-core interaction is present. In Eq. (Bll) 
neither 0( nor (J can be a photon, and the operator 
R(t1' t) is defined only for nonelectromagnetic inter
actions. 

* This research was begun while at the University of Wyoming; 
the final stages were completed at Lawrence Radiation Laboratory 
(Berkeley) while supported by Associated Western Universities, Inc., 
through contract with the U.S. Atomic Energy Commission. 

1 F. Mohling and W. T. Grandy, Jr., J. Math. Phys. 6, 348 
(1965), hereafter referred to as MG. 

I See, for example: W. T. Grandy, Jr., and F. Mohling, Ann. 
Phys. (N.Y.) 34,424 (1965); C. R. Smith, Ph.D. thesis, University of 
Colorado, 1967, unpublished; I. K. Hwang and W. T. Grandy, Jr., 
Phys. Rev. 177, 359 (1969); and E. A. Nosal and W. T. Grandy, Jr., 
Ann. Phys. (N.Y.) 55, I (1969). 

3 F. Mohling, I. RamaRao, and D. W. J. Shea, Phys. Rev. A 1, 
177 (1970), hereafter referred to as MRS. 

4 E. R. Tuttle, Phys. Rev. A 1, 1243, 1758 (1970), hereafter 
referred to as Tuttle. 

6 The notation MiO) is used for the bare mass of the ith particle. 
Omission of the superscript zero means that the dressed or renormal
ized mass is to be used. 

6 In this paper we concentrate on systems containing charged 
particles; in particular, we do not treat degenerate Bose systems 
(which are discussed quite adequately in MRS), nor do we discuss 
the short-range interaction, since this is treated in MRS and F. 
Monling, Phys. Rev. 122, 1043 (1961), hereafter referred to as MI. 
Moreover, it seems unrealistic to include the possibility of Bose
Einstein condensation in a fully ionized gas. For the sake of complete
ness, the pair function is included in the definitions of the cluster 
vertex functions in Appendix B; however, explicit rules to prevent 
the occurrence of forbidden wiggly-line double bonds are given in 
MRS. 

• It is important to note that while this paper, in effect, simplifies 
and corrects the self-energy analysis in MG, the diagrams and the 
integral equations for the line factors are now entirely different from 
those in MG. 

• In Eq. (3.1) the delta function represents a single internal line 
(and the dummy temperature variable is removed in this case), and 
the presence of t~-) requires t. > tl to prevent the occurrence of 
certain forbidden loops which otherwise would not be eliminated 
explicitly by the rules. 

• In Eq. (3.1) the momentum k CZ is the momentum preassigned to 
the external lines. Conservation of momentum requires that the 



                                                                                                                                    

MICROSCOPIC THEORY OF A MUL TICOMPONENT SYSTEM. I 1427 

external lines of (1,1) structures have the same momentum and that 
the external lines of (0, 2) and (2, 0) structures have momenta equal 
in magnitude and oppositely directed. 

10 On the right-hand side of Eq. (3.3), a factor of l5(t I - t 1) is to be 
included with the term corresponding to an (0, 2) L graph which has 
both external lines attached to the same vertex. 

11 It is seen from Eqs. (3.5H3.7), with Eqs. (3.1H3.3), that the 
quasiparticle energy distributions v~(k) of Eq. (3.4) enter the theory 
in a very explicit manner. 

12 In MRS the exist(:nce of (0, 2) and (2, 0) structures is tanta
mount to high quantum mechanical degeneracy in Bose fluids (at 
extremely low temperatures); it is interesting to note that these 
structures are important (for photons) in ionized gases at all temper
atures. 

JOURNAL OF MATHEMATICAL PHYSICS 

13 The quantities in Eq. (3.10) are actually functionals of the 
C«(k); thus, a selection of C«(k) on the basis of the above procedure 
leads in general to integral equations for the counterterms. 

14 It is reasonable to inquire whether there will arise terms in 
Q(t I • tl • kll) of a form which can be cancelled by the counterterm in 
Eq. (3.10). The general answer to this question is not known. but 
explicit calculations show that such terms usually occur and that 
their cancellation by counterterms eliminates most divergences in 
the theory. 

15 In essence, this procedure regroups terms in the integral 
equations for the line factors in such a way that an analytic continu
ation of the line factors is achieved. In this process of analytic 
continuation. single-particle energies w~OI(k) are renormalized to 
quasiparticle energies w~(k). 
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On the basis of the master-graph formulation of quantum statistics in the preceding paper, the proper
ties of photons in a nonrelativistic, muiticomponent, fully ionized gas in thermal equilibrium are investi
gated. The photon self-energy is calculated by summation, to a\l orders, of selected diagrams, and it is 
proposed that the solution is formally exact. Next, the photon momentum distribution is calculated, 
in the high-temperature, low-density limit, to second order in the fine-structure constant. Several non
perturbative results are obtained which are significant even in lowest order. The lowest-order results 
have an interesting relation to the pair-Hamiltonian approximation and the Bogoliubov transformation, 
and this relation is discussed. Finally, the counterterm technique of the master-graph theory is employed 
to accomplish mass renormalization through second order in the fine-structure constant. The investi
gation is valid for particle densities p « IOU particles/cm3 and for absolute temperatures T ~ 10. 0 K 
(but large enough for a high degree of ionization). 

1. INTRODUCTION 
It is reasonable to expect that quantum mechanics 

and quantized Maxwell-Lorentz electrodynamics can 
serve as a basis for a microscopic theory for calculating 
accurately the properties of a nonrelativistic fully 
ionized gas in thermal equilibrium. In the preceding 
paperl such a theory was proposed, where the goal 
has been to develop a theory that is not only rigorous, 
but also is tractable in practice. 

Three type of divergences are prominent in a many
body theory of the equilibrium fully ionized gas: the 
ultraviolet, the Coulomb, and the infrared diver
gences-all are of electromagnetic origin. Thus, we 
are concerned with developing techniques for dealing 
with these divergences. The counterterm technique 
developed in I can be used to remove the ultraviolet 
divergence by means of mass renormalization, and the 
Coulomb divergence has been effectively approached 
by selective summation of the so-called ring diagrams.2 

In a nonrelativistic theory, the infrared divergence has 
not yet been eliminated in a fundamental manner. In 

this paper, we avoid certain perturbation theoretic 
difficulties arising from the infrared divergence by 
finding noniterative solutions or by selective sum
mations of diagrams. In some applications the infrared 
divergence can be isolated by a Bogoliubov transfor
mation of the photon operators, and relevant aspects 
of this technique will be discussed. 

For the system of interest in this paper, there has 
been considerable activity directed toward the 
calculation of the photon momentum distribution in 
the high-temperature, low-density region3- 8 ; of course, 
a comprehensive treatment has not yet been achieved 
owing to the inherent complexity of the problem. 
Several of the recent investigations4- 7 have been based 
on the master-graph formalism of MG, and a re
newed interest in the problem was created by the 
discovery that MG is substantially in error for certain 
self-energy structures [called (2,0) and (0, 2) struc
tures]. These self-energy structures are included 
properly in I, and it is of interest in this paper to use 
the master-graph theory of I to learn the effects of a 
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complete photon self-energy analysis on previous 
results. Also, it is of interest to explore the usefulness 
of the counterterm technique given in I. 

In this paper we present results of calculations of 
the photon self-energy and momentum distribution. 
Thus, in Sec. 2 we give necessary preliminary details 
about the system. In Sec. 3 we outline the calculation 
of the photon self-energy; the result obtained is based 
on an extensive partial summation procedure, and it 
is suggested that our solution may be formally exact. 
Next, in Sec. 4, we calculate the photon momentum 
distribution to second order in the fine-structure 
constant. In both Secs. 3 and 4, the effects of the 
(2,0) and (0,2) structures are investigated. In the 
final section, Sec. 5, we summarize the general nature 
of these studies. The counterterm which achieves 
mass renormalization to second order in the fine
structure constant is presented in the Appendix. 

2. THE MODEL SYSTEM 

In this section we discuss briefly the properties of 
the system under study and the ranges of certain 
physical parameters which characterize the system. 
The basic model of the system is discussed in detail 
in I; here, we simplify that model by neglecting short
range forces and by imposing the high-temperature, 
low-density limit so that the Coulomb interaction can 
be neglected. Thus, we are interested in a multicom
ponent, nonrelativistic fully ionized gas in thermal 
equilibrium, where the dominant interaction is the 
transverse electromagnetic interaction between par
ticles and photons. 

Since the system is nonrelativistic, thermal energies 
must be much less than particle rest energies, and 
photon energies must be insufficient for pair pro
duction; thus, we have the conditions 

and 

(2.1) 

(2.2) 

where {3 == (KT)-I, K is the Boltzmann constant, Tis 
the absolute tempera.ture, Mit is the mass of IX-type 
particles and c is the speed of light in vacuo. In Eq. 
(2.2) we have introduced the particle energy wa(k) = 
/j2k2j2MIt and the photon energy wy(k) = lick (lik is 
momentum). In the high-temperature, low-density 
limit the fugacity Za for IX-type particles is given 
approximately by2 

Zit == exp ({3ga) ~ PaA.!(2Sa + lr1 «1, (2.3) 

where ga is the chemical potential (and gy = 0), Pa is 
the number density, A.a is the thermal wavelength, 

given by 
(2.4) 

and Sit is the spin quantum number. The inequality in 
Eq. (2.3) implies that the average interparticle spacing 
p;l is much larger than the thermal wavelength Aa 
and reflects that in the high-temperature, low-density 
limit, particle states are weighted statistically by the 
Boltzmann factor. On the other hand, photon 
statistics and dynamics are treated entirely quantum 
mechanically. 

The definition of the high-temperature, low-density 
limit is completed by requiring the Debye length to 
be much larger than the interparticle spacing; this 
restriction, with Eq. (2.3), is equivalent to the con
dition 

(2.5) 

where the composite plasma frequency Wp is defined by 

W; = ~ W;(IX) = ~ 47TPae2Z!/MIt, (2.6) 
a a 

Wp(lX) is the plasma frequency and Za the charge 
number of IX-type particles. The inequalities in Eqs. 
(2.1), (2.2), and (2.5) are mutually compatible for the 
following temperature and density regions: 

00 « T < 1060 K, 

P « 1024 particles/cm3• (2.7) 

3. THE PHOTON SELF ENERGY 

The basic quantities in the master-graph theory of 
I are the line factors §P.v(t2, t1, kit) [throughout this 
paper ft + v = 2]. In this section we concentrate on 
gI.I (t 2 , t1 , kY), defined as the solution of the integral 
equation, Eq. (1.3.11),1.9 

gI,it2, tI , k Y) 

= 6(t2 - tI ) + s: dsgI .lt2, s, kY)Q(s, tI , kY), (3.1) 

where the kernel Q(t2' 11, kY) [Eq. (1.3.10) with IX = y1 
is 

Q(t2 ,tI ,kY) 

= Uy(k) [0(/2 - 11) + v;(k)] 

+ .](,1.I(t2 , tl , k Y) + f: dSI dS2.](,z.0(t2, SI, k Y
) 

X {f(S2, SI, -kY)J(,0.2(t1 , S2, kY). (3.2) 

In Eq. (3.2) J(,P.v(t z, 11' k Y
) is given by the sum of all 

different master (p, v) L graphs and ~(t2' t1 , -kY) is 
given by [see Eqs. (1.3.8) and (1.3.9)]1° 

!j(t2, t}, -kY) 

(P -
= O(t2 - t}) + J( ds!j( t2, S, - kY).M,}.}(s, t}, - kY). 

o ~.~ 
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r 
a 

'J«(/) • 
t.t 

a 

r 

FIG. 1. The two master (I, J) graphs of order iXo 

In Eq. (3.3) we have 

viI I(t2, 11, -kY
) 

= ui-k)[O(t2 - t1) + iii-k)] + X I ,I(tZ ' fl' -kY
), 

(3.4) 

where X,1,l(t2, t1 , - kY) is defined diagrammatically 
analogously to :1\,1.1(t2, t l , kY). Our objective now is to 
calculate the photon self energy; to do this we first 
examine the contributions to the photon countertermll 

uy(k) in Eq. (3.2) through second order in the fine
structure constant 0(0' where 0(0 = e2Jlic. Thus, as seen 
from Eqs. (1.2.4) and (1.2.9), this amounts to a re
normalization or dressing of the vacuum photon 
energy lick to 

w;(k) = lick + uy(k). (3.5) 

There are 18 master (fl, '1') graphs of order 0(0 and 
IXg, and these are given in Figs. 1-4. [The rules for 
writing down the analytical expressions for master 

tf!Ja r 
cv(3) r r 
U\.I,I • 

yG G ~
ar 

(4) 

'iX"" r r 
r • Q 

r r 

r r 

FlO. 2. The six master (I, J) graphs of order iX~ which contail 
ultraviolet divergences. 

C1J (Ill a 
U\..I,' 1I 

FIG. 3. The remaining six master (I, I) graphs of order iX~-these 
graphs do not lead to ultraviolet divergences. 

(fl, '1') graphs are given in Appendix A of I.] In order 
to gain insight into the general structure of the photon 
self-energy, we must go beyond the diagrams in Figs. 
1-4 and examine contributions to the second and third 
terms in Eq. (3.2) which arise from higher-order 
iterations. Thus, we iterate Eq. (3.3) to obtain 

ij(t2' 11' - kY) = c5(t2 - II) + .A(,1,l(t2, t1, - kY) 

+ f: dsJ(,1,1(t2 , s, -kY)J(,l,l(s, t1 , -kY) + ... , 

(3.6) 

where J{,1.I(t2, t1 , -kY) is defined in Eq. (3.4). We 

c"'LI(l) 
V\.O,l • 

a a ~ y-.z-irtl 

'V<~,)2 • 12~1 'V{~.)o • y ~ 
~~_~ Q a 

FIG. 4. The four master (2, 0) and (0,2) graphs of order iXo 
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use Eq. (3.6) and rewrite Eq. (3.2) in the iterated form 

Q(t2' t1, kY) = uy(k)[0(t2 - t1) + lI;(k)] 

+ fJ(,t~~(t2' tI , kY
) + iP 

dSl dS2{[ tJ(,~~~(t2' SI ,kY
) ] 

x [c5(S2 - SI) + .M,1.ls2' SI' -kY
) 

[P - - ] + Jo ds..A(,1,l(s2, S, -kY)..A(,l.l(S, SI' -kY) + ... 

x [t~~~(tl,S2,kY)J}. (3.7) 

In this paper we discuss explicitly the iterations which 
arise from the graphs in Figs. 1-4; thus, in Eq. (3.7), 
i runs over the 14 graphs in Figs. 1-3, j runs over the 
two (2,0) graphs in Fig. 4, I runs over the two 

(0,2) graphs in Fig. 4, and JL1•1 (12 , 110 -kY) will 
be approximated by JL~~:(t2,tl' -kY

) [see Eq. (3.4) 
and the second graph in Fig. 1), since 

j(,!~Ut2' 11' -kY
) ~ 0 

[see Eq. (3.18), below]. Next, it is convenient to 
separate uy(k) into two parts 

uy(k) = Uy(k)l + u;(k), (3.8) 

where U (k)I is the contribution to uy(k) from (1, I) 
graphs [the first sum in Eq. (3.7)], and u;(k) is the 
remaining contribution which involves the (2, 0) and 
(0, 2) graphs [arising from the sums over j and 1 in 
Eq. (3.7)]. 

It is straightforward to write down the analytic 
expression for J(,~~i(t2' fI' kY), i = 1,2, ... ,14, in 
Eq. (3.7) and then to identify the corresponding self 
energies U~i)(k).8 Here, for the sake of illustration, we 
give the approximate expressions for the two graphs in 
Fig. 1. We use 

~1.1(t2' t1 , k~) ~ t5(tz - tI), (3.9) 

the lowest order approximation to the particle line 
factor in Eq. (1-3.11), to obtain, assuming mass 
renormalization has been performed (see the Ap
pendix) ,12.13 

(1) I' 277 /i
2

oco '" 2(28 1)A1.:1 J(,1.1(t2,tI,k)~-~fZ~ ,,+ ~ 

x ! lIikI)[O(tz - tl ) + lI;(k)], (3.10) 
kl 

where 

Y 27Tn4('J.o '" Z2(28 1)M-2 F(12 , tl , k ) = - --k" ,,+ ~ 
Ok IX 

x ! (k2 ' ek)2Wllt5kl.(ka+k) 
kl.k, 

x [0(t2 - t1)lIik2) + (J(tl - tS)lI..{kl ) 

+ E"lIlk1)1I..(k2)] exp [(ti - t2) WI], (3.12) 

WI = w,,(k1) - w,,(ks) - w;(k), (3.13) 

lI;(k) = [ePWy'(k) - lrt, (3.14) 

pik) = {eP[w,,(k)-g,,] - E~t\ (3.15) 

E" == + 1 for ('J. = boson, E .. = -1 for ('J. = fermion, 
and ek is the photon unit polarization vector (as in I, 
we are using the Coulomb gauge), In the high
temperature, low-density limit as expressed by Eq. 
(2.3) and with the nonrelativistic condition in Eq. (2.2), 
we have from Eqs. (3.lO) and (3.11) the approximate 
photon self-energy contributionsll 

u~I)(k)1 ~ /i2ro!/2/ick, 

u~2)(k)1 ~ 167T2/i21'/.0k-3 

~ 2M-I ,{-2 [wikH! 
X .;- p~Zrt .. " [w;(k)t _ [wik)]2 

(3.16) 

(3.17) 

Here, we see that the choice in Eq. (3.16) leads to the 
result 

j(,i~kt2' 11' -kY
) ~ .A(,~~I(/2' t1, kY) ~ O. (3.18) 

Once the mass-renormalization counterterm has been 
introduced, a straightforward, but tedious, calculation 
leads to the conclusions 

14 

!u~i'(k)I «u~2)(k)I «u~l)(k). (3.19) 
i=3 

Thus, the contributions u~i)(k)I' i = 3, ... , 14, can 
be neglected. 

Now, we examine the contributions to u;(k) which 
arise from the temperature independent parts of 
J dfJ(,~~~~J(,~~~ in Eq. (3.7). To do this, it is useful to 
simplify the notation; thus, corresponding to the 
appropriate terms in Eq. (3.7), we identify sym
bolically the following temperature independent quan
titiesll : 

u;(k) = ! U;(k)jlPr"" (3.20) 
i,l.p.r.··· 

where, in simplified notation, 

{ 
(P . (.) (Z) ( ) 

U;(k)ilpr'" = - Jo dSI dS2J(,2~0(SI)J(,0.2 Ss 

X b(S2 - SI) + .A<.,f.l(S2, Sl) [ -( ) 

+ (ft dsj(,~pi(S2' s)j(,~r~(s, Sl) + ... J} , (3.21) 
Jo" TIP 
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and TIP denotes the temperature-independent part. 
In what follows, we examine Eq. (3.21) withp = r = 2 
[recall Eq. (3.18)], and the p and r subscripts used in 
Eq. (3.20) will be suppressed. 

Next, we attempt to discover the general structure 
of uy(k); in order to do this, we start with a detailed 
examination of the three leading order contributions 
to Eq. (3.20) given in Figs. 5-7. We find, after 
some tedious manipulations,14 

U;(k)12 = U~(k)21 C3.23) 

where 
= - [U~1l(k)IU~2)Ck)I]W-ICl - Rrl

, (3.24) 

W = w;(k) + lii -k), 

W4 = waCkl) - w",Ck2) + w;(k), 

WI = w",(kl) - w",(k2) - wi -k), 

(3.25) 

(3.26) 

(3.27) 

and WI is'given in Eq. (3.13). The important point 
here is that temperature integrals and momentum 
sums have decoupled in such a way as to enable 
factorization of terms in Eq. (3.21) and the summation 
of the resultant geometric series. With the results in 
Eqs. (3.22)-(3.24), we obtain for Eq. (3.20) 

u;(k) ~ - [U~ll(k)1 + u~2)(k)I]2W-I(1 - R)-l. (3.28) 

We have examined Eq. (3.20) for all combinations of 
the graphs in Figs. 1 through 4 (as well as for a few 
more complicated graphical structures) and have 

+ 

~, 
Y~' 

Q 

8 

+ ••• } 
TIP 

u; (kI12=-{ y~fJ tpy"'., y 
y fJ Y + 

Y Y fJ 
a 

a 

8 

: •• .1 
'j TIP 

+ 

a 
FIG. 6. The diagrammatic form of the series in Eq. (3.21) for j = 1, 

1= 2. 

obtained the more general result 

u;(k) = [Uy(k)I]2W-1{[iiy( - k)l - Uy(k)I]W-1 
- 1 tl, 

(3.29) 

where Uy(k)l is to be obtained from Uy(k)l by changing 
k to -k and then replacing w;( -k) by -w;(k) 
wherever this quantity occurs inside momentum sums. 
Now, we introducel5 

w;Ck) == lick + Uy(k)l + u;(k) == W;(k)l + u;(k), 

(3.30) 

wi -k) == lick + iii -k)l' (3.31) 

li''yCk)1 == lick + Uy(k)l' (3.32) 

and use Eq. (3.29) to rewrite Eq. (3.8) in the form 

w;(k) = W;(k)l - [Uy(k)1]2[W;(k) + Wy(k)lr\ (3.33) 

which, in turn, can be solved for w;(k) to give 

w;Ck) = i[uik)l - uik)l] 

+ t{[W;Ck)1 + wyCk)tl2 - 4[uik)I]2}t. (3.34) 

Here, it is to be realized that the simple form of Eq. 
(3.34) is deceptive, since it is actually a nonlinear 
integral equation. 

p ., 

"~ (";-{ '~r + r~r 
a 

8 

+ 

a Q 

FIG. 5. The diagrammatic form of the series in Eq. (3.21) for j = 1, FIG. 7. The diagrammatic form of the series in Eq. (3.21) for j = 2, 
1=1. 1=1. 
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fJ 

:p. + Y~Y 
CI 

FIG. 8. The diagrams which, in 
lowest order, are equivalent to the 
pair-Hamiltonian approximation. 

We suggest that Eq. (3.29) and, hence, Eq. (3.34) 
are formally exact. Of course, this assertion is based 
only on the experience gained by the detailed exami
nation of the perturbation series in Eqs. (3.7) and 
(3.21) with the approximation given in Eq. (3.9). 
Also, we note that the inclusion of the Coulomb 
interaction would not alter the procedures used above. 
A general proof ofthis assertion, if one exists, has not 
yet been developed. The main question is whether 
energy denominators occurring in Eq. (3.21) can be 
factorized (to give decoupling). 

For the 14 graphs in Figs. 1-3, relabeling leads to 
the result 

14 

Uy(k)l - Uy(k)l ~ 2 [u~i)(k)l - u~il(k)l] = O. (3.35) 
i=l 

Moreover, using Eq. (3.19) and the analogous relation 
for u~il(k) and assuming the high-temperature, low
density limit, we have for Eq. (3.34) 

w;(k) ~ [(lick)2 + 1i2w; + 2Iicku~2)(k)l]t, (3.36) 

where u~2)(k)1 is given by Eq. (3.17), and Eqs. (3.16) 
and (3.35) have been used. In fact, Eq. (3.36) is given, 
to a good approximation, by 

w;(k) ~ [(lick)2 + 1i2W;]t == wr(k), (3.37) 

because, for all k, 12Iicku~2)(kMwr(k)]-21 is bounded 
by (2W;)-I2" 1]"W;(IX) which is always small, since 
w; ~ W;(IX) and 1],,« I [see Eq. (2.1)]. Thus, in 
conclusion, Eq. (3.37) represents accurately the photon 
self energy (in the high-temperature, low-density 
limit). 

It is interesting to note that the photon self-energy 
in Eq. (3.37) corresponds precisely to that obtained in 
the pair-Hamiltonian approximation, which is dia
grammatically equivalent to considering only the two 
graphs in Fig. 8. Moreover, as will be indicated in 
Sec. 4, the pair Hamiltonian can be diagonalized by 
a Bogoliubov transformation ,16 and the resulting 
quasiphoton energy is that given by Eq. (3.37). The 
dominant nature of Eq. (3.37) as an approximation to 
w~(k) in Eq. (3.34) suggests that the pair Hamiltonian 
is a good starting point for a perturbation theoretic 
development-this point of view will be adopted 
henceforth. At the end of the following section, the 
pair Hamiltonian and the Bogoliubov transformation 
are discussed in detail. 

4. THE PHOTON MOMENTUM DISTRIBUTION 

In this section we calculate the photon momentum 
distribution (ny(k» [which is the average number of 
photons with momentum k-see Eq. (4.16), below]. 
Thus, we are to evaluate [see Eqs. (1.3.14) and 
(1.3.17)] 

(ny(k» = v;(k) iP 
dS§l,1({3, s, kY), (4.1) 

where v~(k) is given in Eq. (3.14), and the line factor 
§I.I(t2, 11, k Y

) is given by Eq. (3.1). The choice of 
counterterms made in the preceding section leads to 
the cancellation of all temperature independent parts 
of Eq. (3.2), so that the kernel Q(t2,II ,kY) in Eqs. 
(3.1) and (3.2) involves now only temperature depend
ent parts (TDP).H 

Fl[Jst, we observe that the vertex functions for the 
electromagnetic interactions [Eqs. (I.B2)-(1.B6)] 
give rise to factors of Ilk in Eq. (3.2) so that the 
iterative solution of Eq. (3.1) is not valid for k --+- 0; 
thus, we should always seek noniterative solutions of 
Eq. (3.1). It is easy to find the exact, noniterative 
solution of Eq. (3.1) in the pair-Hamiltonian approxi
mation (which corresponds to the two graphs in Fig. 
8). However, since the contributions of the (2,0) and 
(0,2) photon self-energy structures are of particular 
interest, we go beyond the simple pair-Hamiltonian 
approximation and include the leading order contri
butions to §1,1(12 , 11, k Y) which arise from these 
structures. Thus, instead of the graphs in Fig. 8, we 
examine those in Fig. 9. Corresponding to the dia
grams in Fig. 9 and for the selection of counterterms 
made in the preceding section, the kernel in Eq. (3.2) 
is approximately 

Q(t2' t1 , kY
) 

~ [O(tl - t2) + liy( -k)]E exp [(t2 - tl)W], (4.2) 

where 
(4.3) 

fJ 

CPH ,~, ,,~, 
Q Q 

+,~,. Y~Y}T 
Q Q 

D P 

FIG. 9. The diagrams considered in the calculation of the line 
factor in Eq. (4.5). 
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and Wis given in Eq. (3.26). Now, with Eq. (4.2), the 
line factor in Eq. (3.1) is obtained by solving the 
integral equation 

~Ll(t2' t1, k Y
) "'" b(t2 - t1) + s: ds~i.tCt2' s, kY)E 

x [O(tl - s) + ii/ -k)] exp [(s - t1)W]. (4.4) 

In the high-temperature, low-density limit U~I) (-kh 
is given approximately by Eq. (3.16) and U~2\ - kh by 
Eq. (3.17); thus, in this case, the kernel of Eq. (4.4) 
diverges for k - O. This causes no problem since the 
exact, noniterative solution to Eq. (4.4) is found to be 

~~.1(t2' 11' k Y
) = 15(12 - 11) + E[O(t1 - (2) + M] 

x exp [(t2 - t1)(W - E)], (4.5) 
where 

M-l = exp (-PE){I + [ii y( _k)]-I} - 1. (4.6) 

Next, we use Eq. (4.5) as an approximate solution to 
Eq. (3.1) and introduce the lowest order temperature 
dependent contribution of the diagrams in Figs. 1-
3, namely that from the second diagram in Fig. 1. 
Thus, to this order, we obtain 

~1,1(t2' t1, kY
) ~ ~i .1(t2 , t1, k Y

) + F( t2 , t1, kY
), (4.7) 

where F(t2' t1 , k Y) is given by Eq. (3.12). Since Eq. 
(3.12) has a factor of k-l, Eq. (4.7) cannot be used to 
construct an iterative solution of Eq. (3.1) for small k. 
Analogous to the procedures used in the preceding 
section, we have developed a partial summation 
program to obtain solutions to Eq. (3.1) which cause 
no problem for small k. However, the resulting 
analytical expressions are not particularly illumi
nating and are perhaps not useful, since it is difficult to 
assess the relative importance of neglected terms in 
the integral equation. With these points in mind, we 
use Eq. (4.7) to estimate the photon momentum 
distribution in Eq. (4.1). In the high-temperature, 
low-density limit we obtain, for Eq. (4.1) with Eq. 
(4.7), 

(ny(k» "'" v;(k) + v;(k)EM(W - E)-1 

x {exp [peW - E)] - I} + (2phckr1 

x L li2w;(tX)[w;(k) + WaCk)t2. (4.8) 
~ 

We wish to explore the meaning of this result, by 
examining its lowest-order approximation; thus, we 
use Eq. (3.19), Eq. (3.16) for u~l)( -k)1 and Eq. (3.37) 
for w~(k) to obtain17 

(ny(k» "'" [f-(k)]2 + {[f+(kW + [f_(k)]2}vr(k) 

+ (2{Jlick)-1 ! h2w!(tX)[wr (k) + w",(k)r2
, (4.9) 

'" 

where 
r!+(k»)2 - [!_(k)]2 = 1, (4.10) 

[f+(k)]2 = [wr(k) + w~l)( -k)] [2wr(k)r\ (4.11) 

vr(k) = {exp [(Jwr(k)] - 1}-l, (4.12) 

with w~l)( -k) = lick + U~l)( -kh. We see that Eqs. 
(4.8) and (4.9) diverge as k-1 for small k; this same 
divergence is also exhibited by the Planck or free
photon distribution function. However, this kind of 
behavior is of no consequence, since in calculations of 
all measurable quantities the divergence is removed by 
the density-of-states factor. Thus, in lowest order, we 
have obtained a result which does not suffer from the 
infrared divergence. It is interesting to note that the 
first term in Eq. (4.9) is independent of the system 
temperature; the electrodynamic origin of this term 
is not clear. 

In closing this section we wish to indicate the 
connection between Eqs. (3.37), (4.9), and the pair 
Hamiltonian Hp. It is straightforward to extract Hp 
from the system Hamiltonianl6 ; the result is 

Hp = ! {(lick + li2w;/2lick)at (k)a(k) 
k 

+ h2w;(2lick)-I[a \k)atc -k) + a(k)a( -k)]}, 

(4.13) 

where at (k) and a(k) are photon creation and annihi
lation operators. The pair Hamiltonian can be 
diagonalized by means of a Bogoliubov transfor
mation; thus, one introduces the quasiphoton 
creation and annihilation operators b t (k) and b(k) as 
follows: 

at(k) - Uat(k)Ut == f+(k)bt(k) - f_(k)b( -k), 

a(k)- Ua(k)Ut ==f+(k)b(k) - f_(k)bt(-k), (4.14) 

where f+(k) and f_(k) are given by Eqs. (4.10)-(4.11). 
One readily verifies that 

H~ = UHpU t = ! wr(k)b\k)b(k), (4.15) 
k 

where wr(k) is given in Eq. (3.37). Now, we can also 
relate the Irue photon momentum distribution and 
the quasi photon momentum distribution. If we intro
duce the transformation in Eq. (4.14) into the defi
nition of the photon momentum distribution, namely 

(ny(k» == Tr [pat(kY)a(kY)], (4.16) 
we obtain 

(ny(k» = [f_(k)]2 + Uf+(k)]2 + ff_(k)]2} 

X Tr [p'bt(k)b(k)] 

- f_(k)f+(k) Tr {p' [b t(k)b t( -k) 

+ b(k)b( ~k)]}. (4.17) 
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In Eq. (4.16) p is the density operator for the grand 
canonical ensemble, and in Eq. (4.17) 

p' = UpUt . (4.18) 

One observes that Tr [p'bt(k)b(k)] is the quasiphoton 
momentum distribution. The quasiphoton momentum 
distribution has been calculated earlier (for the two 
diagrams in Fig. 1, as well as for a Coulomb cor
rection),6 and, on the basis of Eq. (4.17), the result is 
in accord with our lowest-order results for the true 
photon momentum distribution. 

We see that Eq. (4.17) is, in lowest order, equivalent 
to Eq. (4.9); this suggests that the pair Hamiltonian 
is a useful choice of unperturbed Hamiltonian for a 
perturbation theory of interacting radiation and 
charges. IS Moreover, Eq. (4.17) provides the formal 
relation between the photon and quasiphoton momen
tum distributions; however, this relation is not as 
useful as it may appear, since it is now necessary to 
construct a calculational scheme for evaluating the 
last two terms in Eq. (4.17) [note that these terms are 
inherently (2,0) and (0,2) structures]. Finally, we 
observe that the infrared divergence does not occur in 
the quasiphoton representationI6 ; thus, in Eq. (4.17), 
the infrared divergence has been relegated completely 
to the factors involvingf+(k) and f-Ck). 

5. DISCUSSION 

A principal goal of this investigation was to 
determine the importance of the complete photon 
self-energy analysis on the calculations of the proper
ties of photons in a fully ionized gas. The most 
interesting result of this study is the photon energy
momentum relation given in Eq. (3.34), and we note 
that the form of this expression is determined primarily 
by the analysis of the (2,0) and (0,2) photon struc
tures; thus, these structures, which have not been 
included completely in any of the prior investiga
tions,3-7 playa very significant role in determining the 
dressed photon energy. 

The expression for the momentum distribution in 
Eq. (4.8) also has certain features not observed before, 
since earlier calculationsS- 7 did not include the self
energy analysis of (2,0) and (0,2) structures, and 
since some of these calculations6.7 were for the 
quasi photon momentum distribution. It is recalled 
that the noniterative result in Eq. (4.5) was important 
in determining the result in Eq. (4.8). At this point, we 
remark that a complete understanding of the properties 
of photons in an interacting system (as considered 
herein) cannot be based solely on the quantities which 
we have investigated, and additional functions must 
be determined. In particular, knowledge of the 
dynamic structure factor is of extreme value, since this 

can be used to understand the modes of propagation of 
photons and also the related lifetimes. 

In Sec. 4 we have indicated that in the photon 
momentum distribution the infrared divergence can be 
extracted by means of a Bogoliubov transformation, 
but that it will be difficult to calculate the resulting 
expression. Since the infrared divergence is of electro
dynamic origin, it would be more pleasing to analyze 
this problem on a more fundamental level. Thus, we 
are currently pursuing the infrared problem, along the 
lines initiated by Kibble,I9 by using a nonseparable 
Hilbert space for describing photon states. 

As a result of this investigation, we conclude that 
the new formalism in I, in addition to performing a 
complete self-energy analysis, is much simpler in 
practice than its predecessor. 2 As a direct outcome of 
the simplifications introduced by the new formalism, 
it has been possible to sum certain important infinite 
series to all orders. Another important feature of the 
theory in I is the counterterm technique. It is apparent 
that the technique is particularly well suited for 
investigating the self-energy properties associated with 
single particles or photons (as opposed to collective 
excitations); examples of this type of self-energy 
problem are provided by mass renormalization, the 
dressed photon energy and the one-particle problem of 
MG.20 The Coulomb and infrared divergences seem to 
be less susceptible to a direct application of the 
counterterm technique. 

The connections between the line factors in I and 
single-particle Green functions have been established 
recently,21 Thus, starting with the line factors in Sec. 
4, we could now calculate the normal and anomalous 
single-particle Green functions for the equilibrium 
fully ionized gas-such calculations have been per
formed. 22 However, in the present paper, we have 
observed consistently the (12 - tI)-temperature de
pendence established in the Green function theory.21 
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APPENDIX 

In the calculations of this paper no use is made of 
the explicit expressions for the (1, 1) graphs of order 
IX~ in Figs. 2 and 3, since (after mass renormalization) 
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they are much smaller than the other contributions 
which are taken into account. On the other hand, if 
the expressions for the graphs in Fig. 2 are examined, 
it is found that (before mass renormalization) these 
expressions diverge for large photon momentum-this 
is a manifestation of the ultraviolet divergence of 
quantum electrodynamics. The need for mass re
normalization occurs because in the Hamiltonian the 
electromagnetic field associated with each charged 
particle is separated from the particle so that bare 
particles interact with the total electromagnetic field. 
Since it is meaningless from an experimental stand
point to separate a charged particle and its associated 
field, it is clear that the separation mentioned above 
must be a mathematical convenience and can be of no 
further consequence. The mass-renormalization tech
nique developed in I is designed to replace bare
particle masses by their experimentally observed 
masses. Below, we outline how mass renormalization 
is used to cancel the ultraviolet divergences in the 
graphs in Fig. 2 to obtain the finite contributions from 
these graphs. 

The mass-renormalization procedure developed 10 I 
is quite straightforward; however, since some skill may 
be involved in applying the technique, we now indicate 
how one approaches the selection of the mass-re
normalization counterterm. Thus, following I, we 
combine the kinetic energy of the bare particle 

w~O)(k) = 1i2k2j2M~O) (Al) 

and the mass-renormalization counterterm 

(A2) 

so as to achieve the correct single-particle kinetic 
energy: 

w,ik) = w~O)(k) + S,,(k) = 1i2k2j2M". (A3) 

Above, M~O) is the bare mass, Mo: is the observed mass, 
and 

(A4) 

As noted earlier,s the kinetic energy in Eq. (A3) is to 
be quadratic in k so that Do: must be independent of k. 
Then, the identity in Eq. (A4) is used to re-express the 
bare masses in the interaction vertices in terms of Mo: 
and D", which in turn determine S,,(k). 

Next, we combine the diagrams in Figs. 1 and 2 as 
follows: 

J(, (I) + J(, (3) + J(, (4) 
1.1 1.1 1.1 

J(,i~~ + J(,i~~ + ... + J(,i~~· 
(AS) 

(A6) 

By relabeling, one can extract a factor J(,1~~ in Eq. 
(A5) and a factor J(,1~I in Eq. (A6); in the remaining 
factors in Eqs. (AS) and (A6) it is possible to select 

the quantity D", to cancel the ultraviolet divergences in 
these terms. We state the result: 

D", = (47Tf.X.oJi2Z!/Mo:Q) 

X 2 (ek • e4)2k41 [w,ik4) + w;(k4)r1
• (A7) 

k, 

This defines a counterterm, Eq. (A2), which cancels, 
through order f.X.~, the ultraviolet divergences every
where in the theory. In order to obtain Eq. (A7) the 
following identities (relating to the angular inte
grations) are useful: 

where 2;., is the sum over polarizations of the photon 
with momentum k4 • 
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In the first of a series of papers on the global representation theory of SU(2, 2), with particular 
emphasis on the Poincare subgroup, we study the two principal continuous series of unitary irreducible 
representations. These are defined by operators on Hilbert spaces of functions over a six-dimensional 
manifold, and after an automorphism of the group by a real orthogonal transformation [in precise 
analogy to that used in the mapping SU(1, 1) -->- SL(2, R)l we display these in such a form that the 
Poincare subgroup SL(2, C) X 1'. appears in a simple fashion. The generators of translations, dilations, 
Lorentz and special conformal transformations are given as differential operators, and by using these 
we find explicit expressions for the eigenvalues of the three Casimir operators of the group. Finally, we 
perform the reduction of the two series when restricted to the Poincare group. It is found that all those 
principal series representations of IP enter which allow a certain value of helicity. 

I. INTRODUCTION 
There has been recentlyl considerable interest in 

the conformal group2 0(4,2) and its spin-covering 
group SU(2, 2), together with much speculation as to 
its precise role in physics. There are at least two ways 
in which this group arises-in internal symmetries as 
a subgroup of SU(6, 6) and as a dynamical group 
acting on the space-time coordinates-and its physical 
significance in the two cases is best expressed by 
entirely different reductions-to the maximal compact 
subgroup SU(2) X SU(2) X U(l) in the former case 
and to the Poincare group IP in the latter. Although 
almost all the applications so far have used only the 
degenerate representations of SU(2, 2), it is certainly 
of considerable importance and interest, both physi
cally and mathematically, to have a detailed knowl
edge of the entire representation theory; and so in a 
series of papers we shall present this, with special 
attention being paid to the Poincare subgroup. 

Much previous work (see, e.g., Refs. 3, 4) on the 
representation theory of SU(2, 2) has concentrated 
on the Lie algebra. The most inclusive material on 

this topic is by Ya03 (where references to earlier 
work on these lines may be found), who discusses the 
reduction to the maximal compact subgroup, evaluates 
the matrix elements of all the generators in terms of 
certain constants, and, by imposing on these suitable 
reality conditions, obtains conditions for the repre
sentation to be unitary and irreducible. This method 
naturally raises questions of completeness, because 
of the amount of algebra involved, and indeed Yao 
has omitted one principal series of representations. 
Globally, the theory is very ill known; there is a 
solitary paper by Klink5 (which treats only the 
series omitted by Yao) and treatments of sundry 
degenerate representations by various authors, 6,7 but 
otherwise it is far from the completeness attained 
algebraically. 

There is, however, a little-known paper by Graev8 

on the theory of U(p, q), and in this paper we take that 
as our basis of studying the global representation 
theory and the reduction of a given representation with 
respect to the Poincare group when the group elements 
are restricted to the latter. Because the material, 
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18 W. R. Chappell, W. E. Brittin, and S. J. Glass, Nuovo Cimento 
38, 1186 (1965). 

17 Rayleigh-Schrodinger perturbation theory has been applied to a 
fully ionized gas in a pure state, and the expression for the average 
number of photons has a form analogous to Eq. (4.9). 

18 There are some disadvantages in partially diagonalizing the 
Hamiltonian by means of the Bogoliubov. (or any other) transfor
mation, since the explicit appearance of some interaction terms is 
prevented, thereby obscuring the physical consequences of these 
interactions. For example, Hwang and Grandy (Ref. 6, Sec. 5) were 
unable to achieve mass renormalization in the transformed theory, 
and found it necessary to appeal to the untransformed theory. 

JOURNAL OF MATHEMATICAL PHYSICS 

19 T. W. B. Kibble, J. Math. Phys. 9, 315 (1968). 
20 If iterations of the line factor of a charged particle are intro

duced, then processes involving the emission and reabsorption of 
photons by the charged particle are introduced. Such iterations, 
called radiative corrections, give rise to physical effects as well as to 
unobservable (system independent) electromagnetic self energies. 
The one-particle problem is concerned with the cancellation of these 
spurious, particle self energies. The As transformation of Sec. 4 of 
MG was developed to treat this problem, and we note here that the 
counterterm technique of I encompasses the As transformation. 

21 J. RamaRao and C. R. Smith, Phys. Rev.A2, 843 (1970). 
22 C. R. Smith, unpublished. 
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group SU(2, 2), together with much speculation as to 
its precise role in physics. There are at least two ways 
in which this group arises-in internal symmetries as 
a subgroup of SU(6, 6) and as a dynamical group 
acting on the space-time coordinates-and its physical 
significance in the two cases is best expressed by 
entirely different reductions-to the maximal compact 
subgroup SU(2) X SU(2) X U(l) in the former case 
and to the Poincare group IP in the latter. Although 
almost all the applications so far have used only the 
degenerate representations of SU(2, 2), it is certainly 
of considerable importance and interest, both physi
cally and mathematically, to have a detailed knowl
edge of the entire representation theory; and so in a 
series of papers we shall present this, with special 
attention being paid to the Poincare subgroup. 

Much previous work (see, e.g., Refs. 3, 4) on the 
representation theory of SU(2, 2) has concentrated 
on the Lie algebra. The most inclusive material on 

this topic is by Ya03 (where references to earlier 
work on these lines may be found), who discusses the 
reduction to the maximal compact subgroup, evaluates 
the matrix elements of all the generators in terms of 
certain constants, and, by imposing on these suitable 
reality conditions, obtains conditions for the repre
sentation to be unitary and irreducible. This method 
naturally raises questions of completeness, because 
of the amount of algebra involved, and indeed Yao 
has omitted one principal series of representations. 
Globally, the theory is very ill known; there is a 
solitary paper by Klink5 (which treats only the 
series omitted by Yao) and treatments of sundry 
degenerate representations by various authors, 6,7 but 
otherwise it is far from the completeness attained 
algebraically. 

There is, however, a little-known paper by Graev8 

on the theory of U(p, q), and in this paper we take that 
as our basis of studying the global representation 
theory and the reduction of a given representation with 
respect to the Poincare group when the group elements 
are restricted to the latter. Because the material, 
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otherwise rather lengthy, falls into several parts, we 
shall in the present paper treat only the two principal 
continuous series; subsequent papers will examine 
the principal discrete series and, finally, the comple
mentary and degenerate representations. Our treat
ment has but little in com(Jlon with the algebraic 
approach, and so we shall not discuss the latter 
further. 

The principal series of representations of a group 
is the set of all those that occur in the reduction of the 
regular representation, whether they are continuous 
or discrete. All other (unitary-irreducible) representa
tions are termed supplementary, and are recognizable 
by two features: the existence of a two-point measure 
in the scalar product defining the Hilbert space (com
plementary series) or definition over some lower
dimensional transitive manifold (degenerate series); 
the two classes are not exclusive. The complementary 
series are familiar from the groups SL(2, C) and 
SL(2, R), but the degenerate are not so well known 
because, for these groups, they reduce to trivialities. 
The mere fact of being degenerate need not exclude a 
representation from the principal series [contrast the 
timelike representation of IP induced by the trivial 
representation of SO(3) with the spacelike one 
induced by the trivial representation of SO(2, 1)]; 
but, with SU(2, 2), the two classes are indeed disjoint, 
and we shall consider them separately. 

The principal series then are induced by representa
tions of the nonisomorphic Cartan subgroups of 
SU(2, 2); since there are three of these (with three, 
two, and one compact generators, respectively), we 
expect three distinct series of unitary irreducible 
representations-the principal discrete series do and 
the first and second principal continuous series d1 

and d2 • Representations of all three can be specified 
by a single ansatz involving constants whose ranges 
differ in each case; but these transformations are, of 
course, upon different Hilbert spaces, and it is found 
that the ansatz is reducible in the discrete series. We 
shall treat this in a later paper, and here concentrate 
upon d1 and d2 • 

It proves convenient to follow Graev8 and choose 
a different realization of the group as that set of 
transformations leaving invariant the form Zl Z4 + 
Z2Z3 + Z3Z2 + Z4Z1; unfamiliar though this may be, 
it is derived from the usual matrix realization by a 
real orthogonal transformation, and bears precisely 
the relation to SU(2, 2) that SL(2, R) bears to 
SU(1, 1). In this formalism, the Poincare subgroup 
[or, rather, its spin-covering group SL(2, C) X T4] 

appears in a very simple fashion; not only is the 
representation made more transparent, but the reduc
tion under IP is displayed clearly in the case of d2 • For 

d1 the situation is more complicated because of the 
definition of the appropriate Hilbert space, but we 
continue to use the same realization. In Sec. II we 
discuss this group of matrices and introduce some 
subgroups, and then in Sec. III define the representa
tions d1 and d2 • 

In Sec. IV we give the generators of the group as 
differential operators, and calculate the three Casimir 
operators and their eigenvalues. While these are not 
so important in this paper, they will be necessary later 
when we wish to compare our degenerate representa
tions with the formalism of other workers-in 
particular with the list of Yao.3 Finally, Sec. V 
shows how the representations reduce when restricted 
to the Poincare group. One subset of d2 has indeed 
been treated by Klink,5 but he notes only the absence 
of lightlike particles (which can be deduced at once 
from the fact that these are principal-series repre
sentations) and does not discuss any remaining 
restrictions. We find that, in fact, the only restriction 
upon the principal-series representations of IP 
occurring in d1 and d2 is given by that label m of the 
representations of SU(2, 2), which is always integral. 
This appears through a covariance condition involving 
a certain SL(2, C) subgroup, and the result is that 
only those representations of IP enter which allow a 
helicity of tm, and these have unit multiplicity. 

After completion of this work we have received a 
preprint by Yao which deals with the same prob
lems. 9 His approach is algebraic, and his results, 
which are in complete contradiction to ours, are 
derived by considering the matrix elements of the 
generators. For the principal series his results are left 
implicit, and we cannot comment on them except to 
remind the reader that there are actually six principal 
discrete series8 of SU(2, 2). For his 14 degenerate 
series, however, he finds that only spacelike or time like 
or lightlike representations of IP occur, and this is very 
different from our results, which will be presented in a 
subsequent paper. We believe that this discrepancy is 
due to nonintegrability of his representations of the 
algebra to those of the group. Thus, it is known that 
in the reduction SL(2, R) =:> 0(1, 1) the subgroup 
is degenerate, and is labeled by a discrete parameter 
t; but all matrix elements of generators between sub
spaces of different t vanish identically. (See Mukunda, 
Ref. 10.) We believe that a similar situation holds here 
when taking matrix elements between states with 
differing signs ofM2. 

II. SU(2,2) AND MATRIX REALIZATIONS 

The pseudo-orthogonal group SO(4,2) has 15 
generators, whose commutation relations in canonical 
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form can be written 

[J«p, Jy6 ] = g«/P6 + gP6J«1 - gp/«6 - grz6Jpy, (I) 

where the indices run from I to 6 and the metric is 
( + + + - + -). This is not very transparent physi
cally, and so we define the new generators 

Jp.5 + JP.8 = -2Lp., 

JP.5 - Jp.8 = -Pp., 

J58 = D. 

(2) 

Replacing the label 4 by 0 and the metric by ( + - - - ), 
we then find that Jp.y and Pp generate the Poincare 
group: 

[Jp.y, Jpl1 ] = -gfJpJYtl - gYI1JfJP + gfJl1Jyp + gvpJfJtI' 

[JfJV, Pp] = -gp.pPy + gvpPp., 

[PfJ , Py] = 0; ft, '/I = o· .. 3, 

while the remaining commutation relations are 

[Pp., Lv] = JfJy-DgfJY [PfJ , D] = PfJ , 

(3) 

[Lp, JfJY] = gp.pLy - gypLfJ [LfJ , D] = -Lp., (4) 

[h, Ly] = 0 = [Jp.y, D]. 

In the remainder of this work we shall use the relations 
(3) and (4), often replacing the quantities Jp.v by the 
rotations Ji = !€iikJik and the boosts Ki = JOi . Notice 
that our definition of Lp. differs by a factor of 2 from 
that of some authors. 

Under the one-parameter subgroups generated by 
these elements of the Lie algebra, a position vector 
xfJ is transformed as follows: 

exp (Ol3): xfJ 

= (XO, Xl cos 0 + X2 sin 0, X2 cos 0 - Xl sin 0, x3), 

exp ({K3): xfJ 

= (xo cosh { + X3 sinh {, Xl' X2' Xo sinh { + X3 cosh {), 

exp (YfJPfJ): xp. = xp. + YfJ ' 

exp(dD): xp. = dxfJ , 
2 

y XfJ + sfJx 
exp (SyL): XfJ = p. 2 2· (5) 

1 + 2sfJX + S X 

The four L fJ , which generate an Abelian group, 
are known as special conformal transformations or 
vector accelerations; D is a dilatation. The Lie algebra 
can be integrated to give (among other possibilities) 
either 0(4,2) or its spin-covering group SU(2,2)
that is, that connected component of each which 
includes the identity. We shall consider the latter. 

This is defined as the set of transformations leaving 

invariant the Hermitian form Iz~1 + Iz~1 - Iz~1 - Iz:l. 
It proves convenient to carry out an automorphism 
of the group by a real orthogonal matrix and consider 
instead the isomorphic group g defined by the metric 
tensor 

s- ( }= (, '). (6) 

which corresponds to the form ZlZ, + Z2Za + ZaZ2 + 
Z,Zl. g is then the set of all (unimodular) matrices g 
which satisfy the condition 

gtSg = S. (7) 

We now enumerate some subgroups of g. For 
compactness, we write the matrices with elements 
which are themselves matrices of appropriate order: 

K 3 k = (k_l ~:) , 

z 3 Z = e 1)' 
b) Re b = 0 = Re c, 
-ii ' 

(8) 

t kl E GL(2, c)/U(l), k_lskl = s. 

The unimodularity condition restricts kl to have real 
determinant; if this is relaxed, the group becomes 
isomorphic to U(2, 2). In all of the above definitions 
the submatrices were themselves 2 X 2: We now pass 
on to some other subgroups, 

(

/_1 i 1-10 i 1_11) ________ .1 _____________ ! _________ _ 

J(, 3 l = i 10 i 101 , 

---------:-------------I----~~---

I i 

=-~-T----------(-
-cx ! ! 
----~--r-~--p--j --~-

c + c + cxp + &f3 = O. (9) 

In J(" the submatrix lo is 2 x 2. We need not give 
explicitly the remaining restrictions on the elements 
of these matrices, for they can all be obtained from (7). 
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Finally, we shall need two further subgroups: 

A 3 A - (~'~~!~-I-l~~:~). 

Y 3 Y = (t~=):~=~I··~·), 
Reb = 0 = Rec. (10) 

It is not difficult to show that, except for a lower
dimensional manifold, any element g E g can be 
written uniquely as a product of these matrices. Some 
forms that we shall use are 

g = kz =" = Ay 
and 

(11) 

where the superscript T denotes matrix transposition. 
We shall need various invariant measures: By direct 
computationS we find that on the subgroups z, Z, Y 
these are 

dfJ(z) = - Da db dc, 

dfJW = Doc DfJd(Im c), (12) 

dfJ(Y) = dfJ(z) Dw. 

Because of the factorization (11), any element of the 
group defines a transformation of these manifolds, 
z -- z', etc.: 

zg = kz', 'g = '''- yg = Ay', (13) 

under which the invariant measures (12) behave as 

dfJ(z')/dfJ(z) = 1~1-4, 

dfJ(OldfJW = 1'11-6
, 

dfJ(y')/dfJ(Y) = 1;'2~1-2. 

(14) 

Now consider further the subgroup z. This is a 
four-parameter Abelian group, and it is cohvenient 
to map it onto the translation subgroup T4 c rP of 
the Poincare group by setting 

a = iXl - X2' 

b = i(xo + xJ. 
c = i(xo - xa). 

(I 5) 

Then under the transformation (13), this manifold of 
2 x 2 matrices z is mapped by the block-diagonal 
group D into . 

z -- z': (zs)' = kllzskllt. (16) 

Restrict kl to 8L(2, C); then this is precisely the 
mapping of a position vector dictated by a homogene
ous Lorentz transformation. Hence the Poincare 
subgroup of g is realized by the matrices d and z (that 
is, by kT-y, and allowing det kl to vary in magnitude 
enlarges this to the similitude group. 

III. CONTINUOUS NONDEGENERATE 
REPRESENTATION OF G 

The representations in the principal series of the 
group U(p, q) are induced by representations of a 
Cartan subgroup. Since there are (q + 1) of these 
that are nonisomorphic, there are (q + 1) distinct 
principal nondegenerate series of unitary irreducib~e 
representations (UIR's) of U(p, q); of these, one IS 

discrete while the others are specified by p + q - r 
integers and r real parameters. These considerations 
apply also to the unimodular groups (except that 
here one less integer is needed), and so § has two 
nondegenerate principal continuous series that we 
label (following Graev) d1 and d2 • Some representa
tions of the latter have been examined by Klink6 ; we 
are not aware of a global treatment of the former. 

It turns out that the description of the representa
tions d1 reduces entirely to a consideration of the 
discrete series of SU(1, 1) together with the principal 
series of G L(l, C); d2 , on the other hand, needs only 
the representations of GL(2, C). Graev8 discusses each 
continuous series separately, finding it convenient to 
select a matrix realization of the group in which the 
subgroup of diagonal matrices coincides with the 
relevant Cartan subgroup; but since we wish to obtain 
a single realization, wherein the Poincare group 
appears explicitly, we shall not do this but keep to the 
metric of (6). This corresponds to Graev's discussion 
of d2 and is, as we have seen, particularly convenient 
in displaying rP. 

A. The Series d2 

We therefore start by considering the second 
continuous series d2 • Let Hz be the space of all Coo 
functions j(z), z E Z, square-integrable with respect 
to the invariant measure dfJ(z); and let fI be the space 
of functions j (w) upon which is realized by T a given 
UIR (mlm2PIP2) of GL(2, C).n Then the representation 
(mlm2PIP2) of U(2, 2) is defined on the tensor product 
space 

(17) 
by 

(
dfJ'(Z'») 1 

T;:!(w, z) = Tk1:!(W, z,)· dp.(z) , 

where 
zg = kz' (18) 
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and t acts on f as a function of w: That is, 

tle1:f(w) 
= /Ll/m1+iP1+ILl -ml /.A./ma-ml+iPa-iPl-2 .A.ml-m~( w'), 

wki = k' w', (19) 

w == (~ 1)' k' = e-iLl 
~). (20) 

This specifies a representation of U(2, 2); we assert 
(but do not prove here) that it is irreducible. When 
restricted to 8U(2, 2) ,....., ~ by the requirement that 
det ki (Le., Ll) be real, it remains irreducible. Com
bining the transformations of the manifolds z and w, 
we are led at last to the representation of ~ by 
operators on functions defined over the manifold Y: 

T::f(y) = IAli Pl-I(sgn At 1J./m-ipl+iPa-2.A.-m. fey'), 

yg = Ay', (21) 

f E Je2 C I3(y). 

This is clearly unitary; for PI =;t. P2' it is also irreduc
ible (in the case of equality we may be led to degenerate 
representations, as will be shown in a subsequent 
paper). When the sign parameter € is zero, we have the 
representation treated by Klink.5 Notice that it is 
specified by one integer, two real parameters, and a 
parity. 

B. The Series dl 

In the second series d2 , the Cartan subgroup was 
generated by {D, Ja, Ka}; here we take instead that 
given by {Ja, D - Ka, Po + Pa - 2Lo + 2L3}, which 
has only one noncompact generator. Graev's treat
ment of this series is not directly applicable with the 
metric (6), and so we present a modified version. 

Consider first the matrix 10 of (9). This has the form 

P _ itP(a ib) "o-e , 
ic d 

ad + be = 1, (22) 

with all parameters real, and so forms a subgroup 
isomorphic to 8L(2, R) x U(l)""" U(l, 1). Given the 
strictly positive integer 2k and integer n of the same 
parity, we can define its representations (n, k) in the 
discrete series in the usual wayll upon the space Hie of 
functions defined modulo polynomials of degree less 
than 2k - 1 and square-integrable with the inner 
product 

by 

(f, g)k = i2k- I f f(X)g(2lc-I)(X) dx, (23) 

T,,!:f(x) = ei 'TI<p;.2k-2(x'), (24) 

where 

( 1 ) i. = (A-
I ill) ( 1 ) eitP. 

ix 1 0 A ix' 1 ' 
(25) 

x, A, f-t are all real. Define H, to be the space of all Coo 
functions 1m, {E Z, that are square-integrable with 
respect to the measure df-t( {); then Jet is defined as the 
completion of the tensor product 

Jet = Hie 0 H,. (26) 

The representation (m, n, P, k) of U(2, 2) is then 
defined upon Jel by 

T;:f(x,~) = I/tlm+iP-S/lmT,,:: f(x, n, 
{g = I{', (27) 

where It, 10 are defined from I by (9) and rk acts 
upon f as a function of x. The factors in front we 
recognize as a representation of GL(l, C). 

Once again, we can combine the transformations 
of the manifolds ~ and x by multiplying together the 
appropriate matrices. If we now identify this product 
manifold with Y and change notation accordingly, 
the partial derivative in (23) is transformed into a 
more complicated quantity and the new realization of 
Jel is given by the scalar product 

(f, gh = - f f(y)o2k-Ig(y)df-t(y), (28) 

where 

. ... a _ a a - a (29) 
-Iu = w- - w- + - + wW-. ad aa ab ac 

The functions I E Jet (y) are now defined only modulo 
multinomials in a, ii, b, c of total degree less than 
2k - 1. Upon this space the representation (27), 
when restricted to ~, becomes 

T!:f(y) = A21e-2IAlm+iP-2k-t A-"'.f(y'). (30) 

Now this representation is reducible. It is easy to 
show, by choosing a representative set of elements of 
~, that, with the variables 

P = a + wb, 

a = b, 

'T = wa - wa + c + wwb, 

w, 

the space Jet has two invariant subspaces: of functions 
which are analytic in the right or left half-planes of a, 
respectively. We shall call these spaces Jet and Jei; 
the corresponding restrictions dt and d1 are then irre
ducible. 

Notice that the differential operator (j of (29) 
becomes just olaa. The positivity of the norm in the 
spaces Jet separately now follows by passing to the 
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Fourier transform and using the Plancherel formula, 
in exact analogy to the principal discrete series of the 
groups SU(l, I). 

IV. REPRESENTATIONS OF THE LIE 
ALGEBRA 

We shall need later the eigenvalues of the Casimir 
operators in order to compare our degenerate repre-

sentations with those of other authors-in particular, 
with the algebraic constructions of Yao.3 To find 
these, we must first know the generators themselves as 
differential operators; these can be obtained in a 
straightforward manner by direct differentiation of 
the transformations (21) induced by the relevant one
parameter subgroups, and we list them below. In 
each case the subgroup is defined uniquely by (5): 

a 
PJL :-, 

oXp 

D: LXp ~ - f(O' + 2ip! - 2), 
oXJL 

J 1 : Xa ~ - X2 ~ + tiel - w2
) ~ - li(l - w2) o~ + VO'(w - w) - iim(w + w), 

oX2 oXa ow oW 

J 2 : Xl -!- - Xs ":lO + HI + w2) ~ + t(1 + w2) 0_ - !O'(w + w) + !m(w - w), 
uXa uXI ow ow 

J 
a 0+ 1 , • a ._ a 

a: Xli - - Xl - 21m + 1W - - 1W ---:: , 
OX1 aX2 ow ow 

K I : XO ~ + Xl ~ -HI - w2
) ~ -H1 - w2

) 0_ - !O'(w + w) + !m(w - w), 
oX1 oXo ow ow 

K 2 : XO ~ + X2 ~ + liCI + w2) ~ - tiel + w2
) 0_ - liO'(w - w) + lim(w + w), 

oX2 oxo aw ow 

a a a _ 0 
Ks: Xo- + Xs- + to' - w- - W-. 

oXa oXo ow ow 

The special conformal generators are more complicated: 

L1 : xlD + !X2 ~ - limx2 + t(xo + xa)[m(w - w) - O'(w + w)] 
oX1 

+ i[xa(1 + w2
) - xo(1 - w2

) - 2iwX2] ~ + l[xa(1 + w2
) - xo(l - w2) + 2iwx2] 0_, 

ow oW 

L2: X2D + tx2 ~ + timxl + !i(xo + xs)[m(w + w) - O'(w - w)] 
OX2 

+ ti[xo(l + w2
) - xs(1 - w2

) + 2WX1] 1.. - !i[xo(l + w2) - xa(l - w2
) + 2wxl ] ~ , 

ow ow 

La: xaD + Ix2 ~ + liO'xo + H w + w)( O'X1 - imx2) + li( w - w)( O'x2 + imxl ) 
oXs 

- t[x1(1 + w2) - ix2(1 - wll
) + 2wxol 1.. - t[xll + ro2

) + ix2(1 - w2) + 2wxo] ~ , 
ow ow 

Lo: -xoD + tx2 ~ - to'xa - Hw + W)(O'XI - imx2) - ti(w - W)(O'X2 + imx1) 
oXo 

- ![x1(1 - w2
) - ix2(1 + wll

) + 2wxs] ~ - ![x1(1 - w2) + ix2(1 + w2) + 2wxa] ~ . 
ow ow 

(31) 

(32) 

In these relations we have parametrized the matrices given by 0' = ip2 - iPl - 2. If iPl is replaced every
z by (15), in order to cast the results into a more where by 2k - 1, the generators take the form 
familiar guise. By X2 we mean xJLxJL (the metric is appropriate to d1-they are here derived from d2 • 

still + - - -), and the sum in the first term of D Notice finally the interesting feature that Pl + P2 
is to be taken with all signs positive. The quantity 0' is appears nowhere except in D. 
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Casimir Operators 

~ has three independent Casimir operators. They 
are easily defined from the generators of 0(4,2) in 
canonical form: 

2C2 = JJl.JJlY, 

48C - JlVSpaTJ J J 
3 - EO JlY sP aT' (33) 

(34) 

where (e.g.) 

J(l, 2, 3,4) = J12J34 - J13J24 + J2si14' 

The first two are well known; but there is some 
ambiguity in the definition of the fourth-order 
operator, not only because of the possibility of adding 
a term (C2)2 but also because definitions with different 
orderings of the indices may introduce multiples of 
C2 • Our definition is that given by Castell.12 Using (2), 
we can write these as 

Ca = J • KD - K • PAL + J • LPo - J. PLo - J • K, 

C4 = -(J. K)2 + J. PJ· L + J. LJ· P - 2J2PoLo 
-KAP·KAL-KAL·KAP 

(35) 

(36) 

- K A L • J(Po + Lo) - (Po + Lo)J • K A L - (L A P + JDl 

+ LoP.KD + DK·PLo - PoL.KD - DK.LPo 
- L. P PoLo - p. LLoPo + P2L~ + L2p~ + K2D2 

+ J2 D + J • LAP + LAP· J + P • KLo + L • KPo - J2
• (37) 

There are obviously very many ways of writing 
(38): We have used a 3-vector notation largely out 
of personal preference. The lower-order terms have 
arisen because of commutators needed in order to 
express the operators simply with this notation. 

With the representation of the generators by (31) 
and (32), it is now a simple matter to obtain the 
eigenvalues of the Casimir operators, since these are 
pure numbers. A brief calculation gives for the series d2 

C2 = Hp~ + p~) - 1m2 + 5, 

Ca = -l;m(pi - p~), 

C4 = -im2(2 + p~ + p~) + Hp~ + p~) 
+ T~(pi - p~)2 + 1, 

(38) 

and we remark again that the substitution iPI ~ 2k - I 
gives the values of these operators in the series dl . Our 
Casimir operators as defined above differ from those 
of Yaoa (which we call Y) by 

Y2 = -C2 , 

Y3 = ±iCa , (39) 

Y4 = -C4 + !C~ - C2 • 

Although this makes comparison with Yao's list 
rather more difficult, we prefer to retain our C4 since 
on the most degenerate principal continuous series 
only C2 is then nonzero; this agrees with the conven
tions of Ref. 7. 

v. REDUCTION UNDER IP 

Recall that the Poincare subgroup is expressed by 
the four-parameter Abelian group z,...., T4 and the 
block-diagonal matrices D, where the blocks are 
restricted to be unimodular. Define the inhomogene
ous transform (a, z) by 

(a, z) = kz, z EZ, a E SL(2, C), 

(
sa-Its ) 

k= ED; 
a 

then we find 

(aI' zl)(a2, Z2) = (a l a2, Z2 + a"2l zl sa"2lt s) 

or, under the parametrization (15), 

(aI' x1)(a 2 , X 2) = (a 1a2 , X2 + A"21
XI)' (40) 

which is just the product law of the Poincare group. 
The apparent inversion of order is because we have 
chosen to consider the right regular representation 
rather than the left. 

A. Second Series d2 

When gin (21) is restricted to IP, we obtain 

T!ep:J(y) = ;.-tm+tiP-Ixtm+tiP-Y(y'), (41) 

where we have set P == P2 - Pl' Clearly this repre
sentation of IP is specified by the parameters m, P 
associated with ~ itself; and We notice that the way 
these enter is to make t of (18) a unitary irreducible 
representation13 of the principal series of SL(2, C). 
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This is just the expression of a covariance condition. 
Instead of defining the representation (41) over 
y = WZ, let us realize it on the manifold P = kz: 

which is isomorphic to the group !P and can be 
parametrized by p = (a, x). Then (21) becomes 

T;:f(p) = IAl iP1-
1 (sgn A)'I)"l m+iP-

2 ),,-mf(p'), 

pg = Ap', (43) 

and p' is no longer uniquely defined. Hence this is a 
representation of § only with the covariance condition 

f()"oa, x) = 1)"lm+iP- 2 ),,-mf(a, x), 

(
),,-l ) 

Ao = ~ E SL(2, C). (44) 

This is precisely analogous to the constraint re
quired in the representation of SL(2, C) by means of 
operators on functions defined over S U(2): 

cp(ei~J3u) = eiaiocp(u). 

In that well-known case we expand cp(u) in the 
matrix elements ~:o.m(u) of the rotation group; 
here we require the analog of that result and the 
expansion of an otherwise arbitrary function on !P 
that transforms irreducibly under the left-representa
tion of SL(2, C). A further restriction on I(a, x) 
comes from the observation that T2 is a principal
series representation of §: in other words, that it is 
contained in the regular representation by means of 
operators on functions square-integrable over § 

itself. Therefore (41) must be contained in the regular 
representation of !P, and hence is a direct integral 
of representations in the principal series of that group, 
so that we need to determine all such which transform 
under the representation (m, p) of SL(2, C) "from the 
left." The problem is solved in the Appendix, and 
we find the following result. 

Theorem 1,' When restricted to !P, the representation 
(m, PI' P2) in the second principal continuous series 
d2 of § contains a direct integral and sum over all the 
principal-series representations of !P allowing a heli
city of m12. Each representation enters with unit 
multiplicity. 

That is, all masses (real and imaginary) appear in 
the reduction, but the lightlike representations are 
omittedl4 because they enter with vanishing invariant 
measure. (They appear explicitlyin other series of§.) 
For timelike representations, all spins s ~ liml 

occur; for spacelike representations, all continuous 
spins, and discrete spins 0 < k ~ liml - 1 only. 
The parity of the representations of the little groups 
is that of m. 

B. First Series dl 

The problem here is more interesting. When 
restricted to !P, (30) becomes 

T!e/P :f(y) = 1)"lm+i P-2k-1 ),,-mf(y'), f E Jel , (45) 

and the scalar product is given by (28). This repre
sentation of !P is clearly unitary, but the definition of 
Je l makes it difficult to see how it reduces because of 
the derivatives in the scalar product. We shall, 
however, show that it is equivalent to a representation 
(of IP) on the space Je2 , and the results of the previous 
section will then solve the problem. 

Consider then the operator A defined by 

A:f(y) = f d,u(p)e-iTr(vTz){O,(p, W)}k-t 

(46) 

where 
-io'(p, (0) = wPa - wPa + Ph + wwpc' (47) 

P is a matrix of the same form as z with elements 
Pa' etc., and the superscript T indicates transposition 
of the matrix. It is trivial to show that 

AT!o:f(z, (0) = Af(z + zo, (0); (48) 

let us now investigate the action of T~, a E SL(2, C) c 
IP. Define the matrix P' = aTpsiis; then clearly 

Tr (p TZ) = Tr (p,T z'), 

where ya = Ay' defines z'. We also find, by direct 
calculation, the remarkable result 

o'(p', 00') = 1)"1-2 O,(p, (0), 

so that, using these identities, we obtain 

AT~:f(z, (0) 

= fd,u(p)e-iTr(VTZ)O,(p, wt-t 

x f d,u(z~)eiTr (V'T.o') IAI m+ip-2k-1 )" -1nJ(z~, 00') 

= 1)"lm+iP-2 ),,-mAf(z', 00'). (49) 

In other words, we have shown by (42) and (49) that 

AT; = T!A, (50) 

so that A intertwines the representations (45) and (41) 
of IP. Notice that this important result hinges on the 
fact that when g E § is restricted to !P, then)" and 00' 
are independent of z; hence no similar program can 
be developed for § itself. 
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We must now show that the representations are 
equivalent-that is, that 

A:JeI(m, p, k) - Je2 (m, p, - k - 1) 

is an isometry as well as one to one and onto. To 
establish this, we remark that Jel was defined in Sec. 
3B only modulo multinomials of total degree 2k - 2 
or less in the elements of z; hence, the Fourier trans
form with respect to these variables certainly converges 
in the classical sense. Consider the subspaces KI c Jel 

and X 2 c Je2 of COO functions of compact support in 
all variables; these are dense subspaces,I5 and, by the 
Riemann-Lebesgue lemma and (46), A:KI - K 2 • 

By virtue of the classical theorems on Fourier trans
forms we know that, on K, A is invertible; that it is 
isometric (we ignore irrelevant numerical factors) 
follows from its definition. Therefore, A: Jel - Je2 

is indeed an isometric isomorphism, and the repre
sentations (41) and (45) of rP are equivalent as we 
asserted. 

It remains only to examine the consequences of the 
reducibility of d1 • Consider the variables p, a, r 
introduced in Sec. 3B, and define !(p, a, r; w) = 
f(a, b, c; w). Because the Fourier transform with 
respect to (-iO') of a function! E Jet is concentrated 
on the positive axis, the integral over pin (46) is over 
only that region where O(p, w) is positive; for Jel 
the situation is reversed. This establishes the single
valuedness of (46), and shows that A : Jet - Jet, 
where Jet c Je2 contains only those functions which 
are analytic in Re a > O. Now suppose f E Jet. Then 
Tg:I E Jet for all g E g, so that we can examine any 
Tgf to determine whether or not I lies in the space. 
Consider in particular 

[Tm_ 1 :f](z, w) 

= I(a + bw, b, c + aw - aw + bww; 0) 

= I(p, a, r; 0) = !(p, a, r; 0), 

where w-1 is an element of SL(2, C) E rP specified by 
au = a22 = 1, au = -w; then we see that analyticity 
in Re a > 0 implies that, upon the cross section 
w = 0, I is analytic in Re b > O. In other words, 
I(a, b, c; co) E Jet is analytic in the b coordinate of 
that point on the surface w = 0 which is mapped onto 
(a, b, c; w) by transformation under w E SL(2, C). 

Therefore, by choosing correct analyticity for 
1(0, b, c; 0), we ensure that I belongs to Jet; 
since by (15) b is just i(xo + xs), we see, by passing 
to the Fourier transform with respect to z ""-' xp of 
I E Jet, that in this subspace we have just the restric
tion (Po + Pa) > 0, where P,. is the p, component of 
the 4-momentum. We remark that intuitively this 

procedure corresponds to choosing a standard 
orientation for the spin of a particle and then in that 
frame examining its momentum. 

We now ask how this restricts the representations 
of the Poincare group occurring in dt. Suppose first 
that p"p" < 0 so that we have a spacelike representa
tion of rP ; then the restriction is not Lorentz invariant 
and does not eliminate any masses. If, however, 
p,.p" > 0, we have a timelike representation, and now 
the restriction is indeed real and tells us that only 
positive masses occur. For dl the situation is, of 
course, reversed and only negative masses arise. 

Now the w dependence of fez, w) is stilI quite 
unrestricted. With these results upon the coordinate 
dependence of the functions in Jet, we can therefore 
make use of the results of the last section to reduce 
dt and dl with respect to rP. We find the following 
theorem. 

Theorem 2: When restricted to rP, the representa
tion (m, p, k+) of the positive first principal continuous 
series dt of g contains a direct sum and integral over 
all the principal series representations of rP which 
both allow a helicity of tm and have either an imagi
nary or a real and positive rest mass. The representa
tion (m, p, k-) of the negative series dl contains all 
such representations which both allow a helicity of 
tm and have either an imaginary or a real and negative 
rest mass. 

APPENDIX 

It is clear from (43) that no irreducible representa
tion [M, S] of rP occurs more than once in the reduc
tion. In order to see which of these are allowed by our 
covariance condition (44), we must express the basis 
functions I(a, x) in terms of the (generalized) matrix 
elements of rP in an SL(2, C) basis-or, equivalently, 
know how rP reduces with respect to SL(2, C). This 
latter is, of course, well known16 for timelike represen
tations, but the spacelike case M2 < 0 does not seem 
to have been studied and so we shall use the former 
approach. 

Suppose then that we know the generalized matrix 
elements 

(mpjp,1 T~M •• S] 1m' p'j'p,') 

of the Poincare group in such a basis, together with 
the appropriate Fourier inversion theorem and 
measure dw. Then (44) tells us that !(p) must be 
expanded as 

f(p) = f /(m'p'j'p,'; MS) (mpjp,1 T~M,S] Im'p'j'p,') dw, 

where the labels (m, p) of the matrix element are 
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those of~, andj, '" [specifying some basis of SL(2, C)] 
are irrelevant. By virtue of the Plancherel theorem14 
for IP (a Type I group), this is an isometry, and hence 
solves the reduction problem once we know the 
possible values of [M, S] for fixed (m, p). 

To find these, we use the following prescription for 
calculating the matrix elements: 

( ) -f y[M.S] ( ')y[M.S] ( , ) d ( ') - mpJ/l P m'p'j'/l' P P '" P , 

where yep) is a spherical function of IP in an SL(2, C) 
basis and d",(p) is the invariant measure. The details 
of this procedure are irrelevant to our present purpose: 
What we need is only a knowledge of the spherical 
functions. For timelike representations these have 
been given by RUhP': In our notation 

y~~;:l(p) = 'D;;'j/l(a) . exp [iM(A-
1
x)o), 

where 'D(a) is a representation function of SL(2, C) 
in the canonical basis and (A-1X)O is just the 0-
component of the vector x/l after the transformation 
A-1 E 0(3, 1) conjugate to a-1 E SL(2, C). The label 
",' is unimportant. A similar procedure can be out
lined for M2 < ° using the "cross-basis" matrix 
elements of SL(2, C) between an SU(1, 1) and an 
SU(2) basis,l' which are the spherical functions for 
the reduction SL(2, C) ::> SU(1, 1): 

[M2 <O.Sl( _ mp .. . -1 3. Y mpj/l;r p) - 'D s/l'r;jia) exp [I IMI (A x)], 

s is now on the principal series of the SU(l, I) sub
group, while j still refers to SU(2). The label 'T is 
related to parity. 

We can now deduce the allowed values of [M, S) 
by examining the spherical functions. For M2 > 0, 

it is clear that for fixed (m, p) there occur only those 
spins with 2S ~ Iml: this, of course, agrees with the 
results of Joos,l3 For M2 < 0, we find that all con
tinuous S are allowed, but discrete S ~ \tml - 1 
only.1s Since there are no restrictions on the x 
dependence of our functions I(a, x), every (real and 
imaginary) mass M occurs, entering with invariant 
measure M2 dM2; hence, the lightlike representations 
M2 = 0 can be neglected14 as being a lower-dimen
sional manifold with vanishing invariant measure. 
The problem is solved. 
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~ pea) 
4. ak N+k.n 

k odd 
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la,l SN+i - )"', 
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